# Extensions 1→N→G→Q→1 with N=C22×C4 and Q=C3×D5

Direct product G=N×Q with N=C22×C4 and Q=C3×D5
dρLabelID
D5×C22×C12240D5xC2^2xC12480,1136

Semidirect products G=N:Q with N=C22×C4 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊(C3×D5) = A4×D20φ: C3×D5/C5C6 ⊆ Aut C22×C4606+(C2^2xC4):(C3xD5)480,1037
(C22×C4)⋊2(C3×D5) = C4×D5×A4φ: C3×D5/D5C3 ⊆ Aut C22×C4606(C2^2xC4):2(C3xD5)480,1036
(C22×C4)⋊3(C3×D5) = C6×D10⋊C4φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4):3(C3xD5)480,720
(C22×C4)⋊4(C3×D5) = C12×C5⋊D4φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4):4(C3xD5)480,721
(C22×C4)⋊5(C3×D5) = C3×C23.23D10φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4):5(C3xD5)480,722
(C22×C4)⋊6(C3×D5) = C3×C207D4φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4):6(C3xD5)480,723
(C22×C4)⋊7(C3×D5) = C2×C6×D20φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4):7(C3xD5)480,1137
(C22×C4)⋊8(C3×D5) = C6×C4○D20φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4):8(C3xD5)480,1138

Non-split extensions G=N.Q with N=C22×C4 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
(C22×C4).(C3×D5) = A4×Dic10φ: C3×D5/C5C6 ⊆ Aut C22×C41206-(C2^2xC4).(C3xD5)480,1035
(C22×C4).2(C3×D5) = A4×C52C8φ: C3×D5/D5C3 ⊆ Aut C22×C41206(C2^2xC4).2(C3xD5)480,265
(C22×C4).3(C3×D5) = C3×C20.55D4φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4).3(C3xD5)480,108
(C22×C4).4(C3×D5) = C3×C10.10C42φ: C3×D5/C15C2 ⊆ Aut C22×C4480(C2^2xC4).4(C3xD5)480,109
(C22×C4).5(C3×D5) = C6×C10.D4φ: C3×D5/C15C2 ⊆ Aut C22×C4480(C2^2xC4).5(C3xD5)480,716
(C22×C4).6(C3×D5) = C6×C4.Dic5φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4).6(C3xD5)480,714
(C22×C4).7(C3×D5) = C3×C20.48D4φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4).7(C3xD5)480,717
(C22×C4).8(C3×D5) = C6×C4⋊Dic5φ: C3×D5/C15C2 ⊆ Aut C22×C4480(C2^2xC4).8(C3xD5)480,718
(C22×C4).9(C3×D5) = C3×C23.21D10φ: C3×D5/C15C2 ⊆ Aut C22×C4240(C2^2xC4).9(C3xD5)480,719
(C22×C4).10(C3×D5) = C2×C6×Dic10φ: C3×D5/C15C2 ⊆ Aut C22×C4480(C2^2xC4).10(C3xD5)480,1135
(C22×C4).11(C3×D5) = C2×C6×C52C8central extension (φ=1)480(C2^2xC4).11(C3xD5)480,713
(C22×C4).12(C3×D5) = Dic5×C2×C12central extension (φ=1)480(C2^2xC4).12(C3xD5)480,715

׿
×
𝔽