# Extensions 1→N→G→Q→1 with N=C22 and Q=C4×S3

Direct product G=N×Q with N=C22 and Q=C4×S3
dρLabelID
S3×C22×C448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C22 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×S3) = C4×S4φ: C4×S3/C4S3 ⊆ Aut C22123C2^2:(C4xS3)96,186
C222(C4×S3) = Dic34D4φ: C4×S3/Dic3C2 ⊆ Aut C2248C2^2:2(C4xS3)96,88
C223(C4×S3) = C4×C3⋊D4φ: C4×S3/C12C2 ⊆ Aut C2248C2^2:3(C4xS3)96,135
C224(C4×S3) = S3×C22⋊C4φ: C4×S3/D6C2 ⊆ Aut C2224C2^2:4(C4xS3)96,87

Non-split extensions G=N.Q with N=C22 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C22.1(C4×S3) = D12.C4φ: C4×S3/Dic3C2 ⊆ Aut C22484C2^2.1(C4xS3)96,114
C22.2(C4×S3) = C8○D12φ: C4×S3/C12C2 ⊆ Aut C22482C2^2.2(C4xS3)96,108
C22.3(C4×S3) = C23.6D6φ: C4×S3/D6C2 ⊆ Aut C22244C2^2.3(C4xS3)96,13
C22.4(C4×S3) = C12.46D4φ: C4×S3/D6C2 ⊆ Aut C22244+C2^2.4(C4xS3)96,30
C22.5(C4×S3) = C12.47D4φ: C4×S3/D6C2 ⊆ Aut C22484-C2^2.5(C4xS3)96,31
C22.6(C4×S3) = C23.16D6φ: C4×S3/D6C2 ⊆ Aut C2248C2^2.6(C4xS3)96,84
C22.7(C4×S3) = S3×M4(2)φ: C4×S3/D6C2 ⊆ Aut C22244C2^2.7(C4xS3)96,113
C22.8(C4×S3) = C8×Dic3central extension (φ=1)96C2^2.8(C4xS3)96,20
C22.9(C4×S3) = Dic3⋊C8central extension (φ=1)96C2^2.9(C4xS3)96,21
C22.10(C4×S3) = C24⋊C4central extension (φ=1)96C2^2.10(C4xS3)96,22
C22.11(C4×S3) = D6⋊C8central extension (φ=1)48C2^2.11(C4xS3)96,27
C22.12(C4×S3) = C6.C42central extension (φ=1)96C2^2.12(C4xS3)96,38
C22.13(C4×S3) = S3×C2×C8central extension (φ=1)48C2^2.13(C4xS3)96,106
C22.14(C4×S3) = C2×C8⋊S3central extension (φ=1)48C2^2.14(C4xS3)96,107
C22.15(C4×S3) = C2×C4×Dic3central extension (φ=1)96C2^2.15(C4xS3)96,129
C22.16(C4×S3) = C2×Dic3⋊C4central extension (φ=1)96C2^2.16(C4xS3)96,130
C22.17(C4×S3) = C2×D6⋊C4central extension (φ=1)48C2^2.17(C4xS3)96,134

׿
×
𝔽