Copied to
clipboard

G = D5×C42⋊C2order 320 = 26·5

Direct product of D5 and C42⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C42⋊C2, C4229D10, C4⋊C453D10, (C4×C20)⋊30C22, (D5×C42)⋊16C2, C42⋊D528C2, (C2×C10).64C24, C10.37(C23×C4), C4⋊Dic571C22, D10.59(C4○D4), (C2×C20).582C23, C20.201(C22×C4), C22⋊C4.124D10, (C4×Dic5)⋊77C22, D10.52(C22×C4), (C22×C4).363D10, C22.26(C23×D5), C10.D462C22, Dic5.39(C22×C4), C23.152(C22×D5), C23.D5.93C22, C23.11D1030C2, C23.21D1023C2, (C22×C10).134C23, (C22×C20).224C22, (C2×Dic5).204C23, (C22×D5).171C23, (C23×D5).115C22, D10⋊C4.117C22, (C22×Dic5).238C22, (C2×C4×D5)⋊10C4, C4.93(C2×C4×D5), (D5×C4⋊C4)⋊46C2, (C2×C4)⋊16(C4×D5), C2.1(D5×C4○D4), (C2×C20)⋊23(C2×C4), (C4×D5)⋊18(C2×C4), C55(C2×C42⋊C2), C4⋊C47D545C2, (D5×C22×C4).6C2, (C5×C4⋊C4)⋊50C22, C22.26(C2×C4×D5), C2.18(D5×C22×C4), (D5×C22⋊C4).8C2, (C5×C42⋊C2)⋊6C2, (C2×Dic5)⋊32(C2×C4), C10.131(C2×C4○D4), (C2×C4×D5).315C22, (C2×C4).270(C22×D5), (C2×C10).121(C22×C4), (C22×D5).110(C2×C4), (C5×C22⋊C4).134C22, SmallGroup(320,1192)

Series: Derived Chief Lower central Upper central

C1C10 — D5×C42⋊C2
C1C5C10C2×C10C22×D5C23×D5D5×C22×C4 — D5×C42⋊C2
C5C10 — D5×C42⋊C2
C1C2×C4C42⋊C2

Generators and relations for D5×C42⋊C2
 G = < a,b,c,d,e | a5=b2=c4=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=cd2, de=ed >

Subgroups: 1022 in 330 conjugacy classes, 159 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×4], C4 [×12], C22, C22 [×2], C22 [×20], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×34], C23, C23 [×10], D5 [×4], D5 [×2], C10, C10 [×2], C10 [×2], C42 [×2], C42 [×6], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×6], C22×C4, C22×C4 [×17], C24, Dic5 [×4], Dic5 [×4], C20 [×4], C20 [×4], D10 [×8], D10 [×10], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C42 [×2], C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C42⋊C2, C42⋊C2 [×7], C23×C4, C4×D5 [×16], C4×D5 [×8], C2×Dic5 [×2], C2×Dic5 [×8], C2×C20 [×2], C2×C20 [×8], C22×D5 [×2], C22×D5 [×4], C22×D5 [×4], C22×C10, C2×C42⋊C2, C4×Dic5 [×6], C10.D4 [×4], C4⋊Dic5 [×2], D10⋊C4 [×4], C23.D5 [×2], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×C4×D5 [×4], C2×C4×D5 [×12], C22×Dic5, C22×C20, C23×D5, D5×C42 [×2], C42⋊D5 [×2], C23.11D10 [×2], D5×C22⋊C4 [×2], D5×C4⋊C4 [×2], C4⋊C47D5 [×2], C23.21D10, C5×C42⋊C2, D5×C22×C4, D5×C42⋊C2
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C4○D4 [×4], C24, D10 [×7], C42⋊C2 [×4], C23×C4, C2×C4○D4 [×2], C4×D5 [×4], C22×D5 [×7], C2×C42⋊C2, C2×C4×D5 [×6], C23×D5, D5×C22×C4, D5×C4○D4 [×2], D5×C42⋊C2

Smallest permutation representation of D5×C42⋊C2
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 8)(2 7)(3 6)(4 10)(5 9)(11 16)(12 20)(13 19)(14 18)(15 17)(21 26)(22 30)(23 29)(24 28)(25 27)(31 36)(32 40)(33 39)(34 38)(35 37)(41 46)(42 50)(43 49)(44 48)(45 47)(51 56)(52 60)(53 59)(54 58)(55 57)(61 66)(62 70)(63 69)(64 68)(65 67)(71 76)(72 80)(73 79)(74 78)(75 77)
(1 34 14 24)(2 35 15 25)(3 31 11 21)(4 32 12 22)(5 33 13 23)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 71 51 61)(42 72 52 62)(43 73 53 63)(44 74 54 64)(45 75 55 65)(46 76 56 66)(47 77 57 67)(48 78 58 68)(49 79 59 69)(50 80 60 70)
(1 49 9 44)(2 50 10 45)(3 46 6 41)(4 47 7 42)(5 48 8 43)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,8)(2,7)(3,6)(4,10)(5,9)(11,16)(12,20)(13,19)(14,18)(15,17)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(41,46)(42,50)(43,49)(44,48)(45,47)(51,56)(52,60)(53,59)(54,58)(55,57)(61,66)(62,70)(63,69)(64,68)(65,67)(71,76)(72,80)(73,79)(74,78)(75,77), (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,8)(2,7)(3,6)(4,10)(5,9)(11,16)(12,20)(13,19)(14,18)(15,17)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37)(41,46)(42,50)(43,49)(44,48)(45,47)(51,56)(52,60)(53,59)(54,58)(55,57)(61,66)(62,70)(63,69)(64,68)(65,67)(71,76)(72,80)(73,79)(74,78)(75,77), (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,49,9,44)(2,50,10,45)(3,46,6,41)(4,47,7,42)(5,48,8,43)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,8),(2,7),(3,6),(4,10),(5,9),(11,16),(12,20),(13,19),(14,18),(15,17),(21,26),(22,30),(23,29),(24,28),(25,27),(31,36),(32,40),(33,39),(34,38),(35,37),(41,46),(42,50),(43,49),(44,48),(45,47),(51,56),(52,60),(53,59),(54,58),(55,57),(61,66),(62,70),(63,69),(64,68),(65,67),(71,76),(72,80),(73,79),(74,78),(75,77)], [(1,34,14,24),(2,35,15,25),(3,31,11,21),(4,32,12,22),(5,33,13,23),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,71,51,61),(42,72,52,62),(43,73,53,63),(44,74,54,64),(45,75,55,65),(46,76,56,66),(47,77,57,67),(48,78,58,68),(49,79,59,69),(50,80,60,70)], [(1,49,9,44),(2,50,10,45),(3,46,6,41),(4,47,7,42),(5,48,8,43),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75)])

80 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E···4N4O4P4Q4R4S···4AB5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order12222222222244444···444444···45510···101010101020···2020···20
size1111225555101011112···2555510···10222···244442···24···4

80 irreducible representations

dim1111111111122222224
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C4D5C4○D4D10D10D10D10C4×D5D5×C4○D4
kernelD5×C42⋊C2D5×C42C42⋊D5C23.11D10D5×C22⋊C4D5×C4⋊C4C4⋊C47D5C23.21D10C5×C42⋊C2D5×C22×C4C2×C4×D5C42⋊C2D10C42C22⋊C4C4⋊C4C22×C4C2×C4C2
# reps122222211116284442168

Matrix representation of D5×C42⋊C2 in GL5(𝔽41)

10000
01000
00100
00001
0004034
,
400000
040000
004000
00001
00010
,
90000
00100
01000
000400
000040
,
400000
09000
00900
000400
000040
,
10000
01000
004000
00010
00001

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,1,34],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,1,0],[9,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1] >;

D5×C42⋊C2 in GAP, Magma, Sage, TeX

D_5\times C_4^2\rtimes C_2
% in TeX

G:=Group("D5xC4^2:C2");
// GroupNames label

G:=SmallGroup(320,1192);
// by ID

G=gap.SmallGroup(320,1192);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c*d^2,d*e=e*d>;
// generators/relations

׿
×
𝔽