Copied to
clipboard

G = D5×C2.C42order 320 = 26·5

Direct product of D5 and C2.C42

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C2.C42, D10.15C42, C2.5(D5×C42), C22.57(D4×D5), D10.34(C4⋊C4), C22.15(Q8×D5), C10.23(C2×C42), (C22×D5).24Q8, (C22×D5).151D4, (C22×C4).296D10, D10.50(C22⋊C4), C23.253(C22×D5), C10.10C4234C2, (C22×C20).330C22, (C22×C10).288C23, (C23×D5).142C22, (C22×Dic5).198C22, (C2×C4×D5)⋊11C4, C2.2(D5×C4⋊C4), (C2×C4)⋊14(C4×D5), (C2×C20)⋊31(C2×C4), C10.27(C2×C4⋊C4), C2.1(D5×C22⋊C4), C22.31(C2×C4×D5), C52(C2×C2.C42), (C2×C10).66(C2×Q8), (D5×C22×C4).11C2, (C2×Dic5)⋊28(C2×C4), (C2×C10).197(C2×D4), C10.43(C2×C22⋊C4), (C5×C2.C42)⋊17C2, (C2×C10).148(C22×C4), (C22×D5).136(C2×C4), SmallGroup(320,290)

Series: Derived Chief Lower central Upper central

C1C10 — D5×C2.C42
C1C5C10C2×C10C22×C10C23×D5D5×C22×C4 — D5×C2.C42
C5C10 — D5×C2.C42
C1C23C2.C42

Generators and relations for D5×C2.C42
 G = < a,b,c,d,e | a5=b2=c2=d4=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ce=ec >

Subgroups: 1150 in 330 conjugacy classes, 131 normal (12 characteristic)
C1, C2, C2 [×6], C2 [×8], C4 [×12], C22, C22 [×6], C22 [×28], C5, C2×C4 [×6], C2×C4 [×42], C23, C23 [×14], D5 [×8], C10, C10 [×6], C22×C4 [×3], C22×C4 [×27], C24, Dic5 [×6], C20 [×6], D10 [×28], C2×C10, C2×C10 [×6], C2.C42, C2.C42 [×3], C23×C4 [×3], C4×D5 [×24], C2×Dic5 [×6], C2×Dic5 [×6], C2×C20 [×6], C2×C20 [×6], C22×D5 [×14], C22×C10, C2×C2.C42, C2×C4×D5 [×12], C2×C4×D5 [×12], C22×Dic5 [×3], C22×C20 [×3], C23×D5, C10.10C42 [×3], C5×C2.C42, D5×C22×C4 [×3], D5×C2.C42
Quotients: C1, C2 [×7], C4 [×12], C22 [×7], C2×C4 [×18], D4 [×6], Q8 [×2], C23, D5, C42 [×4], C22⋊C4 [×12], C4⋊C4 [×12], C22×C4 [×3], C2×D4 [×3], C2×Q8, D10 [×3], C2.C42 [×8], C2×C42, C2×C22⋊C4 [×3], C2×C4⋊C4 [×3], C4×D5 [×6], C22×D5, C2×C2.C42, C2×C4×D5 [×3], D4×D5 [×3], Q8×D5, D5×C42, D5×C22⋊C4 [×3], D5×C4⋊C4 [×3], D5×C2.C42

Smallest permutation representation of D5×C2.C42
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 11)(7 15)(8 14)(9 13)(10 12)(21 36)(22 40)(23 39)(24 38)(25 37)(26 31)(27 35)(28 34)(29 33)(30 32)(41 56)(42 60)(43 59)(44 58)(45 57)(46 51)(47 55)(48 54)(49 53)(50 52)(61 76)(62 80)(63 79)(64 78)(65 77)(66 71)(67 75)(68 74)(69 73)(70 72)(81 96)(82 100)(83 99)(84 98)(85 97)(86 91)(87 95)(88 94)(89 93)(90 92)(101 116)(102 120)(103 119)(104 118)(105 117)(106 111)(107 115)(108 114)(109 113)(110 112)(121 136)(122 140)(123 139)(124 138)(125 137)(126 131)(127 135)(128 134)(129 133)(130 132)(141 156)(142 160)(143 159)(144 158)(145 157)(146 151)(147 155)(148 154)(149 153)(150 152)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(81 86)(82 87)(83 88)(84 89)(85 90)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)(121 126)(122 127)(123 128)(124 129)(125 130)(131 136)(132 137)(133 138)(134 139)(135 140)(141 146)(142 147)(143 148)(144 149)(145 150)(151 156)(152 157)(153 158)(154 159)(155 160)
(1 94 14 84)(2 95 15 85)(3 91 11 81)(4 92 12 82)(5 93 13 83)(6 96 16 86)(7 97 17 87)(8 98 18 88)(9 99 19 89)(10 100 20 90)(21 111 31 101)(22 112 32 102)(23 113 33 103)(24 114 34 104)(25 115 35 105)(26 116 36 106)(27 117 37 107)(28 118 38 108)(29 119 39 109)(30 120 40 110)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)
(1 64 24 44)(2 65 25 45)(3 61 21 41)(4 62 22 42)(5 63 23 43)(6 66 26 46)(7 67 27 47)(8 68 28 48)(9 69 29 49)(10 70 30 50)(11 71 31 51)(12 72 32 52)(13 73 33 53)(14 74 34 54)(15 75 35 55)(16 76 36 56)(17 77 37 57)(18 78 38 58)(19 79 39 59)(20 80 40 60)(81 146 101 126)(82 147 102 127)(83 148 103 128)(84 149 104 129)(85 150 105 130)(86 141 106 121)(87 142 107 122)(88 143 108 123)(89 144 109 124)(90 145 110 125)(91 156 111 136)(92 157 112 137)(93 158 113 138)(94 159 114 139)(95 160 115 140)(96 151 116 131)(97 152 117 132)(98 153 118 133)(99 154 119 134)(100 155 120 135)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,76)(62,80)(63,79)(64,78)(65,77)(66,71)(67,75)(68,74)(69,73)(70,72)(81,96)(82,100)(83,99)(84,98)(85,97)(86,91)(87,95)(88,94)(89,93)(90,92)(101,116)(102,120)(103,119)(104,118)(105,117)(106,111)(107,115)(108,114)(109,113)(110,112)(121,136)(122,140)(123,139)(124,138)(125,137)(126,131)(127,135)(128,134)(129,133)(130,132)(141,156)(142,160)(143,159)(144,158)(145,157)(146,151)(147,155)(148,154)(149,153)(150,152), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,94,14,84)(2,95,15,85)(3,91,11,81)(4,92,12,82)(5,93,13,83)(6,96,16,86)(7,97,17,87)(8,98,18,88)(9,99,19,89)(10,100,20,90)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,64,24,44)(2,65,25,45)(3,61,21,41)(4,62,22,42)(5,63,23,43)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,146,101,126)(82,147,102,127)(83,148,103,128)(84,149,104,129)(85,150,105,130)(86,141,106,121)(87,142,107,122)(88,143,108,123)(89,144,109,124)(90,145,110,125)(91,156,111,136)(92,157,112,137)(93,158,113,138)(94,159,114,139)(95,160,115,140)(96,151,116,131)(97,152,117,132)(98,153,118,133)(99,154,119,134)(100,155,120,135)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,76)(62,80)(63,79)(64,78)(65,77)(66,71)(67,75)(68,74)(69,73)(70,72)(81,96)(82,100)(83,99)(84,98)(85,97)(86,91)(87,95)(88,94)(89,93)(90,92)(101,116)(102,120)(103,119)(104,118)(105,117)(106,111)(107,115)(108,114)(109,113)(110,112)(121,136)(122,140)(123,139)(124,138)(125,137)(126,131)(127,135)(128,134)(129,133)(130,132)(141,156)(142,160)(143,159)(144,158)(145,157)(146,151)(147,155)(148,154)(149,153)(150,152), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,94,14,84)(2,95,15,85)(3,91,11,81)(4,92,12,82)(5,93,13,83)(6,96,16,86)(7,97,17,87)(8,98,18,88)(9,99,19,89)(10,100,20,90)(21,111,31,101)(22,112,32,102)(23,113,33,103)(24,114,34,104)(25,115,35,105)(26,116,36,106)(27,117,37,107)(28,118,38,108)(29,119,39,109)(30,120,40,110)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150), (1,64,24,44)(2,65,25,45)(3,61,21,41)(4,62,22,42)(5,63,23,43)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,146,101,126)(82,147,102,127)(83,148,103,128)(84,149,104,129)(85,150,105,130)(86,141,106,121)(87,142,107,122)(88,143,108,123)(89,144,109,124)(90,145,110,125)(91,156,111,136)(92,157,112,137)(93,158,113,138)(94,159,114,139)(95,160,115,140)(96,151,116,131)(97,152,117,132)(98,153,118,133)(99,154,119,134)(100,155,120,135) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,11),(7,15),(8,14),(9,13),(10,12),(21,36),(22,40),(23,39),(24,38),(25,37),(26,31),(27,35),(28,34),(29,33),(30,32),(41,56),(42,60),(43,59),(44,58),(45,57),(46,51),(47,55),(48,54),(49,53),(50,52),(61,76),(62,80),(63,79),(64,78),(65,77),(66,71),(67,75),(68,74),(69,73),(70,72),(81,96),(82,100),(83,99),(84,98),(85,97),(86,91),(87,95),(88,94),(89,93),(90,92),(101,116),(102,120),(103,119),(104,118),(105,117),(106,111),(107,115),(108,114),(109,113),(110,112),(121,136),(122,140),(123,139),(124,138),(125,137),(126,131),(127,135),(128,134),(129,133),(130,132),(141,156),(142,160),(143,159),(144,158),(145,157),(146,151),(147,155),(148,154),(149,153),(150,152)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(81,86),(82,87),(83,88),(84,89),(85,90),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120),(121,126),(122,127),(123,128),(124,129),(125,130),(131,136),(132,137),(133,138),(134,139),(135,140),(141,146),(142,147),(143,148),(144,149),(145,150),(151,156),(152,157),(153,158),(154,159),(155,160)], [(1,94,14,84),(2,95,15,85),(3,91,11,81),(4,92,12,82),(5,93,13,83),(6,96,16,86),(7,97,17,87),(8,98,18,88),(9,99,19,89),(10,100,20,90),(21,111,31,101),(22,112,32,102),(23,113,33,103),(24,114,34,104),(25,115,35,105),(26,116,36,106),(27,117,37,107),(28,118,38,108),(29,119,39,109),(30,120,40,110),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)], [(1,64,24,44),(2,65,25,45),(3,61,21,41),(4,62,22,42),(5,63,23,43),(6,66,26,46),(7,67,27,47),(8,68,28,48),(9,69,29,49),(10,70,30,50),(11,71,31,51),(12,72,32,52),(13,73,33,53),(14,74,34,54),(15,75,35,55),(16,76,36,56),(17,77,37,57),(18,78,38,58),(19,79,39,59),(20,80,40,60),(81,146,101,126),(82,147,102,127),(83,148,103,128),(84,149,104,129),(85,150,105,130),(86,141,106,121),(87,142,107,122),(88,143,108,123),(89,144,109,124),(90,145,110,125),(91,156,111,136),(92,157,112,137),(93,158,113,138),(94,159,114,139),(95,160,115,140),(96,151,116,131),(97,152,117,132),(98,153,118,133),(99,154,119,134),(100,155,120,135)])

80 conjugacy classes

class 1 2A···2G2H···2O4A···4L4M···4X5A5B10A···10N20A···20X
order12···22···24···44···45510···1020···20
size11···15···52···210···10222···24···4

80 irreducible representations

dim111112222244
type+++++-+++-
imageC1C2C2C2C4D4Q8D5D10C4×D5D4×D5Q8×D5
kernelD5×C2.C42C10.10C42C5×C2.C42D5×C22×C4C2×C4×D5C22×D5C22×D5C2.C42C22×C4C2×C4C22C22
# reps13132462262462

Matrix representation of D5×C2.C42 in GL6(𝔽41)

3510000
5400000
000100
00403400
000010
000001
,
40400000
010000
0004000
0040000
0000400
0000040
,
100000
010000
001000
000100
0000400
0000040
,
100000
010000
0032000
0003200
0000105
00001331
,
3200000
0320000
001000
000100
00004039
000011

G:=sub<GL(6,GF(41))| [35,5,0,0,0,0,1,40,0,0,0,0,0,0,0,40,0,0,0,0,1,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,40,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,10,13,0,0,0,0,5,31],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,39,1] >;

D5×C2.C42 in GAP, Magma, Sage, TeX

D_5\times C_2.C_4^2
% in TeX

G:=Group("D5xC2.C4^2");
// GroupNames label

G:=SmallGroup(320,290);
// by ID

G=gap.SmallGroup(320,290);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,387,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^2=d^4=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,c*e=e*c>;
// generators/relations

׿
×
𝔽