Copied to
clipboard

G = C423F5order 320 = 26·5

3rd semidirect product of C42 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C423F5, C20.20C42, D5⋊C8⋊C4, (C4×C20)⋊8C4, (C4×F5)⋊1C4, C4.7(C4⋊F5), C4.27(C4×F5), (C4×Dic5)⋊7C4, (C4×D5).50D4, C20.14(C4⋊C4), (C4×D5).11Q8, D10.1(C4⋊C4), C51(C4.9C42), Dic5.1(C4⋊C4), (C2×Dic5).91D4, D5⋊M4(2).8C2, (C22×D5).53D4, D10.1(C22⋊C4), C42⋊D5.13C2, Dic5.1(C22⋊C4), C2.4(D10.3Q8), C22.13(C22⋊F5), C10.2(C2.C42), D10.C23.8C2, (C4×D5).42(C2×C4), (C2×C4).116(C2×F5), (C2×C20).137(C2×C4), (C2×C4×D5).280C22, (C2×C10).13(C22⋊C4), SmallGroup(320,201)

Series: Derived Chief Lower central Upper central

C1C20 — C423F5
C1C5C10D10C22×D5C2×C4×D5D10.C23 — C423F5
C5C20 — C423F5
C1C4C42

Generators and relations for C423F5
 G = < a,b,c,d | a4=b4=c5=d4=1, ab=ba, ac=ca, dad-1=ab-1, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 402 in 94 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2 [×3], C4 [×2], C4 [×6], C22, C22 [×3], C5, C8 [×2], C2×C4, C2×C4 [×9], C23, D5 [×2], C10, C10, C42, C42 [×3], C22⋊C4 [×2], C4⋊C4 [×2], C2×C8 [×2], M4(2) [×2], C22×C4, Dic5 [×2], Dic5, C20 [×2], C20, F5 [×2], D10 [×2], D10, C2×C10, C42⋊C2 [×2], C2×M4(2), C5⋊C8 [×2], C4×D5 [×4], C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×F5 [×2], C22×D5, C4.9C42, C4×Dic5, C10.D4, D10⋊C4, C4×C20, D5⋊C8 [×2], C4.F5, C4×F5 [×2], C4⋊F5, C22.F5, C22⋊F5, C2×C4×D5, C42⋊D5, D5⋊M4(2), D10.C23, C423F5
Quotients: C1, C2 [×3], C4 [×6], C22, C2×C4 [×3], D4 [×3], Q8, C42, C22⋊C4 [×3], C4⋊C4 [×3], F5, C2.C42, C2×F5, C4.9C42, C4×F5, C4⋊F5, C22⋊F5, D10.3Q8, C423F5

Smallest permutation representation of C423F5
On 80 points
Generators in S80
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 76 46 71)(42 77 47 72)(43 78 48 73)(44 79 49 74)(45 80 50 75)(51 61 56 66)(52 62 57 67)(53 63 58 68)(54 64 59 69)(55 65 60 70)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 76 66 71)(62 77 67 72)(63 78 68 73)(64 79 69 74)(65 80 70 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 43)(2 45 5 41)(3 42 4 44)(6 48)(7 50 10 46)(8 47 9 49)(11 53)(12 55 15 51)(13 52 14 54)(16 58)(17 60 20 56)(18 57 19 59)(21 68 26 63)(22 70 30 61)(23 67 29 64)(24 69 28 62)(25 66 27 65)(31 78 36 73)(32 80 40 71)(33 77 39 74)(34 79 38 72)(35 76 37 75)

G:=sub<Sym(80)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,76,46,71)(42,77,47,72)(43,78,48,73)(44,79,49,74)(45,80,50,75)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,43)(2,45,5,41)(3,42,4,44)(6,48)(7,50,10,46)(8,47,9,49)(11,53)(12,55,15,51)(13,52,14,54)(16,58)(17,60,20,56)(18,57,19,59)(21,68,26,63)(22,70,30,61)(23,67,29,64)(24,69,28,62)(25,66,27,65)(31,78,36,73)(32,80,40,71)(33,77,39,74)(34,79,38,72)(35,76,37,75)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,76,46,71)(42,77,47,72)(43,78,48,73)(44,79,49,74)(45,80,50,75)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,43)(2,45,5,41)(3,42,4,44)(6,48)(7,50,10,46)(8,47,9,49)(11,53)(12,55,15,51)(13,52,14,54)(16,58)(17,60,20,56)(18,57,19,59)(21,68,26,63)(22,70,30,61)(23,67,29,64)(24,69,28,62)(25,66,27,65)(31,78,36,73)(32,80,40,71)(33,77,39,74)(34,79,38,72)(35,76,37,75) );

G=PermutationGroup([(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,76,46,71),(42,77,47,72),(43,78,48,73),(44,79,49,74),(45,80,50,75),(51,61,56,66),(52,62,57,67),(53,63,58,68),(54,64,59,69),(55,65,60,70)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,76,66,71),(62,77,67,72),(63,78,68,73),(64,79,69,74),(65,80,70,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,43),(2,45,5,41),(3,42,4,44),(6,48),(7,50,10,46),(8,47,9,49),(11,53),(12,55,15,51),(13,52,14,54),(16,58),(17,60,20,56),(18,57,19,59),(21,68,26,63),(22,70,30,61),(23,67,29,64),(24,69,28,62),(25,66,27,65),(31,78,36,73),(32,80,40,71),(33,77,39,74),(34,79,38,72),(35,76,37,75)])

38 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H···4M 5 8A8B8C8D10A10B10C20A···20L
order1222244444444···45888810101020···20
size112101011244101020···204202020204444···4

38 irreducible representations

dim1111111122224444444
type+++++-+++++
imageC1C2C2C2C4C4C4C4D4Q8D4D4F5C2×F5C4.9C42C4×F5C4⋊F5C22⋊F5C423F5
kernelC423F5C42⋊D5D5⋊M4(2)D10.C23C4×Dic5C4×C20D5⋊C8C4×F5C4×D5C4×D5C2×Dic5C22×D5C42C2×C4C5C4C4C22C1
# reps1111224411111122228

Matrix representation of C423F5 in GL4(𝔽41) generated by

244000
11700
00309
003211
,
32000
03200
00320
00032
,
04000
13400
00407
00347
,
0010
0001
13400
04000
G:=sub<GL(4,GF(41))| [24,1,0,0,40,17,0,0,0,0,30,32,0,0,9,11],[32,0,0,0,0,32,0,0,0,0,32,0,0,0,0,32],[0,1,0,0,40,34,0,0,0,0,40,34,0,0,7,7],[0,0,1,0,0,0,34,40,1,0,0,0,0,1,0,0] >;

C423F5 in GAP, Magma, Sage, TeX

C_4^2\rtimes_3F_5
% in TeX

G:=Group("C4^2:3F5");
// GroupNames label

G:=SmallGroup(320,201);
// by ID

G=gap.SmallGroup(320,201);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,1123,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽