Extensions 1→N→G→Q→1 with N=C22×S3 and Q=F5

Direct product G=N×Q with N=C22×S3 and Q=F5

Semidirect products G=N:Q with N=C22×S3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊F5 = D10.D12φ: F5/C5C4 ⊆ Out C22×S31208-(C2^2xS3):F5480,248
(C22×S3)⋊2F5 = C2×D6⋊F5φ: F5/D5C2 ⊆ Out C22×S3120(C2^2xS3):2F5480,1000
(C22×S3)⋊3F5 = S3×C22⋊F5φ: F5/D5C2 ⊆ Out C22×S3608+(C2^2xS3):3F5480,1011

Non-split extensions G=N.Q with N=C22×S3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C22×S3).F5 = Dic5.D12φ: F5/C5C4 ⊆ Out C22×S31208+(C2^2xS3).F5480,250
(C22×S3).2F5 = Dic5.22D12φ: F5/D5C2 ⊆ Out C22×S3240(C2^2xS3).2F5480,246
(C22×S3).3F5 = S3×C22.F5φ: F5/D5C2 ⊆ Out C22×S31208-(C2^2xS3).3F5480,1004
(C22×S3).4F5 = C2×D6.F5φ: F5/D5C2 ⊆ Out C22×S3240(C2^2xS3).4F5480,1008
(C22×S3).5F5 = C2×S3×C5⋊C8φ: trivial image240(C2^2xS3).5F5480,1002