# Extensions 1→N→G→Q→1 with N=C14 and Q=C22≀C2

Direct product G=N×Q with N=C14 and Q=C22≀C2
dρLabelID
C14×C22≀C2112C14xC2^2wrC2448,1304

Semidirect products G=N:Q with N=C14 and Q=C22≀C2
extensionφ:Q→Aut NdρLabelID
C141C22≀C2 = C2×C22⋊D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14112C14:1C2^2wrC2448,940
C142C22≀C2 = C2×C23⋊D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14112C14:2C2^2wrC2448,1252
C143C22≀C2 = C2×C24⋊D7φ: C22≀C2/C24C2 ⊆ Aut C14112C14:3C2^2wrC2448,1293

Non-split extensions G=N.Q with N=C14 and Q=C22≀C2
extensionφ:Q→Aut NdρLabelID
C14.1C22≀C2 = (C2×Dic7)⋊Q8φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14448C14.1C2^2wrC2448,190
C14.2C22≀C2 = (C2×C4)⋊9D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.2C2^2wrC2448,199
C14.3C22≀C2 = D14⋊C4⋊C4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.3C2^2wrC2448,202
C14.4C22≀C2 = (C2×C28)⋊5D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.4C2^2wrC2448,205
C14.5C22≀C2 = (C2×Dic7)⋊3D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.5C2^2wrC2448,206
C14.6C22≀C2 = (C2×C4).20D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.6C2^2wrC2448,207
C14.7C22≀C2 = D28.31D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14112C14.7C2^2wrC2448,265
C14.8C22≀C2 = D2813D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14112C14.8C2^2wrC2448,266
C14.9C22≀C2 = D28.32D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.9C2^2wrC2448,267
C14.10C22≀C2 = D2814D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.10C2^2wrC2448,268
C14.11C22≀C2 = Dic1414D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.11C2^2wrC2448,272
C14.12C22≀C2 = C22⋊Dic28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.12C2^2wrC2448,273
C14.13C22≀C2 = C23⋊D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14568+C14.13C2^2wrC2448,275
C14.14C22≀C2 = C23.5D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141128-C14.14C2^2wrC2448,276
C14.15C22≀C2 = D28.1D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141128-C14.15C2^2wrC2448,280
C14.16C22≀C2 = D281D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14568+C14.16C2^2wrC2448,281
C14.17C22≀C2 = D28.4D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141128-C14.17C2^2wrC2448,286
C14.18C22≀C2 = D28.5D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141128+C14.18C2^2wrC2448,287
C14.19C22≀C2 = D4⋊D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14112C14.19C2^2wrC2448,307
C14.20C22≀C2 = D4.6D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14112C14.20C2^2wrC2448,310
C14.21C22≀C2 = D43D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.21C2^2wrC2448,315
C14.22C22≀C2 = D4.D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.22C2^2wrC2448,317
C14.23C22≀C2 = Q82D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.23C2^2wrC2448,340
C14.24C22≀C2 = D144Q16φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.24C2^2wrC2448,342
C14.25C22≀C2 = Q8.D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.25C2^2wrC2448,344
C14.26C22≀C2 = D284D4φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.26C2^2wrC2448,345
C14.27C22≀C2 = D44D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14564+C14.27C2^2wrC2448,356
C14.28C22≀C2 = M4(2)⋊D14φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141124C14.28C2^2wrC2448,359
C14.29C22≀C2 = D4.9D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141124-C14.29C2^2wrC2448,360
C14.30C22≀C2 = D4.10D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C141124C14.30C2^2wrC2448,361
C14.31C22≀C2 = C24.47D14φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.31C2^2wrC2448,484
C14.32C22≀C2 = C23.45D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.32C2^2wrC2448,492
C14.33C22≀C2 = C232D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.33C2^2wrC2448,494
C14.34C22≀C2 = C23.16D28φ: C22≀C2/C22⋊C4C2 ⊆ Aut C14224C14.34C2^2wrC2448,495
C14.35C22≀C2 = C24.46D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.35C2^2wrC2448,480
C14.36C22≀C2 = C23⋊Dic14φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.36C2^2wrC2448,481
C14.37C22≀C2 = C23.44D28φ: C22≀C2/C2×D4C2 ⊆ Aut C14112C14.37C2^2wrC2448,489
C14.38C22≀C2 = C24.12D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.38C2^2wrC2448,490
C14.39C22≀C2 = C24.14D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.39C2^2wrC2448,493
C14.40C22≀C2 = (C2×C4)⋊Dic14φ: C22≀C2/C2×D4C2 ⊆ Aut C14448C14.40C2^2wrC2448,513
C14.41C22≀C2 = D14⋊C46C4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.41C2^2wrC2448,523
C14.42C22≀C2 = (C2×C4)⋊3D28φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.42C2^2wrC2448,525
C14.43C22≀C2 = C24⋊D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14564C14.43C2^2wrC2448,566
C14.44C22≀C2 = D2816D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14112C14.44C2^2wrC2448,570
C14.45C22≀C2 = D2817D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.45C2^2wrC2448,571
C14.46C22≀C2 = Dic1417D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.46C2^2wrC2448,574
C14.47C22≀C2 = D28.36D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14112C14.47C2^2wrC2448,580
C14.48C22≀C2 = D28.37D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.48C2^2wrC2448,581
C14.49C22≀C2 = Dic14.37D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.49C2^2wrC2448,584
C14.50C22≀C2 = C22⋊C4⋊D14φ: C22≀C2/C2×D4C2 ⊆ Aut C141124C14.50C2^2wrC2448,587
C14.51C22≀C2 = C425D14φ: C22≀C2/C2×D4C2 ⊆ Aut C141124C14.51C2^2wrC2448,595
C14.52C22≀C2 = D28.14D4φ: C22≀C2/C2×D4C2 ⊆ Aut C141124C14.52C2^2wrC2448,596
C14.53C22≀C2 = D285D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14564C14.53C2^2wrC2448,611
C14.54C22≀C2 = D28.15D4φ: C22≀C2/C2×D4C2 ⊆ Aut C141124C14.54C2^2wrC2448,629
C14.55C22≀C2 = D28⋊D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14112C14.55C2^2wrC2448,690
C14.56C22≀C2 = Dic14⋊D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.56C2^2wrC2448,692
C14.57C22≀C2 = D146SD16φ: C22≀C2/C2×D4C2 ⊆ Aut C14112C14.57C2^2wrC2448,703
C14.58C22≀C2 = Dic147D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.58C2^2wrC2448,704
C14.59C22≀C2 = D287D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.59C2^2wrC2448,706
C14.60C22≀C2 = Dic14.16D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.60C2^2wrC2448,707
C14.61C22≀C2 = D145Q16φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.61C2^2wrC2448,720
C14.62C22≀C2 = D28.17D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.62C2^2wrC2448,721
C14.63C22≀C2 = D2818D4φ: C22≀C2/C2×D4C2 ⊆ Aut C14568+C14.63C2^2wrC2448,732
C14.64C22≀C2 = D28.38D4φ: C22≀C2/C2×D4C2 ⊆ Aut C141128-C14.64C2^2wrC2448,735
C14.65C22≀C2 = D28.39D4φ: C22≀C2/C2×D4C2 ⊆ Aut C141128+C14.65C2^2wrC2448,736
C14.66C22≀C2 = D28.40D4φ: C22≀C2/C2×D4C2 ⊆ Aut C141128-C14.66C2^2wrC2448,739
C14.67C22≀C2 = C24.18D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.67C2^2wrC2448,754
C14.68C22≀C2 = C24.21D14φ: C22≀C2/C2×D4C2 ⊆ Aut C14224C14.68C2^2wrC2448,757
C14.69C22≀C2 = C24.62D14φ: C22≀C2/C24C2 ⊆ Aut C14224C14.69C2^2wrC2448,744
C14.70C22≀C2 = C23.28D28φ: C22≀C2/C24C2 ⊆ Aut C14224C14.70C2^2wrC2448,747
C14.71C22≀C2 = (C2×C14)⋊8D8φ: C22≀C2/C24C2 ⊆ Aut C14112C14.71C2^2wrC2448,751
C14.72C22≀C2 = (C7×D4).31D4φ: C22≀C2/C24C2 ⊆ Aut C14112C14.72C2^2wrC2448,752
C14.73C22≀C2 = C24.20D14φ: C22≀C2/C24C2 ⊆ Aut C14224C14.73C2^2wrC2448,756
C14.74C22≀C2 = (C7×Q8)⋊13D4φ: C22≀C2/C24C2 ⊆ Aut C14224C14.74C2^2wrC2448,761
C14.75C22≀C2 = (C2×C14)⋊8Q16φ: C22≀C2/C24C2 ⊆ Aut C14224C14.75C2^2wrC2448,762
C14.76C22≀C2 = C14.C22≀C2φ: C22≀C2/C24C2 ⊆ Aut C14448C14.76C2^2wrC2448,763
C14.77C22≀C2 = (C22×Q8)⋊D7φ: C22≀C2/C24C2 ⊆ Aut C14224C14.77C2^2wrC2448,765
C14.78C22≀C2 = (C7×D4)⋊14D4φ: C22≀C2/C24C2 ⊆ Aut C14224C14.78C2^2wrC2448,772
C14.79C22≀C2 = (C7×D4).32D4φ: C22≀C2/C24C2 ⊆ Aut C14224C14.79C2^2wrC2448,773
C14.80C22≀C2 = 2+ 1+4⋊D7φ: C22≀C2/C24C2 ⊆ Aut C14568+C14.80C2^2wrC2448,775
C14.81C22≀C2 = 2+ 1+4.D7φ: C22≀C2/C24C2 ⊆ Aut C141128-C14.81C2^2wrC2448,776
C14.82C22≀C2 = 2+ 1+4.2D7φ: C22≀C2/C24C2 ⊆ Aut C141128-C14.82C2^2wrC2448,777
C14.83C22≀C2 = 2+ 1+42D7φ: C22≀C2/C24C2 ⊆ Aut C14568+C14.83C2^2wrC2448,778
C14.84C22≀C2 = 2- 1+4⋊D7φ: C22≀C2/C24C2 ⊆ Aut C141128+C14.84C2^2wrC2448,779
C14.85C22≀C2 = 2- 1+4.D7φ: C22≀C2/C24C2 ⊆ Aut C141128-C14.85C2^2wrC2448,780
C14.86C22≀C2 = C25.D7φ: C22≀C2/C24C2 ⊆ Aut C14112C14.86C2^2wrC2448,781
C14.87C22≀C2 = C7×C243C4central extension (φ=1)112C14.87C2^2wrC2448,787
C14.88C22≀C2 = C7×C23.8Q8central extension (φ=1)224C14.88C2^2wrC2448,793
C14.89C22≀C2 = C7×C23.23D4central extension (φ=1)224C14.89C2^2wrC2448,794
C14.90C22≀C2 = C7×C232D4central extension (φ=1)224C14.90C2^2wrC2448,800
C14.91C22≀C2 = C7×C23⋊Q8central extension (φ=1)224C14.91C2^2wrC2448,801
C14.92C22≀C2 = C7×C23.10D4central extension (φ=1)224C14.92C2^2wrC2448,802
C14.93C22≀C2 = C7×C23.78C23central extension (φ=1)448C14.93C2^2wrC2448,803
C14.94C22≀C2 = C7×C22⋊D8central extension (φ=1)112C14.94C2^2wrC2448,855
C14.95C22≀C2 = C7×Q8⋊D4central extension (φ=1)224C14.95C2^2wrC2448,856
C14.96C22≀C2 = C7×D4⋊D4central extension (φ=1)224C14.96C2^2wrC2448,857
C14.97C22≀C2 = C7×C22⋊SD16central extension (φ=1)112C14.97C2^2wrC2448,858
C14.98C22≀C2 = C7×C22⋊Q16central extension (φ=1)224C14.98C2^2wrC2448,859
C14.99C22≀C2 = C7×D4.7D4central extension (φ=1)224C14.99C2^2wrC2448,860
C14.100C22≀C2 = C7×D44D4central extension (φ=1)564C14.100C2^2wrC2448,861
C14.101C22≀C2 = C7×D4.8D4central extension (φ=1)1124C14.101C2^2wrC2448,862
C14.102C22≀C2 = C7×D4.9D4central extension (φ=1)1124C14.102C2^2wrC2448,863
C14.103C22≀C2 = C7×D4.10D4central extension (φ=1)1124C14.103C2^2wrC2448,864
C14.104C22≀C2 = C7×C2≀C22central extension (φ=1)564C14.104C2^2wrC2448,865
C14.105C22≀C2 = C7×C23.7D4central extension (φ=1)1124C14.105C2^2wrC2448,866

׿
×
𝔽