# Extensions 1→N→G→Q→1 with N=C22 and Q=C22×C30

Direct product G=N×Q with N=C22 and Q=C22×C30
dρLabelID
C24×C30480C2^4xC30480,1213

Semidirect products G=N:Q with N=C22 and Q=C22×C30
extensionφ:Q→Aut NdρLabelID
C22⋊(C22×C30) = A4×C22×C10φ: C22×C30/C22×C10C3 ⊆ Aut C22120C2^2:(C2^2xC30)480,1208
C222(C22×C30) = D4×C2×C30φ: C22×C30/C2×C30C2 ⊆ Aut C22240C2^2:2(C2^2xC30)480,1181

Non-split extensions G=N.Q with N=C22 and Q=C22×C30
extensionφ:Q→Aut NdρLabelID
C22.1(C22×C30) = C4○D4×C30φ: C22×C30/C2×C30C2 ⊆ Aut C22240C2^2.1(C2^2xC30)480,1183
C22.2(C22×C30) = C15×2+ 1+4φ: C22×C30/C2×C30C2 ⊆ Aut C221204C2^2.2(C2^2xC30)480,1184
C22.3(C22×C30) = C15×2- 1+4φ: C22×C30/C2×C30C2 ⊆ Aut C222404C2^2.3(C2^2xC30)480,1185
C22.4(C22×C30) = C22⋊C4×C30central extension (φ=1)240C2^2.4(C2^2xC30)480,920
C22.5(C22×C30) = C4⋊C4×C30central extension (φ=1)480C2^2.5(C2^2xC30)480,921
C22.6(C22×C30) = C15×C42⋊C2central extension (φ=1)240C2^2.6(C2^2xC30)480,922
C22.7(C22×C30) = D4×C60central extension (φ=1)240C2^2.7(C2^2xC30)480,923
C22.8(C22×C30) = Q8×C60central extension (φ=1)480C2^2.8(C2^2xC30)480,924
C22.9(C22×C30) = Q8×C2×C30central extension (φ=1)480C2^2.9(C2^2xC30)480,1182
C22.10(C22×C30) = C15×C22≀C2central stem extension (φ=1)120C2^2.10(C2^2xC30)480,925
C22.11(C22×C30) = C15×C4⋊D4central stem extension (φ=1)240C2^2.11(C2^2xC30)480,926
C22.12(C22×C30) = C15×C22⋊Q8central stem extension (φ=1)240C2^2.12(C2^2xC30)480,927
C22.13(C22×C30) = C15×C22.D4central stem extension (φ=1)240C2^2.13(C2^2xC30)480,928
C22.14(C22×C30) = C15×C4.4D4central stem extension (φ=1)240C2^2.14(C2^2xC30)480,929
C22.15(C22×C30) = C15×C42.C2central stem extension (φ=1)480C2^2.15(C2^2xC30)480,930
C22.16(C22×C30) = C15×C422C2central stem extension (φ=1)240C2^2.16(C2^2xC30)480,931
C22.17(C22×C30) = C15×C41D4central stem extension (φ=1)240C2^2.17(C2^2xC30)480,932
C22.18(C22×C30) = C15×C4⋊Q8central stem extension (φ=1)480C2^2.18(C2^2xC30)480,933

׿
×
𝔽