Copied to
clipboard

G = C32×C11⋊C5order 495 = 32·5·11

Direct product of C32 and C11⋊C5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C32×C11⋊C5, C33⋊C15, (C3×C33)⋊C5, C11⋊(C3×C15), SmallGroup(495,3)

Series: Derived Chief Lower central Upper central

C1C11 — C32×C11⋊C5
C1C11C11⋊C5C3×C11⋊C5 — C32×C11⋊C5
C11 — C32×C11⋊C5
C1C32

Generators and relations for C32×C11⋊C5
 G = < a,b,c,d | a3=b3=c11=d5=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

11C5
11C15
11C15
11C15
11C15
11C3×C15

Smallest permutation representation of C32×C11⋊C5
On 99 points
Generators in S99
(1 89 45)(2 90 46)(3 91 47)(4 92 48)(5 93 49)(6 94 50)(7 95 51)(8 96 52)(9 97 53)(10 98 54)(11 99 55)(12 67 56)(13 68 57)(14 69 58)(15 70 59)(16 71 60)(17 72 61)(18 73 62)(19 74 63)(20 75 64)(21 76 65)(22 77 66)(23 78 34)(24 79 35)(25 80 36)(26 81 37)(27 82 38)(28 83 39)(29 84 40)(30 85 41)(31 86 42)(32 87 43)(33 88 44)
(1 23 12)(2 24 13)(3 25 14)(4 26 15)(5 27 16)(6 28 17)(7 29 18)(8 30 19)(9 31 20)(10 32 21)(11 33 22)(34 56 45)(35 57 46)(36 58 47)(37 59 48)(38 60 49)(39 61 50)(40 62 51)(41 63 52)(42 64 53)(43 65 54)(44 66 55)(67 89 78)(68 90 79)(69 91 80)(70 92 81)(71 93 82)(72 94 83)(73 95 84)(74 96 85)(75 97 86)(76 98 87)(77 99 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)(35 38 39 43 37)(36 42 44 41 40)(46 49 50 54 48)(47 53 55 52 51)(57 60 61 65 59)(58 64 66 63 62)(68 71 72 76 70)(69 75 77 74 73)(79 82 83 87 81)(80 86 88 85 84)(90 93 94 98 92)(91 97 99 96 95)

G:=sub<Sym(99)| (1,89,45)(2,90,46)(3,91,47)(4,92,48)(5,93,49)(6,94,50)(7,95,51)(8,96,52)(9,97,53)(10,98,54)(11,99,55)(12,67,56)(13,68,57)(14,69,58)(15,70,59)(16,71,60)(17,72,61)(18,73,62)(19,74,63)(20,75,64)(21,76,65)(22,77,66)(23,78,34)(24,79,35)(25,80,36)(26,81,37)(27,82,38)(28,83,39)(29,84,40)(30,85,41)(31,86,42)(32,87,43)(33,88,44), (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22)(34,56,45)(35,57,46)(36,58,47)(37,59,48)(38,60,49)(39,61,50)(40,62,51)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(67,89,78)(68,90,79)(69,91,80)(70,92,81)(71,93,82)(72,94,83)(73,95,84)(74,96,85)(75,97,86)(76,98,87)(77,99,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)(46,49,50,54,48)(47,53,55,52,51)(57,60,61,65,59)(58,64,66,63,62)(68,71,72,76,70)(69,75,77,74,73)(79,82,83,87,81)(80,86,88,85,84)(90,93,94,98,92)(91,97,99,96,95)>;

G:=Group( (1,89,45)(2,90,46)(3,91,47)(4,92,48)(5,93,49)(6,94,50)(7,95,51)(8,96,52)(9,97,53)(10,98,54)(11,99,55)(12,67,56)(13,68,57)(14,69,58)(15,70,59)(16,71,60)(17,72,61)(18,73,62)(19,74,63)(20,75,64)(21,76,65)(22,77,66)(23,78,34)(24,79,35)(25,80,36)(26,81,37)(27,82,38)(28,83,39)(29,84,40)(30,85,41)(31,86,42)(32,87,43)(33,88,44), (1,23,12)(2,24,13)(3,25,14)(4,26,15)(5,27,16)(6,28,17)(7,29,18)(8,30,19)(9,31,20)(10,32,21)(11,33,22)(34,56,45)(35,57,46)(36,58,47)(37,59,48)(38,60,49)(39,61,50)(40,62,51)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(67,89,78)(68,90,79)(69,91,80)(70,92,81)(71,93,82)(72,94,83)(73,95,84)(74,96,85)(75,97,86)(76,98,87)(77,99,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)(46,49,50,54,48)(47,53,55,52,51)(57,60,61,65,59)(58,64,66,63,62)(68,71,72,76,70)(69,75,77,74,73)(79,82,83,87,81)(80,86,88,85,84)(90,93,94,98,92)(91,97,99,96,95) );

G=PermutationGroup([(1,89,45),(2,90,46),(3,91,47),(4,92,48),(5,93,49),(6,94,50),(7,95,51),(8,96,52),(9,97,53),(10,98,54),(11,99,55),(12,67,56),(13,68,57),(14,69,58),(15,70,59),(16,71,60),(17,72,61),(18,73,62),(19,74,63),(20,75,64),(21,76,65),(22,77,66),(23,78,34),(24,79,35),(25,80,36),(26,81,37),(27,82,38),(28,83,39),(29,84,40),(30,85,41),(31,86,42),(32,87,43),(33,88,44)], [(1,23,12),(2,24,13),(3,25,14),(4,26,15),(5,27,16),(6,28,17),(7,29,18),(8,30,19),(9,31,20),(10,32,21),(11,33,22),(34,56,45),(35,57,46),(36,58,47),(37,59,48),(38,60,49),(39,61,50),(40,62,51),(41,63,52),(42,64,53),(43,65,54),(44,66,55),(67,89,78),(68,90,79),(69,91,80),(70,92,81),(71,93,82),(72,94,83),(73,95,84),(74,96,85),(75,97,86),(76,98,87),(77,99,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29),(35,38,39,43,37),(36,42,44,41,40),(46,49,50,54,48),(47,53,55,52,51),(57,60,61,65,59),(58,64,66,63,62),(68,71,72,76,70),(69,75,77,74,73),(79,82,83,87,81),(80,86,88,85,84),(90,93,94,98,92),(91,97,99,96,95)])

63 conjugacy classes

class 1 3A···3H5A5B5C5D11A11B15A···15AF33A···33P
order13···35555111115···1533···33
size11···1111111115511···115···5

63 irreducible representations

dim111155
type+
imageC1C3C5C15C11⋊C5C3×C11⋊C5
kernelC32×C11⋊C5C3×C11⋊C5C3×C33C33C32C3
# reps18432216

Matrix representation of C32×C11⋊C5 in GL6(𝔽331)

3100000
0310000
0031000
0003100
0000310
0000031
,
100000
02990000
00299000
00029900
00002990
00000299
,
100000
010413301051
010000
001000
000100
000010
,
15000000
010000
000010
02263291225103
02251031329104
001000

G:=sub<GL(6,GF(331))| [31,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,31],[1,0,0,0,0,0,0,299,0,0,0,0,0,0,299,0,0,0,0,0,0,299,0,0,0,0,0,0,299,0,0,0,0,0,0,299],[1,0,0,0,0,0,0,104,1,0,0,0,0,1,0,1,0,0,0,330,0,0,1,0,0,105,0,0,0,1,0,1,0,0,0,0],[150,0,0,0,0,0,0,1,0,226,225,0,0,0,0,329,103,1,0,0,0,1,1,0,0,0,1,225,329,0,0,0,0,103,104,0] >;

C32×C11⋊C5 in GAP, Magma, Sage, TeX

C_3^2\times C_{11}\rtimes C_5
% in TeX

G:=Group("C3^2xC11:C5");
// GroupNames label

G:=SmallGroup(495,3);
// by ID

G=gap.SmallGroup(495,3);
# by ID

G:=PCGroup([4,-3,-3,-5,-11,331]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^11=d^5=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C32×C11⋊C5 in TeX

׿
×
𝔽