Copied to
clipboard

G = C5×C22.32C24order 320 = 26·5

Direct product of C5 and C22.32C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C22.32C24, C10.1542+ 1+4, (C4×D4)⋊10C10, (D4×C20)⋊39C2, C4⋊D48C10, C427(C2×C10), C22⋊Q87C10, C22≀C24C10, (C4×C20)⋊41C22, C4.4D48C10, C422C21C10, (D4×C10)⋊37C22, C24.17(C2×C10), (Q8×C10)⋊28C22, (C2×C20).667C23, (C2×C10).358C24, (C22×C20)⋊49C22, C22.D44C10, C2.6(C5×2+ 1+4), C22.32(C23×C10), (C23×C10).17C22, C23.11(C22×C10), (C22×C10).93C23, C4⋊C415(C2×C10), (C2×D4)⋊5(C2×C10), (C2×Q8)⋊3(C2×C10), (C5×C4⋊D4)⋊35C2, (C5×C4⋊C4)⋊71C22, (C22×C4)⋊9(C2×C10), C2.15(C10×C4○D4), (C5×C22⋊Q8)⋊34C2, (C5×C22≀C2)⋊14C2, C22.4(C5×C4○D4), (C2×C22⋊C4)⋊13C10, (C10×C22⋊C4)⋊33C2, C22⋊C415(C2×C10), C10.234(C2×C4○D4), (C5×C4.4D4)⋊28C2, (C5×C422C2)⋊12C2, (C2×C10).52(C4○D4), (C5×C22⋊C4)⋊69C22, (C2×C4).25(C22×C10), (C5×C22.D4)⋊23C2, SmallGroup(320,1540)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C22.32C24
C1C2C22C2×C10C22×C10C5×C22⋊C4C5×C4⋊D4 — C5×C22.32C24
C1C22 — C5×C22.32C24
C1C2×C10 — C5×C22.32C24

Generators and relations for C5×C22.32C24
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=f2=g2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 434 in 250 conjugacy classes, 146 normal (38 characteristic)
C1, C2 [×3], C2 [×6], C4 [×10], C22, C22 [×2], C22 [×18], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×4], D4 [×9], Q8, C23, C23 [×4], C23 [×4], C10 [×3], C10 [×6], C42 [×2], C22⋊C4 [×14], C4⋊C4 [×2], C4⋊C4 [×4], C22×C4 [×2], C22×C4 [×2], C2×D4, C2×D4 [×6], C2×Q8, C24, C20 [×10], C2×C10, C2×C10 [×2], C2×C10 [×18], C2×C22⋊C4, C4×D4 [×2], C22≀C2 [×2], C4⋊D4, C4⋊D4 [×2], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C422C2 [×2], C2×C20 [×2], C2×C20 [×8], C2×C20 [×4], C5×D4 [×9], C5×Q8, C22×C10, C22×C10 [×4], C22×C10 [×4], C22.32C24, C4×C20 [×2], C5×C22⋊C4 [×14], C5×C4⋊C4 [×2], C5×C4⋊C4 [×4], C22×C20 [×2], C22×C20 [×2], D4×C10, D4×C10 [×6], Q8×C10, C23×C10, C10×C22⋊C4, D4×C20 [×2], C5×C22≀C2 [×2], C5×C4⋊D4, C5×C4⋊D4 [×2], C5×C22⋊Q8, C5×C22.D4 [×2], C5×C4.4D4 [×2], C5×C422C2 [×2], C5×C22.32C24
Quotients: C1, C2 [×15], C22 [×35], C5, C23 [×15], C10 [×15], C4○D4 [×2], C24, C2×C10 [×35], C2×C4○D4, 2+ 1+4 [×2], C22×C10 [×15], C22.32C24, C5×C4○D4 [×2], C23×C10, C10×C4○D4, C5×2+ 1+4 [×2], C5×C22.32C24

Smallest permutation representation of C5×C22.32C24
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 76)(12 77)(13 78)(14 79)(15 80)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 76)(7 77)(8 78)(9 79)(10 80)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 41 21 36)(2 42 22 37)(3 43 23 38)(4 44 24 39)(5 45 25 40)(6 71 76 66)(7 72 77 67)(8 73 78 68)(9 74 79 69)(10 75 80 70)(11 56 16 61)(12 57 17 62)(13 58 18 63)(14 59 19 64)(15 60 20 65)(26 51 31 46)(27 52 32 47)(28 53 33 48)(29 54 34 49)(30 55 35 50)
(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 71)(57 72)(58 73)(59 74)(60 75)(61 66)(62 67)(63 68)(64 69)(65 70)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,41,21,36)(2,42,22,37)(3,43,23,38)(4,44,24,39)(5,45,25,40)(6,71,76,66)(7,72,77,67)(8,73,78,68)(9,74,79,69)(10,75,80,70)(11,56,16,61)(12,57,17,62)(13,58,18,63)(14,59,19,64)(15,60,20,65)(26,51,31,46)(27,52,32,47)(28,53,33,48)(29,54,34,49)(30,55,35,50), (6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,71)(57,72)(58,73)(59,74)(60,75)(61,66)(62,67)(63,68)(64,69)(65,70)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,41,21,36)(2,42,22,37)(3,43,23,38)(4,44,24,39)(5,45,25,40)(6,71,76,66)(7,72,77,67)(8,73,78,68)(9,74,79,69)(10,75,80,70)(11,56,16,61)(12,57,17,62)(13,58,18,63)(14,59,19,64)(15,60,20,65)(26,51,31,46)(27,52,32,47)(28,53,33,48)(29,54,34,49)(30,55,35,50), (6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,71)(57,72)(58,73)(59,74)(60,75)(61,66)(62,67)(63,68)(64,69)(65,70) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,76),(12,77),(13,78),(14,79),(15,80),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,76),(7,77),(8,78),(9,79),(10,80),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,41,21,36),(2,42,22,37),(3,43,23,38),(4,44,24,39),(5,45,25,40),(6,71,76,66),(7,72,77,67),(8,73,78,68),(9,74,79,69),(10,75,80,70),(11,56,16,61),(12,57,17,62),(13,58,18,63),(14,59,19,64),(15,60,20,65),(26,51,31,46),(27,52,32,47),(28,53,33,48),(29,54,34,49),(30,55,35,50)], [(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,71),(57,72),(58,73),(59,74),(60,75),(61,66),(62,67),(63,68),(64,69),(65,70)])

110 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4L5A5B5C5D10A···10L10M···10T10U···10AJ20A···20P20Q···20AV
order122222222244444···4555510···1010···1010···1020···2020···20
size111122444422224···411111···12···24···42···24···4

110 irreducible representations

dim1111111111111111112244
type++++++++++
imageC1C2C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10C10C4○D4C5×C4○D42+ 1+4C5×2+ 1+4
kernelC5×C22.32C24C10×C22⋊C4D4×C20C5×C22≀C2C5×C4⋊D4C5×C22⋊Q8C5×C22.D4C5×C4.4D4C5×C422C2C22.32C24C2×C22⋊C4C4×D4C22≀C2C4⋊D4C22⋊Q8C22.D4C4.4D4C422C2C2×C10C22C10C2
# reps112231222448812488841628

Matrix representation of C5×C22.32C24 in GL6(𝔽41)

100000
010000
0018000
0001800
0000180
0000018
,
100000
010000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
210000
000010
000001
001000
000100
,
900000
090000
000100
0040000
0000040
000010
,
40400000
010000
001000
0004000
0000400
000001
,
100000
010000
0040000
0004000
000010
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C5×C22.32C24 in GAP, Magma, Sage, TeX

C_5\times C_2^2._{32}C_2^4
% in TeX

G:=Group("C5xC2^2.32C2^4");
// GroupNames label

G:=SmallGroup(320,1540);
// by ID

G=gap.SmallGroup(320,1540);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,1128,3446,891,2467]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=f^2=g^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽