Extensions 1→N→G→Q→1 with N=C22 and Q=D62

Direct product G=N×Q with N=C22 and Q=D62

Semidirect products G=N:Q with N=C22 and Q=D62
extensionφ:Q→Aut NdρLabelID
C221D62 = D4×D31φ: D62/D31C2 ⊆ Aut C221244+C2^2:1D62496,31
C222D62 = C2×C31⋊D4φ: D62/C62C2 ⊆ Aut C22248C2^2:2D62496,36

Non-split extensions G=N.Q with N=C22 and Q=D62
extensionφ:Q→Aut NdρLabelID
C22.1D62 = D42D31φ: D62/D31C2 ⊆ Aut C222484-C2^2.1D62496,32
C22.2D62 = D1245C2φ: D62/C62C2 ⊆ Aut C222482C2^2.2D62496,30
C22.3D62 = C4×Dic31central extension (φ=1)496C2^2.3D62496,10
C22.4D62 = Dic31⋊C4central extension (φ=1)496C2^2.4D62496,11
C22.5D62 = C4⋊Dic31central extension (φ=1)496C2^2.5D62496,12
C22.6D62 = D62⋊C4central extension (φ=1)248C2^2.6D62496,13
C22.7D62 = C23.D31central extension (φ=1)248C2^2.7D62496,18
C22.8D62 = C2×Dic62central extension (φ=1)496C2^2.8D62496,27
C22.9D62 = C2×C4×D31central extension (φ=1)248C2^2.9D62496,28
C22.10D62 = C2×D124central extension (φ=1)248C2^2.10D62496,29
C22.11D62 = C22×Dic31central extension (φ=1)496C2^2.11D62496,35