Copied to
clipboard

G = C5×C22.19C24order 320 = 26·5

Direct product of C5 and C22.19C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C22.19C24, (C4×D4)⋊7C10, (C2×C20)⋊41D4, (D4×C20)⋊36C2, C425(C2×C10), (C23×C4)⋊6C10, C4.64(D4×C10), C22≀C29C10, C4⋊D419C10, (C23×C20)⋊15C2, (C4×C20)⋊39C22, C20.471(C2×D4), C22⋊Q821C10, C42⋊C28C10, (D4×C10)⋊62C22, C24.33(C2×C10), (Q8×C10)⋊49C22, C22.20(D4×C10), (C2×C10).345C24, (C2×C20).658C23, (C22×C20)⋊46C22, C10.184(C22×D4), C22.D415C10, (C22×C10).84C23, C23.33(C22×C10), (C23×C10).93C22, C22.19(C23×C10), C2.8(D4×C2×C10), (C2×C4)⋊11(C5×D4), C4⋊C412(C2×C10), (C2×C4○D4)⋊2C10, (C2×Q8)⋊9(C2×C10), C2.8(C10×C4○D4), C221(C5×C4○D4), (C10×C4○D4)⋊18C2, (C2×D4)⋊10(C2×C10), (C5×C4⋊D4)⋊46C2, (C5×C4⋊C4)⋊68C22, (C22×C4)⋊6(C2×C10), (C5×C22⋊Q8)⋊48C2, (C5×C22≀C2)⋊19C2, (C2×C10)⋊11(C4○D4), C22⋊C413(C2×C10), C10.227(C2×C4○D4), (C2×C10).416(C2×D4), (C5×C42⋊C2)⋊29C2, (C5×C22⋊C4)⋊67C22, (C2×C4).14(C22×C10), (C5×C22.D4)⋊34C2, SmallGroup(320,1527)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C22.19C24
C1C2C22C2×C10C22×C10D4×C10C5×C22≀C2 — C5×C22.19C24
C1C22 — C5×C22.19C24
C1C2×C20 — C5×C22.19C24

Generators and relations for C5×C22.19C24
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=f2=1, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 498 in 330 conjugacy classes, 170 normal (30 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×4], C4 [×8], C22, C22 [×6], C22 [×20], C5, C2×C4 [×2], C2×C4 [×12], C2×C4 [×14], D4 [×14], Q8 [×2], C23, C23 [×4], C23 [×6], C10, C10 [×2], C10 [×8], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×6], C22×C4 [×2], C22×C4 [×6], C22×C4 [×4], C2×D4, C2×D4 [×6], C2×Q8, C4○D4 [×4], C24, C20 [×4], C20 [×8], C2×C10, C2×C10 [×6], C2×C10 [×20], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×2], C23×C4, C2×C4○D4, C2×C20 [×2], C2×C20 [×12], C2×C20 [×14], C5×D4 [×14], C5×Q8 [×2], C22×C10, C22×C10 [×4], C22×C10 [×6], C22.19C24, C4×C20 [×2], C5×C22⋊C4 [×10], C5×C4⋊C4 [×6], C22×C20 [×2], C22×C20 [×6], C22×C20 [×4], D4×C10, D4×C10 [×6], Q8×C10, C5×C4○D4 [×4], C23×C10, C5×C42⋊C2, D4×C20 [×4], C5×C22≀C2 [×2], C5×C4⋊D4 [×2], C5×C22⋊Q8 [×2], C5×C22.D4 [×2], C23×C20, C10×C4○D4, C5×C22.19C24
Quotients: C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], C2×D4 [×6], C4○D4 [×4], C24, C2×C10 [×35], C22×D4, C2×C4○D4 [×2], C5×D4 [×4], C22×C10 [×15], C22.19C24, D4×C10 [×6], C5×C4○D4 [×4], C23×C10, D4×C2×C10, C10×C4○D4 [×2], C5×C22.19C24

Smallest permutation representation of C5×C22.19C24
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 76)(12 77)(13 78)(14 79)(15 80)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 76)(7 77)(8 78)(9 79)(10 80)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 71)(57 72)(58 73)(59 74)(60 75)(61 66)(62 67)(63 68)(64 69)(65 70)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 16)(7 17)(8 18)(9 19)(10 20)(11 76)(12 77)(13 78)(14 79)(15 80)(21 26)(22 27)(23 28)(24 29)(25 30)(36 51)(37 52)(38 53)(39 54)(40 55)(41 46)(42 47)(43 48)(44 49)(45 50)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)
(1 46 26 36)(2 47 27 37)(3 48 28 38)(4 49 29 39)(5 50 30 40)(6 61 16 71)(7 62 17 72)(8 63 18 73)(9 64 19 74)(10 65 20 75)(11 66 76 56)(12 67 77 57)(13 68 78 58)(14 69 79 59)(15 70 80 60)(21 51 31 41)(22 52 32 42)(23 53 33 43)(24 54 34 44)(25 55 35 45)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,71)(57,72)(58,73)(59,74)(60,75)(61,66)(62,67)(63,68)(64,69)(65,70), (1,31)(2,32)(3,33)(4,34)(5,35)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,26)(22,27)(23,28)(24,29)(25,30)(36,51)(37,52)(38,53)(39,54)(40,55)(41,46)(42,47)(43,48)(44,49)(45,50)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,61,16,71)(7,62,17,72)(8,63,18,73)(9,64,19,74)(10,65,20,75)(11,66,76,56)(12,67,77,57)(13,68,78,58)(14,69,79,59)(15,70,80,60)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,71)(57,72)(58,73)(59,74)(60,75)(61,66)(62,67)(63,68)(64,69)(65,70), (1,31)(2,32)(3,33)(4,34)(5,35)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,26)(22,27)(23,28)(24,29)(25,30)(36,51)(37,52)(38,53)(39,54)(40,55)(41,46)(42,47)(43,48)(44,49)(45,50)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,61,16,71)(7,62,17,72)(8,63,18,73)(9,64,19,74)(10,65,20,75)(11,66,76,56)(12,67,77,57)(13,68,78,58)(14,69,79,59)(15,70,80,60)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,76),(12,77),(13,78),(14,79),(15,80),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,76),(7,77),(8,78),(9,79),(10,80),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,71),(57,72),(58,73),(59,74),(60,75),(61,66),(62,67),(63,68),(64,69),(65,70)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,16),(7,17),(8,18),(9,19),(10,20),(11,76),(12,77),(13,78),(14,79),(15,80),(21,26),(22,27),(23,28),(24,29),(25,30),(36,51),(37,52),(38,53),(39,54),(40,55),(41,46),(42,47),(43,48),(44,49),(45,50),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)], [(1,46,26,36),(2,47,27,37),(3,48,28,38),(4,49,29,39),(5,50,30,40),(6,61,16,71),(7,62,17,72),(8,63,18,73),(9,64,19,74),(10,65,20,75),(11,66,76,56),(12,67,77,57),(13,68,78,58),(14,69,79,59),(15,70,80,60),(21,51,31,41),(22,52,32,42),(23,53,33,43),(24,54,34,44),(25,55,35,45)])

140 conjugacy classes

class 1 2A2B2C2D···2I2J2K4A4B4C4D4E···4J4K···4P5A5B5C5D10A···10L10M···10AJ10AK···10AR20A···20P20Q···20AN20AO···20BL
order12222···22244444···44···4555510···1010···1010···1020···2020···2020···20
size11112···24411112···24···411111···12···24···41···12···24···4

140 irreducible representations

dim1111111111111111112222
type++++++++++
imageC1C2C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10C10D4C4○D4C5×D4C5×C4○D4
kernelC5×C22.19C24C5×C42⋊C2D4×C20C5×C22≀C2C5×C4⋊D4C5×C22⋊Q8C5×C22.D4C23×C20C10×C4○D4C22.19C24C42⋊C2C4×D4C22≀C2C4⋊D4C22⋊Q8C22.D4C23×C4C2×C4○D4C2×C20C2×C10C2×C4C22
# reps1142222114416888844481632

Matrix representation of C5×C22.19C24 in GL4(𝔽41) generated by

16000
01600
00370
00037
,
1000
0100
00400
00040
,
40000
04000
0010
0001
,
152200
12600
001239
001029
,
40000
04000
0010
001240
,
403000
0100
00400
00040
,
1000
0100
0090
0009
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,37,0,0,0,0,37],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[15,1,0,0,22,26,0,0,0,0,12,10,0,0,39,29],[40,0,0,0,0,40,0,0,0,0,1,12,0,0,0,40],[40,0,0,0,30,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9] >;

C5×C22.19C24 in GAP, Magma, Sage, TeX

C_5\times C_2^2._{19}C_2^4
% in TeX

G:=Group("C5xC2^2.19C2^4");
// GroupNames label

G:=SmallGroup(320,1527);
// by ID

G=gap.SmallGroup(320,1527);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,304]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽