Extensions 1→N→G→Q→1 with N=C22 and Q=D10

Direct product G=N×Q with N=C22 and Q=D10

Semidirect products G=N:Q with N=C22 and Q=D10
extensionφ:Q→Aut NdρLabelID
C221D10 = D4×D5φ: D10/D5C2 ⊆ Aut C22204+C2^2:1D1080,39
C222D10 = C2×C5⋊D4φ: D10/C10C2 ⊆ Aut C2240C2^2:2D1080,44

Non-split extensions G=N.Q with N=C22 and Q=D10
extensionφ:Q→Aut NdρLabelID
C22.1D10 = D42D5φ: D10/D5C2 ⊆ Aut C22404-C2^2.1D1080,40
C22.2D10 = C4○D20φ: D10/C10C2 ⊆ Aut C22402C2^2.2D1080,38
C22.3D10 = C4×Dic5central extension (φ=1)80C2^2.3D1080,11
C22.4D10 = C10.D4central extension (φ=1)80C2^2.4D1080,12
C22.5D10 = C4⋊Dic5central extension (φ=1)80C2^2.5D1080,13
C22.6D10 = D10⋊C4central extension (φ=1)40C2^2.6D1080,14
C22.7D10 = C23.D5central extension (φ=1)40C2^2.7D1080,19
C22.8D10 = C2×Dic10central extension (φ=1)80C2^2.8D1080,35
C22.9D10 = C2×C4×D5central extension (φ=1)40C2^2.9D1080,36
C22.10D10 = C2×D20central extension (φ=1)40C2^2.10D1080,37
C22.11D10 = C22×Dic5central extension (φ=1)80C2^2.11D1080,43