Extensions 1→N→G→Q→1 with N=S3×C23 and Q=D5

Direct product G=N×Q with N=S3×C23 and Q=D5

Semidirect products G=N:Q with N=S3×C23 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×C23)⋊1D5 = C15⋊C22≀C2φ: D5/C5C2 ⊆ Out S3×C23120(S3xC2^3):1D5480,644
(S3×C23)⋊2D5 = (C2×C10)⋊11D12φ: D5/C5C2 ⊆ Out S3×C23120(S3xC2^3):2D5480,646
(S3×C23)⋊3D5 = C22×C15⋊D4φ: D5/C5C2 ⊆ Out S3×C23240(S3xC2^3):3D5480,1118
(S3×C23)⋊4D5 = C22×C5⋊D12φ: D5/C5C2 ⊆ Out S3×C23240(S3xC2^3):4D5480,1120
(S3×C23)⋊5D5 = C2×S3×C5⋊D4φ: D5/C5C2 ⊆ Out S3×C23120(S3xC2^3):5D5480,1123

Non-split extensions G=N.Q with N=S3×C23 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×C23).1D5 = C2×D6⋊Dic5φ: D5/C5C2 ⊆ Out S3×C23240(S3xC2^3).1D5480,614
(S3×C23).2D5 = S3×C23.D5φ: D5/C5C2 ⊆ Out S3×C23120(S3xC2^3).2D5480,630
(S3×C23).3D5 = C22×S3×Dic5φ: trivial image240(S3xC2^3).3D5480,1115