Extensions 1→N→G→Q→1 with N=C3 and Q=C32⋊D9

Direct product G=N×Q with N=C3 and Q=C32⋊D9

Semidirect products G=N:Q with N=C3 and Q=C32⋊D9
extensionφ:Q→Aut NdρLabelID
C3⋊(C32⋊D9) = C33⋊D9φ: C32⋊D9/C32⋊C9C2 ⊆ Aut C381C3:(C3^2:D9)486,137

Non-split extensions G=N.Q with N=C3 and Q=C32⋊D9
extensionφ:Q→Aut NdρLabelID
C3.1(C32⋊D9) = C32⋊D27φ: C32⋊D9/C32⋊C9C2 ⊆ Aut C381C3.1(C3^2:D9)486,17
C3.2(C32⋊D9) = He3⋊D9φ: C32⋊D9/C32⋊C9C2 ⊆ Aut C381C3.2(C3^2:D9)486,25
C3.3(C32⋊D9) = He3.D9φ: C32⋊D9/C32⋊C9C2 ⊆ Aut C3816+C3.3(C3^2:D9)486,27
C3.4(C32⋊D9) = He3.2D9φ: C32⋊D9/C32⋊C9C2 ⊆ Aut C3816+C3.4(C3^2:D9)486,29
C3.5(C32⋊D9) = C9⋊S3⋊C9central extension (φ=1)54C3.5(C3^2:D9)486,3
C3.6(C32⋊D9) = C331D9central stem extension (φ=1)186C3.6(C3^2:D9)486,19
C3.7(C32⋊D9) = (C3×C9)⋊D9central stem extension (φ=1)546C3.7(C3^2:D9)486,21
C3.8(C32⋊D9) = (C3×C9)⋊3D9central stem extension (φ=1)546C3.8(C3^2:D9)486,23