# Extensions 1→N→G→Q→1 with N=D5×C22×C6 and Q=C2

Direct product G=N×Q with N=D5×C22×C6 and Q=C2
dρLabelID
D5×C23×C6240D5xC2^3xC6480,1210

Semidirect products G=N:Q with N=D5×C22×C6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C22×C6)⋊1C2 = (C2×C30)⋊D4φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):1C2480,639
(D5×C22×C6)⋊2C2 = (C2×C6)⋊8D20φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):2C2480,640
(D5×C22×C6)⋊3C2 = C22×C15⋊D4φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6):3C2480,1118
(D5×C22×C6)⋊4C2 = C22×C3⋊D20φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6):4C2480,1119
(D5×C22×C6)⋊5C2 = C2×D5×C3⋊D4φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):5C2480,1122
(D5×C22×C6)⋊6C2 = S3×C23×D5φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):6C2480,1207
(D5×C22×C6)⋊7C2 = C3×C22⋊D20φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):7C2480,675
(D5×C22×C6)⋊8C2 = C3×C23⋊D10φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):8C2480,730
(D5×C22×C6)⋊9C2 = C2×C6×D20φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6):9C2480,1137
(D5×C22×C6)⋊10C2 = C6×D4×D5φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6):10C2480,1139
(D5×C22×C6)⋊11C2 = C2×C6×C5⋊D4φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6):11C2480,1149

Non-split extensions G=N.Q with N=D5×C22×C6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C22×C6).1C2 = C2×D10⋊Dic3φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6).1C2480,611
(D5×C22×C6).2C2 = D5×C6.D4φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6).2C2480,623
(D5×C22×C6).3C2 = C22×D5×Dic3φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6).3C2480,1112
(D5×C22×C6).4C2 = C3×D5×C22⋊C4φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6).4C2480,673
(D5×C22×C6).5C2 = C6×D10⋊C4φ: C2/C1C2 ⊆ Out D5×C22×C6240(D5xC2^2xC6).5C2480,720
(D5×C22×C6).6C2 = C2×D10.D6φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6).6C2480,1072
(D5×C22×C6).7C2 = C23×C3⋊F5φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6).7C2480,1206
(D5×C22×C6).8C2 = C6×C22⋊F5φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6).8C2480,1059
(D5×C22×C6).9C2 = F5×C22×C6φ: C2/C1C2 ⊆ Out D5×C22×C6120(D5xC2^2xC6).9C2480,1205
(D5×C22×C6).10C2 = D5×C22×C12φ: trivial image240(D5xC2^2xC6).10C2480,1136

׿
×
𝔽