# Extensions 1→N→G→Q→1 with N=C22×Dic3 and Q=C10

Direct product G=N×Q with N=C22×Dic3 and Q=C10
dρLabelID
Dic3×C22×C10480Dic3xC2^2xC10480,1163

Semidirect products G=N:Q with N=C22×Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C22×Dic3)⋊1C10 = C5×Dic34D4φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):1C10480,760
(C22×Dic3)⋊2C10 = C5×C23.21D6φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):2C10480,765
(C22×Dic3)⋊3C10 = C10×D6⋊C4φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):3C10480,806
(C22×Dic3)⋊4C10 = C5×D4×Dic3φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):4C10480,813
(C22×Dic3)⋊5C10 = C5×C23.23D6φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):5C10480,814
(C22×Dic3)⋊6C10 = C5×C23.14D6φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):6C10480,818
(C22×Dic3)⋊7C10 = C10×C6.D4φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):7C10480,831
(C22×Dic3)⋊8C10 = C10×D42S3φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):8C10480,1155
(C22×Dic3)⋊9C10 = C2×C10×C3⋊D4φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3):9C10480,1164
(C22×Dic3)⋊10C10 = S3×C22×C20φ: trivial image240(C2^2xDic3):10C10480,1151

Non-split extensions G=N.Q with N=C22×Dic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C22×Dic3).1C10 = C5×C6.C42φ: C10/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).1C10480,150
(C22×Dic3).2C10 = C5×C23.16D6φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3).2C10480,756
(C22×Dic3).3C10 = C5×Dic3.D4φ: C10/C5C2 ⊆ Out C22×Dic3240(C2^2xDic3).3C10480,757
(C22×Dic3).4C10 = C10×Dic3⋊C4φ: C10/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).4C10480,802
(C22×Dic3).5C10 = C10×C4⋊Dic3φ: C10/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).5C10480,804
(C22×Dic3).6C10 = C2×C10×Dic6φ: C10/C5C2 ⊆ Out C22×Dic3480(C2^2xDic3).6C10480,1150
(C22×Dic3).7C10 = Dic3×C2×C20φ: trivial image480(C2^2xDic3).7C10480,801

׿
×
𝔽