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Diophantine Geometry: Abelian Case

The Hasse-Minkowski theorem says that
ax’+ by’ =c

has a solution in a number field F and only if it has a solution in F,
for all v.

There are straightforward algorithms for determining this. For
example, we need only check for v = oo and v|2abc, and there, a
solution exists if and only if

(a,b)v(b,c)v(c,a)v(c,—1), = 1.



Diophantine Geometry: Main Local-to-Global Problem

Locate )

X(F)c X(Ar) = [T X(F)

v

The question is
How do the global points sit inside the local points?

In fact, there is a classical answer of satisfactory sort for conic
equations.



Diophantine Geometry: Main Local-to-Global Problem

In that case, assume for simplicity that there is a rational point
(and that the points at infinity are rational), so that

X~ Gp.

Then
X(F)=F*, X(F,)=F,).

Problem becomes that of locating

F* C Af.



Diophantine Geometry: Abelian Class Field Theory

We have the Artin reciprocity map

Rec = H Rec, : A} —— G2°.

Here,
GE> = Gal(F**/F),

and
Fab

is the maximal abelian algebraic extension of F.



Diophantine Geometry: Abelian Class Field Theory

Artin's reciprocity law:

The map

= A; Rec ;?b

is zero.

That is, the reciprocity map gives a defining equation for G,(F).



Diophantine Geometry: Non-Abelian Reciprocity?

We would like to generalize this to other equations by way of a
non-abelian reciprocity law.

Start with a rather general variety X for which we would like to
understand

X(F)

NA
X(F) — X(AF) Rec’, ‘ some target with base-point 0

in such way that
RecM =0

becomes an equation for X(F).



Diophantine Geometry: Non-Abelian Reciprocity

To rephrase: we would like to construct class field theory with
coefficients in a general variety X generalizing CFT with
coefficients in G,

Will describe a version that works for smooth hyperbolic curves.



Diophantine Geometry: Non-Abelian Reciprocity

(Joint with Jonathan Pridham)
Notation:

F: number field.

GF = Gal(l-:/F)

G, = Gal(F,/F,) for a place v of F.

S: finite set of places of F.

Af: Adeles of F

AZ: S-integral adeles of F.

G2 = Gal(F3/F), where F* is the maximal extension of F
unramified outside S.



Diophantine Geometry: Non-Abelian Reciprocity

X: a smooth curve over F with genus at least two; b € X(F)
(sometimes tangential).

A =m(X,b):
Pro-finite étale fundamental group of X = X XSpec(F) Spec(F)
with base-point b.
Alnl
Lower central series with Alll = A
A, = A/AI
T, = Al Al



Diophantine Geometry: Non-Abelian Reciprocity

We then have a nilpotent class field theory with coefficients in X
made up of a filtration

X(Ar) = X(Ar)1 D X(AF)2 D X(AF)3 D -+
and a sequence of maps
Recy : X(Af)y — B,(X)
to a sequence &,(X) of profinite abelian groups in such a way that

X(AF)ny1 = Rec, }(0).



Diophantine Geometry: Non-Abelian Reciprocity

C X(Af)3= Rec; 1(0)C  X(AF)a= Rec; 1(0)C  X(Ar)1= X(AF)
Recs Rec, Recy

®3(X) ®2(X) &1(X)

Rec,, is defined not on all of X(Afg), but only on the kernel (the
inverse image of 0) of all the previous rec;.



Diophantine Geometry: Non-Abelian Reciprocity

The &,(X) are defined as
G,(X) =

Hom[Hl(GF, D(T,)),Q/Z]
where

D(T,) = ||_m> Hom( Ty, tim)-

When X = G, then &,(X) =0 for n > 2 and
®1 = Hom[H(GF, D(Z(1))),Q/Z]

= Hom[HY(GF,Q/7Z),Q/Z] = G2*.



Diophantine Geometry: Non-Abelian Reciprocity

The reciprocity maps are defined using the local period maps
J* X(Fy) — HY(Gy, B);
x = [m1(X; b, x)].
Because the homotopy classes of étale paths
7T1()_<; b, x)

form a torsor for A with compatible action of G,, we get a
corresponding class in non-abelian cohomology of G, with
coefficients in A.



Diophantine Geometry: Non-Abelian Reciprocity

These assemble to a map
j°: X(hp) — [ HY (G, D),
which comes in levels

e X(Ap) — [ HY(Gy, An).



Diophantine Geometry: Non-Abelian Reciprocity

The first reciprocity map is just defined using
x € X(AF) = di(j**(x)),
where

S S
loc”
di : [[H(Gv. &Y) — T] H(G,, D(AY))Y ==~

HY(GE, D(AT))",
is obtained from Tate duality and the dual of localization. One

needs first to work with a pro-M quotient for a finite set of primes

M and S D M. Then take a limit over S and then M.



Diophantine Geometry: Non-Abelian Reciprocity

To define the higher reciprocity maps, we use the exact sequences
0 — H(GE, TYl1) —= H3(GE, A1) — H;(GE,Ay)

On
5 HE(GFﬂ Tn+1)

for non-abelian cohomology with support and Poitou-Tate duality

dn+1 . HS(GE, ) HI(GF¢D( rll\-/ll—l))v‘



Diophantine Geometry: Non-Abelian Reciprocity

Essentially,
M -1 _
Recy 1 = dny10dpp10loc™ " o jp.

rloc S IOC 1
x € X(AF)ap1 == [ HY(Gv, AY) = Hioe((GE, AY)

n dn
% HZ(GR, Thty) =+ HY(GE, D(Ty1))".

At each stage, take a limit over S and M to get the reciprocity
maps.



Diophantine Geometry: Non-Abelian Reciprocity

Put
X(AF)oo = ﬂﬁ):IX(AF)n.

Theorem (Non-abelian reciprocity)

X(F) € X(AF)oo.



Diophantine Geometry: Non-Abelian Reciprocity

Remark: When F = Q and p is a prime of good reduction, suppose
there is a finite set T of places such that

HY(GE,Ap) — ] H'(G., A%)
veT

is injective. Then the reciprocity law implies finiteness of X(F).



Non-Abelian Reciprocity: idea of proof

X(F) X(4¢)
i I

|
HY(GE. AM) 25 TT HY(G., A

HI(GI§>AII:{I1-1

g

X(F) 2" HY(GE,aM,,



Non-Abelian Reciprocity: idea of proof

If x € X(AF) comes from a global point x& € X(F), then there will

be a class
JE(xE) € HL o (GE, AM)

for every n corresponding to the global torsor
7M(X; b, x8).
That is, j&(x8) = loc™*(j’¢(x)) and
Ont1(05 (x5)) = 0

for every n.



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Let
Pr, : X(Ag) — X(F,)

be the projection to the v-adic component of the adeles.

Define
X(F))n = Pro(X(AF)n).
Thus,
X(Fv) = X(Fv)l D) X(Fv)2 D) X(Fv)3 DR X(Fv)oo D) X(F)

Conjecture: Let X/Q be a projective smooth curve of genus at
least 2. Then for any prime p of good reduction, we have



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Can consider more generally integral points on affine hyperbolic X
as well.

Conjecture: Let X be an affine smooth curve with non-abelian
fundamental group and S a finite set of primes. Then for any prime
p ¢ S of good reduction, we have

X(Z[1/S]) = X(Zp)oo-

Should allow us to compute

X(Q) < X(Qp)

” X(Z[1/S]) € X(Z,).



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Whenever we have an element
kn € Hl(GT’ Hom(TrIJ\/IvQP(l)))y

we get a function

recn kn

X(Ag)s — HYGr,D(TM)Y —+ Q,

that kills X(Q) C X(Ag)n-

Need an explicit reciprocity law that describes the image

X(Qp)n-



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Computational approaches all rely on the theory of
U(X,b),

the Qp-pro-unipotent fundamental group of X with Galois action,
and the diagram

X(Q) X(Qy)
jE G

1 ~T loch 4 ~P DR /0
H¢ (Gg , Un) — H¢(Gp, Up) — U /F



A non-abelian conjecture of Birch and Swinnerton-Dyer type

The key point is that the map
X(Qp) 22+ UPR/FC
can be computed explicitly using iterated integrals, and

X(Q) € X(Qp)n € Uiy "M lIm(D o locf)].



A non-abelian conjecture of Birch and Swinnerton-Dyer type
Two more key facts:

1. As soon as D o loch has non-dense image, X(Qp), is finite. This
follows from analytic properties of Coleman functions and the fact
that j,,DR has dense image. That is, in this case,

Im(jPR)Y N Im(D o loc,) is finite.

X(Q)

HF(GJ , Un) X(Qp)

UER/FO



A non-abelian conjecture of Birch and Swinnerton-Dyer type

2. If APR denotes the coordinate ring of UPR/FC, then the
functions [j2R]*(ADR,) contains many elements algebraically
independent from [jPR]*(ADR).

Uty /F°

o
.?(\X

DR
X(Qp) 27v UPR/FO



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Predicted phenomena: At some point X(Qp), should be finite, and
then one should have a strongly increasing set of functions

[T ()
for m > n that vanish on X(Q).

This is implied, for example, by the Fontaine-Mazur conjecture on
geometric Galois representations, which implies

dim[UPR /FO] — dim[Im(D o locP)] — oo

as n grows.

Can prove this for curves X that have CM Jacobians (joint with J.
Coates).



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: Examples [Joint with Jennifer Balakrishnan, Ishai
Dan-Cohen, Stefan Wewers|

Let X =P\ {0,1,00}. Then X(Z) = ¢.
X(Zp)2 = {z | log(z) =0,log(1l — z) = 0}.

Must have z =, and 1 — z = (,;;, and hence, z = (5 or z = Ca_l-



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Thus, if p=3or p=2 mod 3, we have
X(Zp)2 = ¢ = X(2),

so the conjecture holds already at level 2.

When p=1 mod 3

X(Z)=¢ C {6, (") = X(Zp)2

and we must go to a higher level.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Let

Liz) =%

be the dilogarithm. Then
X(Zp)3 ={z | log(z) =0,log(1 —z) =0, Li(z) = 0}.
and the conjecture is true for X' (Z) if
Lir(Ce) # 0.

Can check this numerically for all 2 < p < 10°.



A non-abelian conjecture of Birch and Swinnerton-Dyer

type: examples

Let X = &£\ O where £ is a semi-stable elliptic curve of rank 0 and
[II(E)(p)| < oo

os(z) = [ (/)
(b is a tangential base-point.)
Then
X(Zy)s = {2 € X(Zp) | log(z) = 0} = £(Z,)[tor] \ O.

For small p, it happens frequently that
E(Z)[tor] = E(Zp)[tor]

and hence that
X(Z) = X(Zp)o.

But of course, this fails as p grows.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Must then examine the inclusion

X(Z) C X(Zp)s.

Let

Dy(2) = /b " (dx/y)(xdxy).



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Let S be the set of primes of bad reduction. For each / € S, let
N/ = Ol’d/(Ag),

where Ag is the minimal discriminant.
Define a set

Wi :=={(n(N; — n)/2N))log ! | 0 < n < N},

and for each w = (w))jes € W :=[],cs W, define

Iwll = w.

les



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Theorem
Suppose £ has rank zero and that Il1g[p>] < co. With
assumptions as above

X(Zp)3 = Unew V¥ (w),
where

W(w) == {z € X(Z,) |log(z) = 0, Da(z) = ||wl]}.

Of course,
X(Z) C X(Zp)3,

but depending on the reduction of £, the latter could be made up
of a large number of W(w), creating potential for some discrepancy.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

The curve
y? 4+ xy = x3 — x? — 1062x + 13590

has integral points

(19,-9), (19,-10).

We find
X(Z) ={z | log(z) =0,Ds(z) =0} = X(Zp)3

for all p such that 5 < p < 97.

Note that
D»(19,—-9) = D»(19,-10) =0

is already non-obvious. (A non-abelian reciprocity law.)



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

In fact, so far, we have checked
X(Z) = X(Zp)3

for the prime p = 5 and 256 semi-stable elliptic curves of rank zero.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Cremona label | number of ||w||-values
1122m1 128
1122m2 384
1122m4 84
125432 140
1302d2 96
1506a2 112
1806h1 120
2442h1 78
2442h2 84
2706d2 120
2082j1 160
298252 140
3054b1 108




A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Cremona label | number of ||w||-values
377411 120
4026g1 90
4134b1 90
4182h1 300
4218b1 96
4278j1 90
4278j2 100
4434cl 210
4774el 224
4774e2 192
4774e3 264
4774e4 308
4862d1 216




A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Hence, for example, for the curve 1122m2,
y? 4+ xy = x> — 41608x — 90515392

there are potentially 384 of the W(w)'s that make up X(Z;)s.

Of these, all but 4 end up being empty, while the points in those
W(w) consist exactly of the integral points

(752, —17800), (752, 17048), (2864, —154024), (2864, 151160).



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

X y?=x5—4ax*+3x2+1;
Ei:y?=x3—4x®>+3x+1;
Ey:y? =x34+3x2 —4x+1;

fi i X — Eq;

(x,y) = (x*,y);

fh: X — B

(x,y) = (1/x%,y/x%);



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

71 € E1(Q), z € E»(Q), generators for Mordell-Weil group.
h;, p-adic height on E;(Q).

log;, p-adic log on E;(Qp) with respect to suitable choice of
invariant differential form.

A, local p-adic height on Ej(Qp). Hence, given by log of p-adic
sigma function.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

Define p : X(Qp) — Qp by
p(z)
log3 (fi(2))
log?(21)

. log3(£(z) — (0,1)) + log3(f(z) + (0,1)))
2
|0€1(Z2)

=2M\1(A(2))-2

hi(z1)=X2(f2(2)=(0, 1)) =A2(f2(2)+(0, 1))

h2(22).
Then

X(Qp)s C {p(z) = log 2}U{p(z) = 2log 2}U{p(z) = (—1/3) log 2}



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

Get some nice explicit reciprocity laws like
p(0,£1) = log 2;

p(5/2,483/8) = 2log2;
p(1,£1) = (—1/3) log 2.



Non-abelian reciprocity: a brief comparison

Usual (Langlands) reciprocity:

where M is a motive and « is an algebraic automorphic
representation on GL,(Af).

The relevance to arithemic comes from conjectures that say
L(N* ® M) encodes
RHom(N, M).

So in some sense, L functions classify motives.

However, in classical (non-linear) Diophantine geometry, we are
interested in schemes, not motives, in particular, actual maps
between schemes. Hence, a need for a nonlinear reciprocity of some
sort.



Non-abelian reciprocity: a brief comparison

X/F as above, A,, T, =A"/A"! etc.

Langlands reciprocity

p € HY(Gr, GL(T1)) — functions on GL(HPR(F))\GL(HPR(X)(AF)).

1 reciprocity

k € H*(GF, T,) ~ functions on X(AF)

via functions on

Y(GF, U H HY(G,, U,)



