# Extensions 1→N→G→Q→1 with N=C24⋊D7 and Q=C2

Direct product G=N×Q with N=C24⋊D7 and Q=C2
dρLabelID
C2×C24⋊D7112C2xC2^4:D7448,1293

Semidirect products G=N:Q with N=C24⋊D7 and Q=C2
extensionφ:Q→Out NdρLabelID
C24⋊D71C2 = C24⋊D14φ: C2/C1C2 ⊆ Out C24⋊D7564C2^4:D7:1C2448,566
C24⋊D72C2 = C24.27D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:2C2448,943
C24⋊D73C2 = C24.30D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:3C2448,947
C24⋊D74C2 = C24.56D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:4C2448,1039
C24⋊D75C2 = D7×C22≀C2φ: C2/C1C2 ⊆ Out C24⋊D756C2^4:D7:5C2448,1041
C24⋊D76C2 = C242D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:6C2448,1042
C24⋊D77C2 = C24.34D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:7C2448,1045
C24⋊D78C2 = C24.35D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:8C2448,1046
C24⋊D79C2 = C244D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:9C2448,1047
C24⋊D710C2 = C24.36D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:10C2448,1048
C24⋊D711C2 = D4×C7⋊D4φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:11C2448,1254
C24⋊D712C2 = C247D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:12C2448,1257
C24⋊D713C2 = C24.41D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:13C2448,1258
C24⋊D714C2 = C24.42D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7:14C2448,1259
C24⋊D715C2 = C24.72D14φ: trivial image112C2^4:D7:15C2448,1244

Non-split extensions G=N.Q with N=C24⋊D7 and Q=C2
extensionφ:Q→Out NdρLabelID
C24⋊D7.C2 = C24.31D14φ: C2/C1C2 ⊆ Out C24⋊D7112C2^4:D7.C2448,948

׿
×
𝔽