Copied to
clipboard

G = C23×C14order 112 = 24·7

Abelian group of type [2,2,2,14]

direct product, abelian, monomial, 2-elementary

Aliases: C23×C14, SmallGroup(112,43)

Series: Derived Chief Lower central Upper central

C1 — C23×C14
C1C7C14C2×C14C22×C14 — C23×C14
C1 — C23×C14
C1 — C23×C14

Generators and relations for C23×C14
 G = < a,b,c,d | a2=b2=c2=d14=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >

Subgroups: 134, all normal (4 characteristic)
C1, C2 [×15], C22 [×35], C7, C23 [×15], C14 [×15], C24, C2×C14 [×35], C22×C14 [×15], C23×C14
Quotients: C1, C2 [×15], C22 [×35], C7, C23 [×15], C14 [×15], C24, C2×C14 [×35], C22×C14 [×15], C23×C14

Smallest permutation representation of C23×C14
Regular action on 112 points
Generators in S112
(1 67)(2 68)(3 69)(4 70)(5 57)(6 58)(7 59)(8 60)(9 61)(10 62)(11 63)(12 64)(13 65)(14 66)(15 84)(16 71)(17 72)(18 73)(19 74)(20 75)(21 76)(22 77)(23 78)(24 79)(25 80)(26 81)(27 82)(28 83)(29 98)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 39)(2 40)(3 41)(4 42)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 54)(16 55)(17 56)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(57 98)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 91)(65 92)(66 93)(67 94)(68 95)(69 96)(70 97)(71 111)(72 112)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(79 105)(80 106)(81 107)(82 108)(83 109)(84 110)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 44)(30 45)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 43)(57 74)(58 75)(59 76)(60 77)(61 78)(62 79)(63 80)(64 81)(65 82)(66 83)(67 84)(68 71)(69 72)(70 73)(85 101)(86 102)(87 103)(88 104)(89 105)(90 106)(91 107)(92 108)(93 109)(94 110)(95 111)(96 112)(97 99)(98 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,67)(2,68)(3,69)(4,70)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,84)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,98)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,39)(2,40)(3,41)(4,42)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,54)(16,55)(17,56)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(57,98)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,111)(72,112)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,109)(84,110), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,43)(57,74)(58,75)(59,76)(60,77)(61,78)(62,79)(63,80)(64,81)(65,82)(66,83)(67,84)(68,71)(69,72)(70,73)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(91,107)(92,108)(93,109)(94,110)(95,111)(96,112)(97,99)(98,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,67)(2,68)(3,69)(4,70)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,84)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,98)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,39)(2,40)(3,41)(4,42)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,54)(16,55)(17,56)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(57,98)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,111)(72,112)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,109)(84,110), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,43)(57,74)(58,75)(59,76)(60,77)(61,78)(62,79)(63,80)(64,81)(65,82)(66,83)(67,84)(68,71)(69,72)(70,73)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106)(91,107)(92,108)(93,109)(94,110)(95,111)(96,112)(97,99)(98,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([(1,67),(2,68),(3,69),(4,70),(5,57),(6,58),(7,59),(8,60),(9,61),(10,62),(11,63),(12,64),(13,65),(14,66),(15,84),(16,71),(17,72),(18,73),(19,74),(20,75),(21,76),(22,77),(23,78),(24,79),(25,80),(26,81),(27,82),(28,83),(29,98),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,39),(2,40),(3,41),(4,42),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,54),(16,55),(17,56),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(57,98),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,91),(65,92),(66,93),(67,94),(68,95),(69,96),(70,97),(71,111),(72,112),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(79,105),(80,106),(81,107),(82,108),(83,109),(84,110)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,44),(30,45),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,43),(57,74),(58,75),(59,76),(60,77),(61,78),(62,79),(63,80),(64,81),(65,82),(66,83),(67,84),(68,71),(69,72),(70,73),(85,101),(86,102),(87,103),(88,104),(89,105),(90,106),(91,107),(92,108),(93,109),(94,110),(95,111),(96,112),(97,99),(98,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)])

C23×C14 is a maximal subgroup of   C24⋊D7  C7⋊(C22⋊A4)

112 conjugacy classes

class 1 2A···2O7A···7F14A···14CL
order12···27···714···14
size11···11···11···1

112 irreducible representations

dim1111
type++
imageC1C2C7C14
kernelC23×C14C22×C14C24C23
# reps115690

Matrix representation of C23×C14 in GL4(𝔽29) generated by

28000
02800
0010
00028
,
1000
02800
00280
0001
,
28000
0100
0010
00028
,
25000
02800
00130
00013
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,28],[1,0,0,0,0,28,0,0,0,0,28,0,0,0,0,1],[28,0,0,0,0,1,0,0,0,0,1,0,0,0,0,28],[25,0,0,0,0,28,0,0,0,0,13,0,0,0,0,13] >;

C23×C14 in GAP, Magma, Sage, TeX

C_2^3\times C_{14}
% in TeX

G:=Group("C2^3xC14");
// GroupNames label

G:=SmallGroup(112,43);
// by ID

G=gap.SmallGroup(112,43);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^2=d^14=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽