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Diophantine stability

refers to a project that Karl Rubin and | are currently working
on. One application of our work is the following
characterization of the projective line:

Let K be a number field and C a smooth projective algebraic
curve defined over K.Then C ~ P! (over K) +—

For every nontrivial field extension L/K, the curve C
acquires new rational points over L, i.e., C has
L-rational points that are not rational over any
proper subfield of L.
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sparce



Generally speaking, rational points seem to be
sparce

Let V' be an algebraic variety over a number field K.

Unless there is a clear underlying
structural mechanism for generating
many rational points in V, either V
will tend not to have that many
K-rational points, or ... perhaps
we're just not good at finding them.



Some tried-and-true methods of producing points

(1) Let V be a quadric in PV with a
K-rational point x.

For any line passing through x rational over
K, consider the “other” intersection point y
of that line with V.

This point y is K-rational. By sweeping
through K-rational lines one gets a profusion
of K-rational points from this process.



Curves of genus zero

This works brilliantly, for example for curves
of genus zero over K having a K-rational
point.

Because, by Riemann-Roch, such a curve can
always be represented as a plane conic over

K.



Algebraic Groups

(2) If V has an algebraic group structure
defined over K,

or for that matter, if V has any interesting
n-ary structure, n > 1,

you can try to generate new points from old.



Elliptic curves as algebraic groups

The group structure on an elliptic curve over

Ky

i.e., a curve of genus one over K endowed
with a base point (rational over K)

can be seen neatly via its representation,
thanks to Riemann-Roch, as a plane cubic

defined over K.



But, for curves of genus > 2. ..

A curve V is of genus > 2 defined over a
number field K has only finitely many
K-rational points. Faltings' famous theorem
(1983) proved this, with an effective (but
‘large’) upper bound for |V (K)|.

How large can V(K) actually be?



Current record-holders for genus 3 over K = Q.

Both Keller-Kulesz, and Noam Elkies are tied
for the record here, with (different) curves
that each have at least 176 rational points.
Here's Noam's:

Y2 = 5780865024 X% — 88857648000X " + 542817272736 X°—

—1616473139664.X° +2143113743265X* — 145305843468 X3 —
—2058755904906 X2 + 363486538980X + 1262256306129



Consequences of a conjecture of Serge Lang

Lucia Caporaso, Joe Harris and | showed (1997) that one of
Lang's conjectures about rational points on general type
varieties implies the following statement about rational points

on curves over number fields:

The N(g) conjecture: Let g > 2.
There is a finite number N(g) such
that for any number field K, there are
only finitely many smooth curves of
genus g over K with more than N(g)

K -rational points (77)



Rational points seem to be rare!

What are lower bounds for N(2), N(3),...7
current records:

Genya Zaytman: N(2) > 226;
Noam Elkies: N(3) > 100, held by the pencil
of quartics:

AZ4 = X* — XY3.



A relative notion:

Let L/K be a field extension, and
P(Xl,XQ, o ,Xn)

a polynomial with coefficients in K (or more
generally a system of such polynomials).



A relative notion:

Let L/K be a field extension, and
P(Xl,XQ, o ,Xn)

a polynomial with coefficients in K (or more
generally a system of such polynomials).

Say that the polynomial P is
diophantine-stable for the extension L/K
if P acquires no new zeroes over L.

or equivalently:



Diophantine Stability

Let V' be a variety defined over K.
Say that V is diophantine-stable
for the extension L/ K if



Diophantine Stability and instability phenomena
for elliptic curves for towers of number fields

p-cyclotomic towers:
Theorem of Rohrlich, Theorem of Kato

p-anti-cyclotomic towers:
Heegner points



Diophantine stability for curves of genus g > 2
relative to a fixed cyclic extension of degree ¢"

Fix g > 2, and consider a cyclic Galois extension L/K of
degree (".
The "N(g) Conjecture” implies:
For £ >, 0 (and all n > 1)
all but finitely many curves of genus g over K

are Diophantine Stable for L/K.
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degree ("
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(Joint with Karl Rubin—with an appendix by M.Larsen)
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Diophantine stability for a fixed curve of genus
g > 1 relative to varying cyclic extensions of
degree ("

Theorem
(Joint with Karl Rubin—with an appendix by M.Larsen)

Let X be an irreducible nonsingular projective curve of genus
> 0 defined over a number field K. Then

» there is a finite extension K'/K and a set of rational
primes S of positive density such that for any positive
integer n, and for all ¢ € S,

» there are infinitely many cyclic extension fields L/ K’ of
degree (" such that X(K') = X(L).
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Diophantine stability for (absolutely) simple
abelian varieties

Theorem
(Joint with Karl Rubin)

Let A be an absolutely simple abelian variety over a number

field K. Assume all endomorphisms of A are defined over K.
Then

» there is a set of rational primes S of positive density such
that for any positive integer n, and for all ¢ € S,

» there are infinitely many cyclic extension fields L/ K of
degree (" such that A(K) = A(L).



The menu

1. A typical further question

2. An application

3. Methods
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For any abelian variety A over a number field K, simple or not,
and for £ >4,k 0, and any positive integer n,
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A typical further question

For any abelian variety A over a number field K, simple or not,
and for £ >4,k 0, and any positive integer n,
is A diophantine stable for infinitely many cyclic extensions

L/K of degree ("7

(Or even for a set of cyclic extensions L/K of degree (" of
“density 1"7 )



Elliptic curves over Q

When A is an elliptic curve over Q can we replace £ > 0 in
the above question by ¢ > 57

Discuss computations of David-Fearnley-Kisilevsky of statistics
for L(E, x, 1) guided by random matrix heuristics.



Applications of diophantine stability results for
elliptic curves to Hilbert's Tenth Problem

To transport diophantine undecidability from the ring of
integers of one field K to the ring of integers of a larger field L
one uses the existence of elliptic curves that

» possess rational points of infinite order over the smaller
field K, and

» are diophantine-stable for the extension L/K.

A Bootstrap Method



A Bootstrap Method

Starting with the classical work of Matiyasevich:

There is no finite algorithm to determine whether polynomials
with coefficients in the ring A = Z have solutions in A,

try to work your way up towers of number fields, to
“transport” the same negative result for A = the rings of
integers in those number fields.



Transporting diophantine definitions of rings of
Integers

(Using work of Cornelissen-Pheidas-Zahidi, Poonen,
Shlapentokh, Eisentrager.)

Let K C L be number fields. If there exists an elliptic curve E
over K having (@) infinitely many rational points over K
and

(b) the diophantine-stability property for the extension L/K:

E(K) = E(L),



Transporting negative solutions to Hilbert's Tenth
Problem

then there exists a a diophantine definition of Ok in O,.
In particular, if Hilbert's Tenth Problem has a negative answer
for Ok it also has a negative answer for O;.



Finitely generated commutative rings

Using this work, and diophantine stability results, Karl Rubin
and | showed:

Corollary 1: Conditional on the 2-primary part of the
Shafarevich-Tate Conjecture, Hilbert's Tenth problem has a
negative answer for any commutative ring A that is of infinite
cardinality, and is finitely generated over Z.



Uncountably many fields of algebraic numbers

and combining our results with those of Alexandra
Shlapentokh we showed (unconditionally):

Corollary 2: Let p be any prime number (or c0).

There are uncountably many subfields K of the field of
algebraic numbers in Q, in which:

there is a *first order definition* of Z in K.

(The first-order theory for any such field K—and for its ring of
algebraic numbers—is undecidable.)



The Method
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The Method

Selmer groups in the relative context
Let

» ( be a rational prime,

» A be a simple abelian variety over a number field K such
that all of its endomorphisms are defined over K,

» ) a prime ideal dividing ¢ in the center of the ring of
endomorphisms of A,

» L/K any cyclic extension of ¢-power order,



The Selmer group relative to L/K

We define a subgroup of the cohomology group H*(K, A[\])
by imposing certain 'local conditions’ on cohomology classes in
HY(K, A[\]).

These ‘local conditions’ are related to the specific extension

L/K but are all imposed on this same cohomology group:
HY(K, A[N]).

Sely(A; L/K) C HY(K, A[\])
| |

finite dimensional infinite dimensional



Relative Selmer giving a criterion implying
Diophantine Stability

Let A be an abelian variety over K. Then:

For £ > 0, and X a prime above 7 in the field of fractions of
the center of the endomorphism ring of A, then:

S\(A; L/K) = 0 implies that A is diophantine-stable for the
extension L/K.



Dirichlet characters and cyclic extensions

A Dirichlet character over K of order ¢ cuts out a cyclic
extension L/K of degree ¢". We will keep our eye on the
Relative Selmer group as it changes as we move from one
cyclic extension, L/K, of degree ¢" to sequence of other cyclic
extensions. We make our moves by suitably multiplying the
character x that cuts out L/K by an appropriate product of
local characters to obtain these other cyclic extensions:

Li/K, LK, L3/K ...

We keep track of the changes in the ‘local conditions’ that
define the relative Selmer groups as we pass from one cyclic
extension L/K to another.



The fundamental glue

For any cyclic extension L/K of degree £", the relative Selmer
group lies in the same

HY(K, AN,

l.e., the ambient Galois cohomology group is independent of
the extension L/K,



The fundamental glue

For any cyclic extension L/K of degree £", the relative Selmer
group lies in the same

HY(K, AN,

l.e., the ambient Galois cohomology group is independent of
the extension L/K,

but the twisted Selmer subgroup is defined by local conditions
that are specifically related to the extension L/K.



Negotiating smaller Selmer rank

The method, at this point, is to start with one cyclic extension
Ly/K and modify the character xq cutting it out so as to
change the local conditions (sequentially) in a way that defines
a sequence of cyclic extension L;/K whose relative Selmer
groups have smaller and smaller dimensions (over Fy).
Ultimately, we want to get a profusion of such L/K's with
trivial relative Selmer groups.



silent primes and critical primes

There is a fundamental—but easy to describe—requirement
for this technique to work:



silent primes and critical primes

There is a fundamental—but easy to describe—requirement
for this technique to work:

the existence ( for £ > 0) of what we call critical elements
and silent elements in the Galois group Gal(K/K) relative to
its action on A[)].

Discuss.



Work of Faltings, Serre, Nori, Pink, Larsen

Theorem: (M. Larsen) Let A be an absolutely simple abelian
variety over a number field K. Assume the endomorphism ring
of A (over C) is defined over K. Let R := End(A).



There exists a positive density set of primes ¢ for which for X a
place of the center of R above £ has the property that
Gal(K/K) contains:

1. “Silent elements”: there exist elements
8o € Gal(K/K?") possessing no nontrivial fixed vectors in
their action on A[\]; and

2. “Critical elements”: there exist elements
g1 € Gal(K/K?") such that the fixed subspace of the
action of g3 on A[)] is a nontrivial simple R-module.



Existence of critical elements, given the existence
of silent elements

Proposition (M. Larsen)

For every positive integer n, there exists a positive integer N
such that if £ is a prime congruent to 1 (mod N), G is a
simply connected, split semisimple algebraic group over F,
and p: G(F;) — GL,(F,) is an almost faithful absolutely
irreducible representation such that (F})#(&) = (0) for some
go € G(F;), then there exists g1 € G(F;) such that

dim(F})r(e) = 1.

(Often one finds the appropriate element gj in the image of a
principal homomorphism of SL; into G.)



Remarks on the existence of silent elements

This uses the work of Richard Pink on classification of Galois
actions related to weak Mumford-Tate types with weights 0, 1.



A Corollary:

Let p > 23 and p # 37;43;67;163. Then uncountably many
subfields F in Q2 have the property that no elliptic curve
defined over F possesses an F-rational subgroup of order p.



