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Introduction

I will discuss a number of results in number theory (Diophantine
equations or Diophantine geometry) all of the form

“What is the probability that a random equation of the
form . . . has a solution?”

I will of course be more precise what I mean by
I equation (there will be three families), by
I probability and random, and by
I solution.

All equations will be (possibly weighted) homogeneous, and we
will consider local solubility (over R or Qp) as well as global
solubility (over Q) or in some cases everywhere local solubility
(over all completions of Q).
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Equations A: quadrics in n variables

We consider quadratic forms Q(X1, . . . ,Xn) in n variables (“n-ary
quadrics”)

Q =
∑

1≤i≤j≤n

aijXiXj

given by N = n(n + 1)/2 homogeneous coefficients aij in a field
K, and seek solutions (zeros) in Pn−1. We call Q isotropic over
K if there is a solution in Pn−1(K).

We will consider this for K = R, for K = Qp (where we may
assume aij ∈ Zp by homogeneity) and for K = Q (with aij ∈ Z),
recalling that the Hasse principle holds for quadrics.
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Equations B: ternary cubics

Here we consider ternary cubic forms f (X,Y,Z) with 10
coefficients in K, and seek solutions (zeros) in P2(K).

Again, by homogeneity when K = Q or K = Qp we may assume
that the coefficients are integral.

Since there is no Hasse principle for plane cubics, over Q we
will only ask for everywhere local solubility. As solubility over R
is obviously automatic, this amounts to solubility over Qp for all
primes p.
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Equations C: elliptic quartics

We consider quartic (hyper)elliptic equations Z2 = f (X,Y) with f
a binary form of degree 4 over K, defined by 5 coefficients.

Again, over Q we only ask for everywhere local solubility;
solubility over R is now a non-trivial question.

We could more generally consider hyperelliptic curves of higher
genus, defined by similar equations for deg(f ) = 2g + 2; the odd
degree case is trivial since then the unique point at infinity is
K-rational. So far we have only partial results for g > 1, which
we will mention briefly towards the end.
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Local questions A: quadrics in n variables

(p) Local question at p: if the coefficients aij ∈ Zp are chosen at
random, what is the probability that Q is isotropic over Qp?

More precisely, what the the p-adic measure ρn(p) of the subset

{(aij) ∈ ZN
p | Q isotropic/Qp} ⊆ ZN

p

(or the density of soluble quadrics, since Zp has measure 1)?
We give an exact formula for ρn(p).

(∞) Local question over R: let D be a “nice” distribution on RN ,
that is, a piecewise smooth rapidly decaying function whose
integral over RN is 1. What is

ρD
n (∞) =

∫
Q∈RN ,isotropic/R

D(Q)dQ?
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Which real distributions for quadrics?

We will consider two distributions: the uniform distribution (U)
on [−1

2 ,
1
2 ]N , and the Gaussian Orthogonal Ensemble (GOE):

in the GOE, (aij) = 1√
2
(M + Mt) where the n2 entries of M are

i.i.d. Gaussians.
We can evaluate ρGOE

n (∞) exactly, but only have numerical
approximations for ρU

n (∞).
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Global questions A: quadrics in n variables

We will make precise what we mean by taking a random
integral quadratic form with respect to some distribution D on
RN , and asking for the probability that it is isotropic over Q or R
or Qp.

By the Hasse-Minkowski theorem we expect that the global
probability is the product for the local ones, but this needs to be
stated and proved carefully!

For K = R, Q or Qp define

ρD
n (K) = lim

X→∞

∑
Q∈ZN isotropic/K D(Q/X)∑

Q∈ZN D(Q/X)
.
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Results A: quadrics in n variables (1)

Theorem (A0)
ρD

n (R) = ρD
n (∞), and ρD

n (Qp) = ρn(p) (independent of D).

In words: the probability that a D-random integral quadratic
form is isotropic over R is the same as the probability that a
D-random real quadratic form is isotropic.
Similarly, the probability that a D-random integral quadratic
form is isotropic over Qp is the same as the probability that a
random quadratic form over Zp (with respect to the p-adic
measure on ZN

p ) is isotropic over Qp.

Theorem (A1)
ρD

n (Q) = ρD
n (∞)

∏
p ρn(p) = ρD

n (R)
∏

p ρ
D
n (Qp).

For D = U this follows from a result of Poonen and Voloch.
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Results A: quadrics in n variables (2)

Theorem (A2)
The probability ρn(p) that a random n-ary quadric over Zp is
isotropic over Qp is

n ρn(p)

1 0
2 1/2
3 1− p

2(p+1)2

4 1− p3

4(p+1)2(p4+p3+p2+p+1)
5 1

Our proof is uniform in p and n, and gives a new proof that all
quadrics in ≥ 5 variables are isotropic over Qp, as well as an
algorithm for deciding isotropy for n ≤ 4.
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Results A: quadrics in n variables (3)

Theorem (A3, joint also with J. Keating and N. Jones (Bristol))
The probability that a GOE-random n-ary quadric over R is
isotropic is

ρGOE
n (∞) = 1− Pf(S)

2(n−1)(n+4)/4
∏n

m=1 Γ(m/2)
,

where S is the skew-symmetric matrix of size 2dn/2e whose i, j
entry is{

2i+j−2Γ
(

i+j
2

)(
β 1

2
( i

2 ,
j
2)− β 1

2
( j

2 ,
i
2)
)

for i < j ≤ n

2i−1Γ
( i

2

)
for i < j = n + 1 (n odd)



Results A: quadrics in n variables (4)
Table of values of ρGOE

n (∞), the probability that a random real
quadratic form is isotropic:

n ρGOE
n (∞)

1 0 0
2 1

2

√
2 0.7071067811

3 1
2 +
√

2π−1 0.9501581580
4 1

2 + 1
8

√
2 + π−1 0.9950865814

5 3
4 + ( 2

3 + 1
12

√
2)π−1 0.9997197706

6 3
4 + 7

64

√
2 + ( 37

48 −
1
3

√
2)π−1 0.9999907596

7 7
8 + ( 47

120 + 109
480

√
2)π−1 − 32

45

√
2π−2 0.9999998239

. . . . . . . . .

n ∈ Q(
√

2)[π−1] ≈ 1



Results A: quadrics in n variables (5)
Corollary
If D=U or GOE then

ρD
n (Q) =


0 if n ≤ 3;

ρD
4 (∞)

∏
p

(
1− p3(p−1)

4(p+1)2(p5−1)

)
if n = 4;

ρD
n (∞) if n ≥ 5.

In particular,

ρGOE
4 (Q) =

(
1
2

+
1
8

√
2 +

1
π

)∏
p

(
1− p3(p− 1)

4(p + 1)2(p5 − 1)

)
≈ 0.983,

ρGOE
n (Q) = ρGOE

n (∞) > 0.999 for n ≥ 5, and ρGOE
n (Q) = 0 for

n ≤ 3.



Local questions B: ternary cubics

For plane cubics we can similarly define ρ(p) to be the
probability that a random (with respect to the p-adic measure
on Z10

p ) ternary cubic form over Zp has a Qp-rational point. We
will give a uniform formula for this for all primes p.

Instead of global solubility, we define ρ(Q) to be the probability
that a random integral ternary cubic has Qp-rational points for
all p.
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Local results B: plane cubics

Since for cubics real solubility is automatic, we do not need to
specify a distribution on the space R10.
As with quartics we find that the the probability of a random
integral ternary cubic (with respect to any nice distribution) has
a Qp-point is the same as ρ(p), the probability that a random
cubic over Zp has a Qp-point.
The Poonen-Voloch result mentioned above implies

Theorem (B1)
ρ(Q) =

∏
p ρ(p).

(recall that here ρ(Q) is the probability of everywhere local
solubility, not of global solubility).



Local results B: plane cubics (continued)

Theorem (B2)
For all primes p, the probability that a random plane cubic over
Qp has a Qp-rational point is

ρ(p) = 1− f (p)/g(p),

where

f (p) = p9 − p8 + p6 − p4 + p3 + p2 − 2p + 1,

g(p) = 3(p2 + 1)(p4 + 1)(p6 + p3 + 1).

Note that f (p)/g(p) ∼ 1/3p3, so ρ(p)→ 1 rapidly as p→∞:
ρ(2) = 0.98319, ρ(3) = 0.99259, ρ(5) = 0.99799, ρ(7) = 0.99918.



Local results B: plane cubics (concluded)

Corollary (B3)
A random integral plane cubic is everywhere locally soluble with
probability ρ(Q) =

∏
p (1− f (p)/g(p)) ≈ 0.97256.

Remark
It is unexpected that ρ(p) be given by a single rational function of p.
On general grounds it is expected, according to Denef and Loeser, to
be expressable as a rational function of the counts of Fp-points on a
finite number of Z-schemes. In our proof of Theorem B2, we treat all
primes uniformly throughout.

Remark
Corollary B3 is used in Manjul Bhargava’s result that a positive
proportion of plane cubics fail the Hasse principle.
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Local questions C: elliptic quartics
Here we define ρ(p) to be the probability that a random (with
respect to the p-adic measure on Z5

p) binary quartic form f (X,Y)

over Zp is soluble in the sense that the curve Z2 = f (X,Y) has a
Qp-rational point. We give a formula for all odd primes p which
needs adjustment at p = 2.

However, if we instead consider generalized binary quartics,
equations of the form Z2 + g(X,Y)Z = f (X,Y) with deg(g) = 2
and deg(f ) = 4, distributed over Z8

p, then we obtain a uniform
formula for all p (which agrees with the non-generalized formula
for odd p).

Again, instead of global solubility, we define ρ(Q) to be the
probability that a random integral binary quartic quartic has
Qp-rational points for all p and real points; here we need to
specify a distribution D on R5.
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Local results C: binary quartics (1)

Theorem (C1)
The density ρ(p) of binary quartic forms f (X,Y) ∈ Zp[X,Y] for
which the curve Z2 = f (X,Y) has a Qp-rational point is

ρ(p) =
F(p)

G(p)
=

8p10 + 8p9 − 4p8 + 2p6 + p5 − 2p4 + p3 − p2 − 8p− 5
8(p + 1)(p9 − 1)

for p ≥ 3, and

ρ(2) =
23087
24529

.

The density in Z8
p of pairs of forms f , g ∈ Zp[X,Y] of degree 4

and 2 for which the curve Z2 + g(X,Y)Z = f (X,Y) has a
Qp-rational point is ρ(p) (as above) for p ≥ 3 and for p = 2 is
ρ′(2) = F(2)/G(2) = 11887/12264.



Local results C: binary quartics (2)

Our proof of Theorem C1 works only with the case of
generalized binary quartics, and is completely uniform in p. At
the end we deduce the “non-generalized” version by computing
the proportion of generalized equations which can be put into
the simple form (which is 1 for odd p).

Over R we have not yet been able to derive an exact formula for
ρD(R), the probability that a random real quartic f is not
negative definite (so that Z2 = f (X,Y) has real solutions), for
some distribution D on the space of all real binary quartics. A
numerical approximation to this (for the uniform distribution) is
between 0.872 and 0.875. However, it may be that (as for
random real symmetric matrices) there is a better distribution to
use than the uniform one, for which an exact expression can be
obtained. Work in progress!
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Global results C: binary quartics

Theorem (C2)
When genus 1 curves of the form Z2 = f (X,Y), with f ∈ Z[X,Y]
homogeneous quartic, are ordered by the height of f , the
proportion which are everywhere locally soluble is

ρ(Q) = ρ(R) · 23087
24529

·
∏
p≥3

F(p)

G(p)
≈ 0.759.



Remarks on higher genus hyperelliptic curves

We only have partial results so far for higher genus curves,
given by equations Z2 = f (X,Y) where f is homogeneous of
degree 2g + 2:

I the local density ρg(p) is a rational function of p for all
p� 0.

I we have upper and lower bounds for ρg which are quite
close, and hope to deduce some limiting results as g→∞.

I an exact formula for ρ2(p) is within reach; for small primes
separate treatment is needed, since a smooth curve of
genus g > 1 over Fp need not have any Fp-rational points!
This does not happen when g = 1.



Remarks on higher genus hyperelliptic curves

We only have partial results so far for higher genus curves,
given by equations Z2 = f (X,Y) where f is homogeneous of
degree 2g + 2:

I the local density ρg(p) is a rational function of p for all
p� 0.

I we have upper and lower bounds for ρg which are quite
close, and hope to deduce some limiting results as g→∞.

I an exact formula for ρ2(p) is within reach; for small primes
separate treatment is needed, since a smooth curve of
genus g > 1 over Fp need not have any Fp-rational points!
This does not happen when g = 1.



Sketch of proof method (plane cubics) (1)

Let C ∈ Zp[X,Y,Z] be a cubic form; its reduction C ∈ Fp[X,Y,Z]
is one of p10 − 1 possible forms over Fp (or 0), and we divide
into cases, each of which must be counted precisely to give the
probability of being in that case.

I if C(Fp) has a smooth point, it lifts and C(Qp) 6= ∅;
I if C(Fp) = ∅, then C(Qp) = ∅;
I otherwise C(Fp) consists of one or more singular points,

and we “blow up” these in a recursive fashion.

The only configuration for which we can conclude that
C(Qp) = ∅ is when C is a product of 3 non-concurrent lines,
defined and conjugate over Fp3 .
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Sketch of proof method (plane cubics) (2)
The two configurations for which we must recurse are when C
is a product of 3 concurrent lines, defined and conjugate over
Fp3 , when the only Fp-point is the intersection, which is singular;
or a triple line C = L3 on which all Fp-points are singular.

For example, if C = L3, with loss C ≡ X3, so any primitive point
has X ≡ 0 (mod p), so we replace X by pX, divide by p and
continue, dividing into cases as before (but the counts are not
the same).

After a finite number of steps we always return to a
configuration seen before. This leads to a system of linear
equations for the probabilities, which have a unique solution.
All the counts and conditional probabilities are rational
functions of p (and all this generalises to unramified extensions
of Qp, simply replacing p by q in all formulae), and nowhere is
the specific value of p relevant.
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