# Extensions 1→N→G→Q→1 with N=C22 and Q=C5×D12

Direct product G=N×Q with N=C22 and Q=C5×D12
dρLabelID
C2×C10×D12240C2xC10xD12480,1152

Semidirect products G=N:Q with N=C22 and Q=C5×D12
extensionφ:Q→Aut NdρLabelID
C22⋊(C5×D12) = C5×C4⋊S4φ: C5×D12/C20S3 ⊆ Aut C22606C2^2:(C5xD12)480,1015
C222(C5×D12) = C5×C127D4φ: C5×D12/C60C2 ⊆ Aut C22240C2^2:2(C5xD12)480,809
C223(C5×D12) = C5×D6⋊D4φ: C5×D12/S3×C10C2 ⊆ Aut C22120C2^2:3(C5xD12)480,761

Non-split extensions G=N.Q with N=C22 and Q=C5×D12
extensionφ:Q→Aut NdρLabelID
C22.1(C5×D12) = C5×C4○D24φ: C5×D12/C60C2 ⊆ Aut C222402C2^2.1(C5xD12)480,783
C22.2(C5×D12) = C5×C23.6D6φ: C5×D12/S3×C10C2 ⊆ Aut C221204C2^2.2(C5xD12)480,125
C22.3(C5×D12) = C5×D12⋊C4φ: C5×D12/S3×C10C2 ⊆ Aut C221204C2^2.3(C5xD12)480,144
C22.4(C5×D12) = C5×C23.21D6φ: C5×D12/S3×C10C2 ⊆ Aut C22240C2^2.4(C5xD12)480,765
C22.5(C5×D12) = C5×C8⋊D6φ: C5×D12/S3×C10C2 ⊆ Aut C221204C2^2.5(C5xD12)480,787
C22.6(C5×D12) = C5×C8.D6φ: C5×D12/S3×C10C2 ⊆ Aut C222404C2^2.6(C5xD12)480,788
C22.7(C5×D12) = C5×C2.Dic12central extension (φ=1)480C2^2.7(C5xD12)480,135
C22.8(C5×D12) = C5×C8⋊Dic3central extension (φ=1)480C2^2.8(C5xD12)480,136
C22.9(C5×D12) = C5×C241C4central extension (φ=1)480C2^2.9(C5xD12)480,137
C22.10(C5×D12) = C5×C2.D24central extension (φ=1)240C2^2.10(C5xD12)480,140
C22.11(C5×D12) = C5×C6.C42central extension (φ=1)480C2^2.11(C5xD12)480,150
C22.12(C5×D12) = C10×C24⋊C2central extension (φ=1)240C2^2.12(C5xD12)480,781
C22.13(C5×D12) = C10×D24central extension (φ=1)240C2^2.13(C5xD12)480,782
C22.14(C5×D12) = C10×Dic12central extension (φ=1)480C2^2.14(C5xD12)480,784
C22.15(C5×D12) = C10×C4⋊Dic3central extension (φ=1)480C2^2.15(C5xD12)480,804
C22.16(C5×D12) = C10×D6⋊C4central extension (φ=1)240C2^2.16(C5xD12)480,806

׿
×
𝔽