Extensions 1→N→G→Q→1 with N=C32 and Q=C22×A4

Direct product G=N×Q with N=C32 and Q=C22×A4

Semidirect products G=N:Q with N=C32 and Q=C22×A4
extensionφ:Q→Aut NdρLabelID
C32⋊(C22×A4) = C2×C62⋊C6φ: C22×A4/C23C6 ⊆ Aut C32186+C3^2:(C2^2xA4)432,542
C322(C22×A4) = S32×A4φ: C22×A4/A4C22 ⊆ Aut C322412+C3^2:2(C2^2xA4)432,749
C323(C22×A4) = C22×C32⋊A4φ: C22×A4/C24C3 ⊆ Aut C3236C3^2:3(C2^2xA4)432,550
C324(C22×A4) = S3×C6×A4φ: C22×A4/C2×A4C2 ⊆ Aut C32366C3^2:4(C2^2xA4)432,763
C325(C22×A4) = C2×A4×C3⋊S3φ: C22×A4/C2×A4C2 ⊆ Aut C3254C3^2:5(C2^2xA4)432,764

Non-split extensions G=N.Q with N=C32 and Q=C22×A4
extensionφ:Q→Aut NdρLabelID
C32.(C22×A4) = C22×C32.A4φ: C22×A4/C24C3 ⊆ Aut C3236C3^2.(C2^2xA4)432,549
C32.2(C22×A4) = C2×S3×C3.A4φ: C22×A4/C2×A4C2 ⊆ Aut C32366C3^2.2(C2^2xA4)432,541
C32.3(C22×A4) = C2×C6×C3.A4central extension (φ=1)108C3^2.3(C2^2xA4)432,548