# Extensions 1→N→G→Q→1 with N=C22.F5 and Q=C22

Direct product G=N×Q with N=C22.F5 and Q=C22
dρLabelID
C22×C22.F5160C2^2xC2^2.F5320,1606

Semidirect products G=N:Q with N=C22.F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C22.F51C22 = D5⋊(C4.D4)φ: C22/C2C2 ⊆ Out C22.F5408+C2^2.F5:1C2^2320,1116
C22.F52C22 = C2×C23.F5φ: C22/C2C2 ⊆ Out C22.F580C2^2.F5:2C2^2320,1137
C22.F53C22 = C2×D4.F5φ: C22/C2C2 ⊆ Out C22.F5160C2^2.F5:3C2^2320,1593
C22.F54C22 = Dic5.C24φ: C22/C2C2 ⊆ Out C22.F5808-C2^2.F5:4C2^2320,1594
C22.F55C22 = Dic5.21C24φ: C22/C2C2 ⊆ Out C22.F5808C2^2.F5:5C2^2320,1601
C22.F56C22 = Dic5.22C24φ: C22/C2C2 ⊆ Out C22.F5808C2^2.F5:6C2^2320,1602
C22.F57C22 = C2×D5⋊M4(2)φ: trivial image80C2^2.F5:7C2^2320,1589

Non-split extensions G=N.Q with N=C22.F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C22.F5.1C22 = C2×Dic5.D4φ: C22/C2C2 ⊆ Out C22.F5160C2^2.F5.1C2^2320,1098
C22.F5.2C22 = (C4×D5).D4φ: C22/C2C2 ⊆ Out C22.F5804C2^2.F5.2C2^2320,1099
C22.F5.3C22 = (C2×D4).9F5φ: C22/C2C2 ⊆ Out C22.F5808-C2^2.F5.3C2^2320,1115
C22.F5.4C22 = (C2×Q8).7F5φ: C22/C2C2 ⊆ Out C22.F5808-C2^2.F5.4C2^2320,1127
C22.F5.5C22 = Dic5.20C24φ: trivial image808+C2^2.F5.5C2^2320,1598

׿
×
𝔽