metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.24C42, (C2×C8)⋊2F5, (C2×C40)⋊4C4, (C4×F5)⋊2C4, C4.29(C4×F5), (C4×D5).51D4, C5⋊2(C4.9C42), C22.1(C4⋊F5), Dic5.5(C4⋊C4), (C2×Dic5).10Q8, (C22×D5).57D4, C4.25(C22⋊F5), C20.25(C22⋊C4), D10.5(C22⋊C4), C2.11(D10.3Q8), C10.10(C2.C42), D10.C23.10C2, (C2×C5⋊2C8)⋊5C4, (C4×D5).43(C2×C4), (C2×C8⋊D5).8C2, (C2×C4).126(C2×F5), (C2×C10).13(C4⋊C4), (C2×C20).142(C2×C4), (C2×C4×D5).282C22, SmallGroup(320,233)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C20.24C42
G = < a,b,c | a20=b4=1, c4=a10, bab-1=a13, ac=ca, cbc-1=a5b >
Subgroups: 418 in 94 conjugacy classes, 34 normal (20 characteristic)
C1, C2, C2 [×3], C4 [×2], C4 [×6], C22, C22 [×3], C5, C8 [×2], C2×C4, C2×C4 [×9], C23, D5 [×2], C10, C10, C42 [×4], C22⋊C4 [×2], C4⋊C4 [×2], C2×C8, C2×C8, M4(2) [×2], C22×C4, Dic5 [×2], C20 [×2], F5 [×4], D10 [×2], D10, C2×C10, C42⋊C2 [×2], C2×M4(2), C5⋊2C8, C40, C4×D5 [×4], C2×Dic5, C2×C20, C2×F5 [×4], C22×D5, C4.9C42, C8⋊D5 [×2], C2×C5⋊2C8, C2×C40, C4×F5 [×4], C4⋊F5 [×2], C22⋊F5 [×2], C2×C4×D5, C2×C8⋊D5, D10.C23 [×2], C20.24C42
Quotients: C1, C2 [×3], C4 [×6], C22, C2×C4 [×3], D4 [×3], Q8, C42, C22⋊C4 [×3], C4⋊C4 [×3], F5, C2.C42, C2×F5, C4.9C42, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, C20.24C42
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 36)(2 33 10 29)(3 30 19 22)(4 27 8 35)(5 24 17 28)(6 21)(7 38 15 34)(9 32 13 40)(11 26)(12 23 20 39)(14 37 18 25)(16 31)(41 71 51 61)(42 68 60 74)(43 65 49 67)(44 62 58 80)(45 79 47 73)(46 76 56 66)(48 70 54 72)(50 64 52 78)(53 75 59 77)(55 69 57 63)
(1 76 26 41 11 66 36 51)(2 77 27 42 12 67 37 52)(3 78 28 43 13 68 38 53)(4 79 29 44 14 69 39 54)(5 80 30 45 15 70 40 55)(6 61 31 46 16 71 21 56)(7 62 32 47 17 72 22 57)(8 63 33 48 18 73 23 58)(9 64 34 49 19 74 24 59)(10 65 35 50 20 75 25 60)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,36)(2,33,10,29)(3,30,19,22)(4,27,8,35)(5,24,17,28)(6,21)(7,38,15,34)(9,32,13,40)(11,26)(12,23,20,39)(14,37,18,25)(16,31)(41,71,51,61)(42,68,60,74)(43,65,49,67)(44,62,58,80)(45,79,47,73)(46,76,56,66)(48,70,54,72)(50,64,52,78)(53,75,59,77)(55,69,57,63), (1,76,26,41,11,66,36,51)(2,77,27,42,12,67,37,52)(3,78,28,43,13,68,38,53)(4,79,29,44,14,69,39,54)(5,80,30,45,15,70,40,55)(6,61,31,46,16,71,21,56)(7,62,32,47,17,72,22,57)(8,63,33,48,18,73,23,58)(9,64,34,49,19,74,24,59)(10,65,35,50,20,75,25,60)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,36)(2,33,10,29)(3,30,19,22)(4,27,8,35)(5,24,17,28)(6,21)(7,38,15,34)(9,32,13,40)(11,26)(12,23,20,39)(14,37,18,25)(16,31)(41,71,51,61)(42,68,60,74)(43,65,49,67)(44,62,58,80)(45,79,47,73)(46,76,56,66)(48,70,54,72)(50,64,52,78)(53,75,59,77)(55,69,57,63), (1,76,26,41,11,66,36,51)(2,77,27,42,12,67,37,52)(3,78,28,43,13,68,38,53)(4,79,29,44,14,69,39,54)(5,80,30,45,15,70,40,55)(6,61,31,46,16,71,21,56)(7,62,32,47,17,72,22,57)(8,63,33,48,18,73,23,58)(9,64,34,49,19,74,24,59)(10,65,35,50,20,75,25,60) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,36),(2,33,10,29),(3,30,19,22),(4,27,8,35),(5,24,17,28),(6,21),(7,38,15,34),(9,32,13,40),(11,26),(12,23,20,39),(14,37,18,25),(16,31),(41,71,51,61),(42,68,60,74),(43,65,49,67),(44,62,58,80),(45,79,47,73),(46,76,56,66),(48,70,54,72),(50,64,52,78),(53,75,59,77),(55,69,57,63)], [(1,76,26,41,11,66,36,51),(2,77,27,42,12,67,37,52),(3,78,28,43,13,68,38,53),(4,79,29,44,14,69,39,54),(5,80,30,45,15,70,40,55),(6,61,31,46,16,71,21,56),(7,62,32,47,17,72,22,57),(8,63,33,48,18,73,23,58),(9,64,34,49,19,74,24,59),(10,65,35,50,20,75,25,60)])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4M | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 10 | 10 | 1 | 1 | 2 | 10 | 10 | 20 | ··· | 20 | 4 | 4 | 4 | 20 | 20 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | + | + | + | |||||||
image | C1 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | D4 | F5 | C2×F5 | C4.9C42 | C4×F5 | C22⋊F5 | C4⋊F5 | C20.24C42 |
kernel | C20.24C42 | C2×C8⋊D5 | D10.C23 | C2×C5⋊2C8 | C2×C40 | C4×F5 | C4×D5 | C2×Dic5 | C22×D5 | C2×C8 | C2×C4 | C5 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 8 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 8 |
Matrix representation of C20.24C42 ►in GL4(𝔽41) generated by
32 | 32 | 32 | 32 |
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 9 | 0 |
34 | 0 | 27 | 27 |
27 | 27 | 0 | 34 |
14 | 7 | 14 | 0 |
7 | 34 | 34 | 7 |
30 | 19 | 6 | 13 |
28 | 17 | 6 | 34 |
7 | 35 | 24 | 13 |
28 | 35 | 22 | 11 |
G:=sub<GL(4,GF(41))| [32,9,0,0,32,0,9,0,32,0,0,9,32,0,0,0],[34,27,14,7,0,27,7,34,27,0,14,34,27,34,0,7],[30,28,7,28,19,17,35,35,6,6,24,22,13,34,13,11] >;
C20.24C42 in GAP, Magma, Sage, TeX
C_{20}._{24}C_4^2
% in TeX
G:=Group("C20.24C4^2");
// GroupNames label
G:=SmallGroup(320,233);
// by ID
G=gap.SmallGroup(320,233);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,1123,136,102,6278,3156]);
// Polycyclic
G:=Group<a,b,c|a^20=b^4=1,c^4=a^10,b*a*b^-1=a^13,a*c=c*a,c*b*c^-1=a^5*b>;
// generators/relations