# Extensions 1→N→G→Q→1 with N=C3×C23.D5 and Q=C2

Direct product G=N×Q with N=C3×C23.D5 and Q=C2
dρLabelID
C6×C23.D5240C6xC2^3.D5480,745

Semidirect products G=N:Q with N=C3×C23.D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C23.D5)⋊1C2 = C158(C23⋊C4)φ: C2/C1C2 ⊆ Out C3×C23.D51204(C3xC2^3.D5):1C2480,72
(C3×C23.D5)⋊2C2 = C159(C23⋊C4)φ: C2/C1C2 ⊆ Out C3×C23.D51204(C3xC2^3.D5):2C2480,73
(C3×C23.D5)⋊3C2 = C23.D5⋊S3φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):3C2480,601
(C3×C23.D5)⋊4C2 = Dic15.19D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):4C2480,602
(C3×C23.D5)⋊5C2 = C10.(C2×D12)φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):5C2480,618
(C3×C23.D5)⋊6C2 = (C2×C10).D12φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):6C2480,619
(C3×C23.D5)⋊7C2 = S3×C23.D5φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):7C2480,630
(C3×C23.D5)⋊8C2 = (S3×C10).D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):8C2480,631
(C3×C23.D5)⋊9C2 = C1528(C4×D4)φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):9C2480,632
(C3×C23.D5)⋊10C2 = D307D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):10C2480,633
(C3×C23.D5)⋊11C2 = Dic154D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):11C2480,634
(C3×C23.D5)⋊12C2 = Dic1517D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):12C2480,636
(C3×C23.D5)⋊13C2 = D30.45D4φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):13C2480,637
(C3×C23.D5)⋊14C2 = D30.16D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):14C2480,638
(C3×C23.D5)⋊15C2 = (C2×C10)⋊11D12φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):15C2480,646
(C3×C23.D5)⋊16C2 = D3019D4φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):16C2480,649
(C3×C23.D5)⋊17C2 = C3×C23.1D10φ: C2/C1C2 ⊆ Out C3×C23.D51204(C3xC2^3.D5):17C2480,84
(C3×C23.D5)⋊18C2 = C3×C23⋊Dic5φ: C2/C1C2 ⊆ Out C3×C23.D51204(C3xC2^3.D5):18C2480,112
(C3×C23.D5)⋊19C2 = C3×D5×C22⋊C4φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):19C2480,673
(C3×C23.D5)⋊20C2 = C3×D10.12D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):20C2480,676
(C3×C23.D5)⋊21C2 = C3×Dic5.5D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):21C2480,678
(C3×C23.D5)⋊22C2 = C3×C23.23D10φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):22C2480,722
(C3×C23.D5)⋊23C2 = C3×D4×Dic5φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):23C2480,727
(C3×C23.D5)⋊24C2 = C3×C23.18D10φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):24C2480,728
(C3×C23.D5)⋊25C2 = C3×C20.17D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):25C2480,729
(C3×C23.D5)⋊26C2 = C3×C23⋊D10φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):26C2480,730
(C3×C23.D5)⋊27C2 = C3×C202D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):27C2480,731
(C3×C23.D5)⋊28C2 = C3×Dic5⋊D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5):28C2480,732
(C3×C23.D5)⋊29C2 = C3×C242D5φ: C2/C1C2 ⊆ Out C3×C23.D5120(C3xC2^3.D5):29C2480,746
(C3×C23.D5)⋊30C2 = C12×C5⋊D4φ: trivial image240(C3xC2^3.D5):30C2480,721

Non-split extensions G=N.Q with N=C3×C23.D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C23.D5).1C2 = C23.26(S3×D5)φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).1C2480,605
(C3×C23.D5).2C2 = C23.13(S3×D5)φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).2C2480,606
(C3×C23.D5).3C2 = C23.14(S3×D5)φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).3C2480,607
(C3×C23.D5).4C2 = C23.48(S3×D5)φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).4C2480,608
(C3×C23.D5).5C2 = (C2×C10)⋊8Dic6φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).5C2480,651
(C3×C23.D5).6C2 = Dic15.48D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).6C2480,652
(C3×C23.D5).7C2 = C3×C23.11D10φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).7C2480,670
(C3×C23.D5).8C2 = C3×Dic5.14D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).8C2480,671
(C3×C23.D5).9C2 = C3×C23.D10φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).9C2480,672
(C3×C23.D5).10C2 = C3×C20.48D4φ: C2/C1C2 ⊆ Out C3×C23.D5240(C3xC2^3.D5).10C2480,717
(C3×C23.D5).11C2 = C3×C23.21D10φ: trivial image240(C3xC2^3.D5).11C2480,719

׿
×
𝔽