Copied to
clipboard

## G = C5×C22.54C24order 320 = 26·5

### Direct product of C5 and C22.54C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Series: Derived Chief Lower central Upper central

 Derived series C1 — C22 — C5×C22.54C24
 Chief series C1 — C2 — C22 — C2×C10 — C22×C10 — D4×C10 — C5×C4⋊1D4 — C5×C22.54C24
 Lower central C1 — C22 — C5×C22.54C24
 Upper central C1 — C2×C10 — C5×C22.54C24

Generators and relations for C5×C22.54C24
G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=bd=db, geg=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, gdg=bcd, fef=bce, fg=gf >

Subgroups: 474 in 252 conjugacy classes, 142 normal (14 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C24, C20, C2×C10, C2×C10, C22≀C2, C4⋊D4, C22.D4, C422C2, C41D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C22.54C24, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, C23×C10, C5×C22≀C2, C5×C4⋊D4, C5×C22.D4, C5×C422C2, C5×C41D4, C5×C22.54C24
Quotients: C1, C2, C22, C5, C23, C10, C24, C2×C10, 2+ 1+4, C22×C10, C22.54C24, C23×C10, C5×2+ 1+4, C5×C22.54C24

Smallest permutation representation of C5×C22.54C24
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 76)(12 77)(13 78)(14 79)(15 80)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 76)(7 77)(8 78)(9 79)(10 80)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 71)(7 72)(8 73)(9 74)(10 75)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 64)(20 65)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 55)(66 76)(67 77)(68 78)(69 79)(70 80)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(26 31)(27 32)(28 33)(29 34)(30 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)
(1 21)(2 22)(3 23)(4 24)(5 25)(26 31)(27 32)(28 33)(29 34)(30 35)(36 51)(37 52)(38 53)(39 54)(40 55)(41 46)(42 47)(43 48)(44 49)(45 50)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,36)(2,37)(3,38)(4,39)(5,40)(6,71)(7,72)(8,73)(9,74)(10,75)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(66,76)(67,77)(68,78)(69,79)(70,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55), (1,21)(2,22)(3,23)(4,24)(5,25)(26,31)(27,32)(28,33)(29,34)(30,35)(36,51)(37,52)(38,53)(39,54)(40,55)(41,46)(42,47)(43,48)(44,49)(45,50)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,56)(2,57)(3,58)(4,59)(5,60)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,36)(2,37)(3,38)(4,39)(5,40)(6,71)(7,72)(8,73)(9,74)(10,75)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(66,76)(67,77)(68,78)(69,79)(70,80), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55), (1,21)(2,22)(3,23)(4,24)(5,25)(26,31)(27,32)(28,33)(29,34)(30,35)(36,51)(37,52)(38,53)(39,54)(40,55)(41,46)(42,47)(43,48)(44,49)(45,50)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,76),(12,77),(13,78),(14,79),(15,80),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,76),(7,77),(8,78),(9,79),(10,80),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,71),(7,72),(8,73),(9,74),(10,75),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,64),(20,65),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,55),(66,76),(67,77),(68,78),(69,79),(70,80)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(26,31),(27,32),(28,33),(29,34),(30,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55)], [(1,21),(2,22),(3,23),(4,24),(5,25),(26,31),(27,32),(28,33),(29,34),(30,35),(36,51),(37,52),(38,53),(39,54),(40,55),(41,46),(42,47),(43,48),(44,49),(45,50),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)]])

95 conjugacy classes

 class 1 2A 2B 2C 2D ··· 2I 4A ··· 4I 5A 5B 5C 5D 10A ··· 10L 10M ··· 10AJ 20A ··· 20AJ order 1 2 2 2 2 ··· 2 4 ··· 4 5 5 5 5 10 ··· 10 10 ··· 10 20 ··· 20 size 1 1 1 1 4 ··· 4 4 ··· 4 1 1 1 1 1 ··· 1 4 ··· 4 4 ··· 4

95 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 1 1 4 4 type + + + + + + + image C1 C2 C2 C2 C2 C2 C5 C10 C10 C10 C10 C10 2+ 1+4 C5×2+ 1+4 kernel C5×C22.54C24 C5×C22≀C2 C5×C4⋊D4 C5×C22.D4 C5×C42⋊2C2 C5×C4⋊1D4 C22.54C24 C22≀C2 C4⋊D4 C22.D4 C42⋊2C2 C4⋊1D4 C10 C2 # reps 1 3 6 3 2 1 4 12 24 12 8 4 3 12

Matrix representation of C5×C22.54C24 in GL8(𝔽41)

 10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18
,
 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40
,
 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 40 0 39 0 0 0 0 0 0 0 40 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 39 0 0 0 0 0 1 0 0 39 0 0 0 0 0 0 0 40 0 0 0 0 0 0 40 0
,
 1 39 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 40 0 0 0 0 0 1 40 0
,
 40 0 0 0 0 0 0 0 40 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 40 1 0 0 0 0 0 1 0 0 40
,
 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 1

G:=sub<GL(8,GF(41))| [10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,39,40,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,39,0,0,40,0,0,0,0,0,39,40,0],[1,0,0,0,0,0,0,0,39,40,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0],[40,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,40,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40],[40,0,1,1,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1] >;

C5×C22.54C24 in GAP, Magma, Sage, TeX

C_5\times C_2^2._{54}C_2^4
% in TeX

G:=Group("C5xC2^2.54C2^4");
// GroupNames label

G:=SmallGroup(320,1562);
// by ID

G=gap.SmallGroup(320,1562);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,2571,6947,1242]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=b*c*d,f*e*f=b*c*e,f*g=g*f>;
// generators/relations

׿
×
𝔽