Copied to
clipboard

G = D10.5C42order 320 = 26·5

2nd non-split extension by D10 of C42 acting via C42/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10.5C42, C42.242D10, Dic5.5C42, (C8×D5)⋊5C4, (C4×C8)⋊15D5, (C4×C40)⋊22C2, C8⋊D58C4, C8.42(C4×D5), C408C431C2, C2.8(D5×C42), C40.100(C2×C4), (C8×Dic5)⋊12C2, (C2×C8).340D10, C10.29(C8○D4), C55(C82M4(2)), C10.27(C2×C42), D10⋊C4.29C4, C20.183(C22×C4), (C2×C20).807C23, (C4×C20).340C22, (C2×C40).406C22, C10.D4.29C4, C42.D524C2, C42⋊D5.14C2, C2.3(D20.3C4), (C4×Dic5).296C22, C4.98(C2×C4×D5), (D5×C2×C8).14C2, (C2×C4).88(C4×D5), C22.38(C2×C4×D5), C52C8.27(C2×C4), (C4×D5).79(C2×C4), (C2×C20).378(C2×C4), (C2×C8⋊D5).18C2, (C2×C4×D5).338C22, (C2×Dic5).92(C2×C4), (C22×D5).69(C2×C4), (C2×C4).749(C22×D5), (C2×C10).163(C22×C4), (C2×C52C8).300C22, SmallGroup(320,316)

Series: Derived Chief Lower central Upper central

C1C10 — D10.5C42
C1C5C10C20C2×C20C2×C4×D5C42⋊D5 — D10.5C42
C5C10 — D10.5C42
C1C2×C8C4×C8

Generators and relations for D10.5C42
 G = < a,b,c,d | a10=b2=c4=1, d4=a5, bab=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, cd=dc >

Subgroups: 350 in 130 conjugacy classes, 75 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×2], C4 [×6], C22, C22 [×4], C5, C8 [×4], C8 [×4], C2×C4, C2×C4 [×2], C2×C4 [×7], C23, D5 [×2], C10, C10 [×2], C42, C42, C22⋊C4 [×2], C4⋊C4 [×2], C2×C8 [×2], C2×C8 [×6], M4(2) [×4], C22×C4, Dic5 [×2], Dic5 [×2], C20 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C4×C8, C4×C8, C8⋊C4 [×2], C42⋊C2, C22×C8, C2×M4(2), C52C8 [×4], C40 [×4], C4×D5 [×4], C2×Dic5, C2×Dic5 [×2], C2×C20, C2×C20 [×2], C22×D5, C82M4(2), C8×D5 [×4], C8⋊D5 [×4], C2×C52C8 [×2], C4×Dic5, C10.D4 [×2], D10⋊C4 [×2], C4×C20, C2×C40 [×2], C2×C4×D5, C42.D5, C8×Dic5, C408C4, C4×C40, C42⋊D5, D5×C2×C8, C2×C8⋊D5, D10.5C42
Quotients: C1, C2 [×7], C4 [×12], C22 [×7], C2×C4 [×18], C23, D5, C42 [×4], C22×C4 [×3], D10 [×3], C2×C42, C8○D4 [×2], C4×D5 [×6], C22×D5, C82M4(2), C2×C4×D5 [×3], D5×C42, D20.3C4 [×2], D10.5C42

Smallest permutation representation of D10.5C42
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 14)(12 13)(15 20)(16 19)(17 18)(21 24)(22 23)(25 30)(26 29)(27 28)(31 34)(32 33)(35 40)(36 39)(37 38)(41 44)(42 43)(45 50)(46 49)(47 48)(51 54)(52 53)(55 60)(56 59)(57 58)(61 64)(62 63)(65 70)(66 69)(67 68)(71 74)(72 73)(75 80)(76 79)(77 78)(81 89)(82 88)(83 87)(84 86)(91 99)(92 98)(93 97)(94 96)(101 109)(102 108)(103 107)(104 106)(111 119)(112 118)(113 117)(114 116)(121 129)(122 128)(123 127)(124 126)(131 139)(132 138)(133 137)(134 136)(141 149)(142 148)(143 147)(144 146)(151 159)(152 158)(153 157)(154 156)
(1 93 13 83)(2 94 14 84)(3 95 15 85)(4 96 16 86)(5 97 17 87)(6 98 18 88)(7 99 19 89)(8 100 20 90)(9 91 11 81)(10 92 12 82)(21 111 31 101)(22 112 32 102)(23 113 33 103)(24 114 34 104)(25 115 35 105)(26 116 36 106)(27 117 37 107)(28 118 38 108)(29 119 39 109)(30 120 40 110)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)
(1 68 28 48 6 63 23 43)(2 69 29 49 7 64 24 44)(3 70 30 50 8 65 25 45)(4 61 21 41 9 66 26 46)(5 62 22 42 10 67 27 47)(11 76 36 56 16 71 31 51)(12 77 37 57 17 72 32 52)(13 78 38 58 18 73 33 53)(14 79 39 59 19 74 34 54)(15 80 40 60 20 75 35 55)(81 146 106 126 86 141 101 121)(82 147 107 127 87 142 102 122)(83 148 108 128 88 143 103 123)(84 149 109 129 89 144 104 124)(85 150 110 130 90 145 105 125)(91 156 116 136 96 151 111 131)(92 157 117 137 97 152 112 132)(93 158 118 138 98 153 113 133)(94 159 119 139 99 154 114 134)(95 160 120 140 100 155 115 135)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,24)(22,23)(25,30)(26,29)(27,28)(31,34)(32,33)(35,40)(36,39)(37,38)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,64)(62,63)(65,70)(66,69)(67,68)(71,74)(72,73)(75,80)(76,79)(77,78)(81,89)(82,88)(83,87)(84,86)(91,99)(92,98)(93,97)(94,96)(101,109)(102,108)(103,107)(104,106)(111,119)(112,118)(113,117)(114,116)(121,129)(122,128)(123,127)(124,126)(131,139)(132,138)(133,137)(134,136)(141,149)(142,148)(143,147)(144,146)(151,159)(152,158)(153,157)(154,156), (1,93,13,83)(2,94,14,84)(3,95,15,85)(4,96,16,86)(5,97,17,87)(6,98,18,88)(7,99,19,89)(8,100,20,90)(9,91,11,81)(10,92,12,82)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,68,28,48,6,63,23,43)(2,69,29,49,7,64,24,44)(3,70,30,50,8,65,25,45)(4,61,21,41,9,66,26,46)(5,62,22,42,10,67,27,47)(11,76,36,56,16,71,31,51)(12,77,37,57,17,72,32,52)(13,78,38,58,18,73,33,53)(14,79,39,59,19,74,34,54)(15,80,40,60,20,75,35,55)(81,146,106,126,86,141,101,121)(82,147,107,127,87,142,102,122)(83,148,108,128,88,143,103,123)(84,149,109,129,89,144,104,124)(85,150,110,130,90,145,105,125)(91,156,116,136,96,151,111,131)(92,157,117,137,97,152,112,132)(93,158,118,138,98,153,113,133)(94,159,119,139,99,154,114,134)(95,160,120,140,100,155,115,135)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10)(2,9)(3,8)(4,7)(5,6)(11,14)(12,13)(15,20)(16,19)(17,18)(21,24)(22,23)(25,30)(26,29)(27,28)(31,34)(32,33)(35,40)(36,39)(37,38)(41,44)(42,43)(45,50)(46,49)(47,48)(51,54)(52,53)(55,60)(56,59)(57,58)(61,64)(62,63)(65,70)(66,69)(67,68)(71,74)(72,73)(75,80)(76,79)(77,78)(81,89)(82,88)(83,87)(84,86)(91,99)(92,98)(93,97)(94,96)(101,109)(102,108)(103,107)(104,106)(111,119)(112,118)(113,117)(114,116)(121,129)(122,128)(123,127)(124,126)(131,139)(132,138)(133,137)(134,136)(141,149)(142,148)(143,147)(144,146)(151,159)(152,158)(153,157)(154,156), (1,93,13,83)(2,94,14,84)(3,95,15,85)(4,96,16,86)(5,97,17,87)(6,98,18,88)(7,99,19,89)(8,100,20,90)(9,91,11,81)(10,92,12,82)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,68,28,48,6,63,23,43)(2,69,29,49,7,64,24,44)(3,70,30,50,8,65,25,45)(4,61,21,41,9,66,26,46)(5,62,22,42,10,67,27,47)(11,76,36,56,16,71,31,51)(12,77,37,57,17,72,32,52)(13,78,38,58,18,73,33,53)(14,79,39,59,19,74,34,54)(15,80,40,60,20,75,35,55)(81,146,106,126,86,141,101,121)(82,147,107,127,87,142,102,122)(83,148,108,128,88,143,103,123)(84,149,109,129,89,144,104,124)(85,150,110,130,90,145,105,125)(91,156,116,136,96,151,111,131)(92,157,117,137,97,152,112,132)(93,158,118,138,98,153,113,133)(94,159,119,139,99,154,114,134)(95,160,120,140,100,155,115,135) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13),(15,20),(16,19),(17,18),(21,24),(22,23),(25,30),(26,29),(27,28),(31,34),(32,33),(35,40),(36,39),(37,38),(41,44),(42,43),(45,50),(46,49),(47,48),(51,54),(52,53),(55,60),(56,59),(57,58),(61,64),(62,63),(65,70),(66,69),(67,68),(71,74),(72,73),(75,80),(76,79),(77,78),(81,89),(82,88),(83,87),(84,86),(91,99),(92,98),(93,97),(94,96),(101,109),(102,108),(103,107),(104,106),(111,119),(112,118),(113,117),(114,116),(121,129),(122,128),(123,127),(124,126),(131,139),(132,138),(133,137),(134,136),(141,149),(142,148),(143,147),(144,146),(151,159),(152,158),(153,157),(154,156)], [(1,93,13,83),(2,94,14,84),(3,95,15,85),(4,96,16,86),(5,97,17,87),(6,98,18,88),(7,99,19,89),(8,100,20,90),(9,91,11,81),(10,92,12,82),(21,111,31,101),(22,112,32,102),(23,113,33,103),(24,114,34,104),(25,115,35,105),(26,116,36,106),(27,117,37,107),(28,118,38,108),(29,119,39,109),(30,120,40,110),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)], [(1,68,28,48,6,63,23,43),(2,69,29,49,7,64,24,44),(3,70,30,50,8,65,25,45),(4,61,21,41,9,66,26,46),(5,62,22,42,10,67,27,47),(11,76,36,56,16,71,31,51),(12,77,37,57,17,72,32,52),(13,78,38,58,18,73,33,53),(14,79,39,59,19,74,34,54),(15,80,40,60,20,75,35,55),(81,146,106,126,86,141,101,121),(82,147,107,127,87,142,102,122),(83,148,108,128,88,143,103,123),(84,149,109,129,89,144,104,124),(85,150,110,130,90,145,105,125),(91,156,116,136,96,151,111,131),(92,157,117,137,97,152,112,132),(93,158,118,138,98,153,113,133),(94,159,119,139,99,154,114,134),(95,160,120,140,100,155,115,135)])

104 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I···4N5A5B8A···8H8I8J8K8L8M···8T10A···10F20A···20X40A···40AF
order122222444444444···4558···888888···810···1020···2040···40
size111110101111222210···10221···1222210···102···22···22···2

104 irreducible representations

dim1111111111112222222
type+++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D5D10D10C8○D4C4×D5C4×D5D20.3C4
kernelD10.5C42C42.D5C8×Dic5C408C4C4×C40C42⋊D5D5×C2×C8C2×C8⋊D5C8×D5C8⋊D5C10.D4D10⋊C4C4×C8C42C2×C8C10C8C2×C4C2
# reps111111118844224816832

Matrix representation of D10.5C42 in GL5(𝔽41)

10000
040000
004000
00007
000356
,
400000
040000
032100
000357
000366
,
90000
093900
0403200
000400
000040
,
400000
03000
00300
000320
000032

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,0,35,0,0,0,7,6],[40,0,0,0,0,0,40,32,0,0,0,0,1,0,0,0,0,0,35,36,0,0,0,7,6],[9,0,0,0,0,0,9,40,0,0,0,39,32,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,32,0,0,0,0,0,32] >;

D10.5C42 in GAP, Magma, Sage, TeX

D_{10}._5C_4^2
% in TeX

G:=Group("D10.5C4^2");
// GroupNames label

G:=SmallGroup(320,316);
// by ID

G=gap.SmallGroup(320,316);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,120,58,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^4=1,d^4=a^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽