Extensions 1→N→G→Q→1 with N=C22 and Q=M4(2)

Direct product G=N×Q with N=C22 and Q=M4(2)

Semidirect products G=N:Q with N=C22 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C221M4(2) = C89D4φ: M4(2)/C8C2 ⊆ Aut C2232C2^2:1M4(2)64,116
C222M4(2) = C24.4C4φ: M4(2)/C2×C4C2 ⊆ Aut C2216C2^2:2M4(2)64,88

Non-split extensions G=N.Q with N=C22 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C22.1M4(2) = D4.C8φ: M4(2)/C8C2 ⊆ Aut C22322C2^2.1M4(2)64,31
C22.2M4(2) = C23⋊C8φ: M4(2)/C2×C4C2 ⊆ Aut C2216C2^2.2M4(2)64,4
C22.3M4(2) = C22.M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C2232C2^2.3M4(2)64,5
C22.4M4(2) = C16⋊C4φ: M4(2)/C2×C4C2 ⊆ Aut C22164C2^2.4M4(2)64,28
C22.5M4(2) = C8.C8φ: M4(2)/C2×C4C2 ⊆ Aut C22162C2^2.5M4(2)64,45
C22.6M4(2) = C42.6C4φ: M4(2)/C2×C4C2 ⊆ Aut C2232C2^2.6M4(2)64,113
C22.7M4(2) = C22.7C42central extension (φ=1)64C2^2.7M4(2)64,17
C22.8M4(2) = C2×C8⋊C4central extension (φ=1)64C2^2.8M4(2)64,84
C22.9M4(2) = C2×C22⋊C8central extension (φ=1)32C2^2.9M4(2)64,87
C22.10M4(2) = C2×C4⋊C8central extension (φ=1)64C2^2.10M4(2)64,103