# Extensions 1→N→G→Q→1 with N=C33 and Q=SD16

Direct product G=N×Q with N=C33 and Q=SD16
dρLabelID
SD16×C33216SD16xC3^3432,518

Semidirect products G=N:Q with N=C33 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C331SD16 = C3×AΓL1(𝔽9)φ: SD16/C1SD16 ⊆ Aut C33248C3^3:1SD16432,737
C332SD16 = C33⋊SD16φ: SD16/C1SD16 ⊆ Aut C33248C3^3:2SD16432,738
C333SD16 = C333SD16φ: SD16/C1SD16 ⊆ Aut C332416+C3^3:3SD16432,739
C334SD16 = F9⋊S3φ: SD16/C1SD16 ⊆ Aut C332416+C3^3:4SD16432,740
C335SD16 = C3×C322SD16φ: SD16/C2D4 ⊆ Aut C33244C3^3:5SD16432,577
C336SD16 = C336SD16φ: SD16/C2D4 ⊆ Aut C33244C3^3:6SD16432,583
C337SD16 = C337SD16φ: SD16/C2D4 ⊆ Aut C33244C3^3:7SD16432,584
C338SD16 = C338SD16φ: SD16/C2D4 ⊆ Aut C33248+C3^3:8SD16432,589
C339SD16 = C3×Dic6⋊S3φ: SD16/C4C22 ⊆ Aut C33484C3^3:9SD16432,420
C3310SD16 = C3×D12.S3φ: SD16/C4C22 ⊆ Aut C33484C3^3:10SD16432,421
C3311SD16 = C3×C325SD16φ: SD16/C4C22 ⊆ Aut C33484C3^3:11SD16432,422
C3312SD16 = C3312SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:12SD16432,439
C3313SD16 = C3313SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:13SD16432,440
C3314SD16 = C3314SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:14SD16432,441
C3315SD16 = C3315SD16φ: SD16/C4C22 ⊆ Aut C3372C3^3:15SD16432,442
C3316SD16 = C3316SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:16SD16432,443
C3317SD16 = C3317SD16φ: SD16/C4C22 ⊆ Aut C3372C3^3:17SD16432,444
C3318SD16 = C3318SD16φ: SD16/C4C22 ⊆ Aut C33484C3^3:18SD16432,458
C3319SD16 = C32×C24⋊C2φ: SD16/C8C2 ⊆ Aut C33144C3^3:19SD16432,466
C3320SD16 = C3×C242S3φ: SD16/C8C2 ⊆ Aut C33144C3^3:20SD16432,482
C3321SD16 = C3321SD16φ: SD16/C8C2 ⊆ Aut C33216C3^3:21SD16432,498
C3322SD16 = C32×D4.S3φ: SD16/D4C2 ⊆ Aut C3372C3^3:22SD16432,476
C3323SD16 = C3×C329SD16φ: SD16/D4C2 ⊆ Aut C3372C3^3:23SD16432,492
C3324SD16 = C3324SD16φ: SD16/D4C2 ⊆ Aut C33216C3^3:24SD16432,508
C3325SD16 = C32×Q82S3φ: SD16/Q8C2 ⊆ Aut C33144C3^3:25SD16432,477
C3326SD16 = C3×C3211SD16φ: SD16/Q8C2 ⊆ Aut C33144C3^3:26SD16432,493
C3327SD16 = C3327SD16φ: SD16/Q8C2 ⊆ Aut C33216C3^3:27SD16432,509

׿
×
𝔽