metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.1F5, (C4×C20).1C4, C20⋊2Q8.1C2, (C2×Dic5).7D4, C10.3(C23⋊C4), C5⋊1(C42.3C4), (C2×Dic10).3C4, C2.6(D10.D4), Dic5.D4.1C2, (C2×Dic10).1C22, C22.10(C22⋊F5), (C2×C4).51(C2×F5), (C2×C20).97(C2×C4), (C2×C10).10(C22⋊C4), SmallGroup(320,193)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.F5
G = < a,b,c,d | a4=b4=c5=1, d4=b2, ab=ba, ac=ca, dad-1=a-1b-1, bc=cb, dbd-1=a2b, dcd-1=c3 >
Subgroups: 282 in 60 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C4 [×6], C22, C5, C8 [×2], C2×C4, C2×C4 [×4], Q8 [×2], C10, C10, C42, C4⋊C4 [×2], M4(2) [×2], C2×Q8 [×2], Dic5 [×3], C20 [×3], C2×C10, C4.10D4 [×2], C4⋊Q8, C5⋊C8 [×2], Dic10 [×2], C2×Dic5 [×2], C2×Dic5, C2×C20, C2×C20, C42.3C4, C4⋊Dic5 [×2], C4×C20, C22.F5 [×2], C2×Dic10 [×2], Dic5.D4 [×2], C20⋊2Q8, C42.F5
Quotients: C1, C2 [×3], C4 [×2], C22, C2×C4, D4 [×2], C22⋊C4, F5, C23⋊C4, C2×F5, C42.3C4, C22⋊F5, D10.D4, C42.F5
Character table of C42.F5
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | 20J | 20K | 20L | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 20 | 20 | 40 | 4 | 40 | 40 | 40 | 40 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | 4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ13 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ14 | 4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -√5 | √5 | 1 | √5 | -√5 | -√5 | √5 | 1 | 1 | 1 | √5 | -√5 | orthogonal lifted from C22⋊F5 |
ρ15 | 4 | 4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | √5 | -√5 | 1 | -√5 | √5 | √5 | -√5 | 1 | 1 | 1 | -√5 | √5 | orthogonal lifted from C22⋊F5 |
ρ16 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | √5 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | √5 | -√5 | -√5 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | orthogonal lifted from D10.D4 |
ρ17 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | -√5 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | -√5 | √5 | √5 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | orthogonal lifted from D10.D4 |
ρ18 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | -√5 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | -√5 | √5 | √5 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | orthogonal lifted from D10.D4 |
ρ19 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | √5 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | √5 | -√5 | -√5 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | orthogonal lifted from D10.D4 |
ρ20 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | symplectic lifted from C42.3C4, Schur index 2 |
ρ21 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | -2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | symplectic lifted from C42.3C4, Schur index 2 |
ρ22 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -√5 | √5 | 1 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ54+2ζ4ζ52+ζ4 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ43ζ52+2ζ43ζ5+ζ43 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | symplectic faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -√5 | √5 | 1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | 2ζ4ζ54+2ζ4ζ52+ζ4 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ43ζ52+2ζ43ζ5+ζ43 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | symplectic faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -√5 | √5 | 1 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ53+2ζ4ζ5+ζ4 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ53+ζ43 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | symplectic faithful, Schur index 2 |
ρ25 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | -√5 | √5 | 1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | 2ζ4ζ53+2ζ4ζ5+ζ4 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ43ζ54+2ζ43ζ53+ζ43 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | symplectic faithful, Schur index 2 |
ρ26 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | √5 | -√5 | 1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ4ζ53+2ζ4ζ5+ζ4 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | symplectic faithful, Schur index 2 |
ρ27 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | √5 | -√5 | 1 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | 2ζ43ζ54+2ζ43ζ53+ζ43 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ52+ζ4 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | symplectic faithful, Schur index 2 |
ρ28 | 4 | -4 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | √5 | -√5 | 1 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | 2ζ43ζ52+2ζ43ζ5+ζ43 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | 2ζ43ζ54+2ζ43ζ53+ζ43 | 2ζ4ζ54+2ζ4ζ52+ζ4 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | symplectic faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | √5 | -√5 | 1 | -ζ4ζ53+ζ4ζ52+ζ53+ζ52+1 | ζ43ζ54-ζ43ζ5+ζ54+ζ5+1 | 2ζ43ζ54+2ζ43ζ53+ζ43 | ζ4ζ53+ζ4ζ52+2ζ4ζ5+ζ4+ζ53+ζ52 | ζ43ζ54+2ζ43ζ53+ζ43ζ5+ζ43+ζ54+ζ5 | ζ43ζ54+2ζ43ζ52+ζ43ζ5+ζ43+ζ54+ζ5 | 2ζ4ζ54+ζ4ζ53+ζ4ζ52+ζ4+ζ53+ζ52 | 2ζ43ζ52+2ζ43ζ5+ζ43 | 2ζ4ζ53+2ζ4ζ5+ζ4 | 2ζ4ζ54+2ζ4ζ52+ζ4 | -ζ43ζ54+ζ43ζ5+ζ54+ζ5+1 | ζ4ζ53-ζ4ζ52+ζ53+ζ52+1 | symplectic faithful, Schur index 2 |
(2 47 6 43)(4 45 8 41)(9 59 13 63)(11 57 15 61)(17 40 21 36)(19 38 23 34)(26 53 30 49)(28 51 32 55)(66 78 70 74)(68 76 72 80)
(1 42 5 46)(2 43 6 47)(3 48 7 44)(4 41 8 45)(9 63 13 59)(10 60 14 64)(11 61 15 57)(12 58 16 62)(17 36 21 40)(18 33 22 37)(19 34 23 38)(20 39 24 35)(25 56 29 52)(26 49 30 53)(27 54 31 50)(28 55 32 51)(65 73 69 77)(66 74 70 78)(67 79 71 75)(68 80 72 76)
(1 35 58 29 73)(2 30 36 74 59)(3 75 31 60 37)(4 61 76 38 32)(5 39 62 25 77)(6 26 40 78 63)(7 79 27 64 33)(8 57 80 34 28)(9 43 53 21 70)(10 22 44 71 54)(11 72 23 55 45)(12 56 65 46 24)(13 47 49 17 66)(14 18 48 67 50)(15 68 19 51 41)(16 52 69 42 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (2,47,6,43)(4,45,8,41)(9,59,13,63)(11,57,15,61)(17,40,21,36)(19,38,23,34)(26,53,30,49)(28,51,32,55)(66,78,70,74)(68,76,72,80), (1,42,5,46)(2,43,6,47)(3,48,7,44)(4,41,8,45)(9,63,13,59)(10,60,14,64)(11,61,15,57)(12,58,16,62)(17,36,21,40)(18,33,22,37)(19,34,23,38)(20,39,24,35)(25,56,29,52)(26,49,30,53)(27,54,31,50)(28,55,32,51)(65,73,69,77)(66,74,70,78)(67,79,71,75)(68,80,72,76), (1,35,58,29,73)(2,30,36,74,59)(3,75,31,60,37)(4,61,76,38,32)(5,39,62,25,77)(6,26,40,78,63)(7,79,27,64,33)(8,57,80,34,28)(9,43,53,21,70)(10,22,44,71,54)(11,72,23,55,45)(12,56,65,46,24)(13,47,49,17,66)(14,18,48,67,50)(15,68,19,51,41)(16,52,69,42,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (2,47,6,43)(4,45,8,41)(9,59,13,63)(11,57,15,61)(17,40,21,36)(19,38,23,34)(26,53,30,49)(28,51,32,55)(66,78,70,74)(68,76,72,80), (1,42,5,46)(2,43,6,47)(3,48,7,44)(4,41,8,45)(9,63,13,59)(10,60,14,64)(11,61,15,57)(12,58,16,62)(17,36,21,40)(18,33,22,37)(19,34,23,38)(20,39,24,35)(25,56,29,52)(26,49,30,53)(27,54,31,50)(28,55,32,51)(65,73,69,77)(66,74,70,78)(67,79,71,75)(68,80,72,76), (1,35,58,29,73)(2,30,36,74,59)(3,75,31,60,37)(4,61,76,38,32)(5,39,62,25,77)(6,26,40,78,63)(7,79,27,64,33)(8,57,80,34,28)(9,43,53,21,70)(10,22,44,71,54)(11,72,23,55,45)(12,56,65,46,24)(13,47,49,17,66)(14,18,48,67,50)(15,68,19,51,41)(16,52,69,42,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([(2,47,6,43),(4,45,8,41),(9,59,13,63),(11,57,15,61),(17,40,21,36),(19,38,23,34),(26,53,30,49),(28,51,32,55),(66,78,70,74),(68,76,72,80)], [(1,42,5,46),(2,43,6,47),(3,48,7,44),(4,41,8,45),(9,63,13,59),(10,60,14,64),(11,61,15,57),(12,58,16,62),(17,36,21,40),(18,33,22,37),(19,34,23,38),(20,39,24,35),(25,56,29,52),(26,49,30,53),(27,54,31,50),(28,55,32,51),(65,73,69,77),(66,74,70,78),(67,79,71,75),(68,80,72,76)], [(1,35,58,29,73),(2,30,36,74,59),(3,75,31,60,37),(4,61,76,38,32),(5,39,62,25,77),(6,26,40,78,63),(7,79,27,64,33),(8,57,80,34,28),(9,43,53,21,70),(10,22,44,71,54),(11,72,23,55,45),(12,56,65,46,24),(13,47,49,17,66),(14,18,48,67,50),(15,68,19,51,41),(16,52,69,42,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)])
Matrix representation of C42.F5 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 30 | 32 |
0 | 0 | 9 | 11 |
30 | 32 | 0 | 0 |
9 | 11 | 0 | 0 |
0 | 0 | 11 | 9 |
0 | 0 | 32 | 30 |
34 | 40 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 7 | 7 |
0 | 0 | 34 | 40 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
22 | 22 | 0 | 0 |
32 | 19 | 0 | 0 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,30,9,0,0,32,11],[30,9,0,0,32,11,0,0,0,0,11,32,0,0,9,30],[34,1,0,0,40,0,0,0,0,0,7,34,0,0,7,40],[0,0,22,32,0,0,22,19,1,0,0,0,0,1,0,0] >;
C42.F5 in GAP, Magma, Sage, TeX
C_4^2.F_5
% in TeX
G:=Group("C4^2.F5");
// GroupNames label
G:=SmallGroup(320,193);
// by ID
G=gap.SmallGroup(320,193);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,120,219,184,1571,297,136,1684,6278,3156]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^4=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations
Export