# Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C33

Direct product G=N×Q with N=C2×C6 and Q=C33
dρLabelID
C32×C62324C3^2xC6^2324,176

Semidirect products G=N:Q with N=C2×C6 and Q=C33
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊C33 = A4×C33φ: C33/C32C3 ⊆ Aut C2×C6108(C2xC6):C3^3324,171

Non-split extensions G=N.Q with N=C2×C6 and Q=C33
extensionφ:Q→Aut NdρLabelID
(C2×C6).1C33 = A4×C3×C9φ: C33/C32C3 ⊆ Aut C2×C6108(C2xC6).1C3^3324,126
(C2×C6).2C33 = C3×C9⋊A4φ: C33/C32C3 ⊆ Aut C2×C6108(C2xC6).2C3^3324,127
(C2×C6).3C33 = C62.25C32φ: C33/C32C3 ⊆ Aut C2×C6543(C2xC6).3C3^3324,128
(C2×C6).4C33 = He3.2A4φ: C33/C32C3 ⊆ Aut C2×C6549(C2xC6).4C3^3324,129
(C2×C6).5C33 = A4×He3φ: C33/C32C3 ⊆ Aut C2×C6369(C2xC6).5C3^3324,130
(C2×C6).6C33 = A4×3- 1+2φ: C33/C32C3 ⊆ Aut C2×C6369(C2xC6).6C3^3324,131
(C2×C6).7C33 = C62.9C32φ: C33/C32C3 ⊆ Aut C2×C6549(C2xC6).7C3^3324,132
(C2×C6).8C33 = C32×C3.A4φ: C33/C32C3 ⊆ Aut C2×C6162(C2xC6).8C3^3324,133
(C2×C6).9C33 = C3×C32.A4φ: C33/C32C3 ⊆ Aut C2×C654(C2xC6).9C3^3324,134
(C2×C6).10C33 = C3×C32⋊A4φ: C33/C32C3 ⊆ Aut C2×C654(C2xC6).10C3^3324,135
(C2×C6).11C33 = C2×C6×He3central extension (φ=1)108(C2xC6).11C3^3324,152
(C2×C6).12C33 = C2×C6×3- 1+2central extension (φ=1)108(C2xC6).12C3^3324,153
(C2×C6).13C33 = C22×C9○He3central extension (φ=1)108(C2xC6).13C3^3324,154

׿
×
𝔽