
SELMER GROUPS AND DESCENT

MICHAEL STOLL

In these lectures we will discuss Selmer sets and Selmer groups, how to use them to get
information on rational points and how to compute them in practice in certain cases.

1. Selmer sets

In the following, we work over a fixed number field k with algebraic closure k̄. We consider
a nice variety X over k, i.e., X is smooth, projective and geometrically irreducible. Our
goal is to get some information on its set of k-rational points, X(k).

The first question is whether there are any k-rational points on X at all. One easy way
of showing that X(k) is empty is to look at a larger set and show that the larger set is
empty. In number theory, the larger sets people like to look at come from considering the
various completions of k. So let v be a place of k and kv the completion of k at v. Since
k ⊂ kv, we have X(k) ⊂ X(kv).

Theorem 1.1. Assume that k and X are explicitly given by equations. Then the state-
ment “∀v : X(kv) 6= ∅” is decidable.

Proof. Here is a rough sketch. First one uses bounds for the number of points on varieties
over finite fields and Hensel’s Lemma to show that X(kv) 6= ∅ for all but a finite set of
places v that can be effectively bounded (infinite places, places of bad reduction, “small”
finite places). Then one shows that for a single place v, checking whether there are kv-
points is a finite computation (this is basically quantifier elimination for infinite places
and Hensel’s Lemma again for finite places). �

Definition 1.2. If X(kv) 6= ∅ for all places v of k, then we say that X has points
everywhere locally or is everywhere locally soluble (or ELS for short).

For certain classes of varieties, “X(k) 6= ∅” is equivalent to “X has points everywhere
locally”. One says that the Hasse Principle holds for such X. The most well-known
examples are quadric hypersurfaces (the original Hasse-Minkowski theorem). For curves
of genus g ≥ 1, the Hasse Principle breaks down, however.

So what can we do when X(k) appears to be empty (we are unable to find any k-rational
points despite a lot of effort), but X is ELS?

One possibility is to consider a finite étale covering π : Y → X defined over k that is
geometrically Galois (meaning that the extension k̄(Y )/k̄(X) is Galois). Let G(k̄) denote
the geometric Galois group of the covering; this is the group of k̄-points on a finite group
scheme G over k; this group scheme structure is determined by the action of the absolute
Galois group of k on the automorphisms of the covering.
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Definition 1.3. A twist of π : Y → X is another finite étale covering π′ : Y ′ → X defined
over k, such that both coverings become isomorphic over k̄. This means that there is an

isomorphism ϕ : Y ′
k̄

'→ Yk̄ such that the obvious diagram commutes, i.e., πk̄ ◦ ϕ = π′
k̄
.

Two twists π′ : Y ′ → X and π′′ : Y ′′ → X of π are isomorphic if there is an isomorphism
ϕ as above, but already defined over k. We write Twist(π) (or Twist(Y → X) if π is
clear from the context) for the set of isomorphism classes of twists of π.

What is the relation to rational points? Here is an important fact.

Theorem 1.4. Let π : Y → X be as above and let P ∈ X(k) be a k-rational point. Then
there is a unique twist π′ : Y ′ → X of π (up to isomorphism) such that P ∈ π′(Y ′(k)).
In particular,

X(k) =
∐

(π′ : Y ′→X)∈Twist(π)

π′(Y ′(k)) .

Before we sketch how to prove this, let us try to figure out how to parameterise the
set Twist(π) for an étale covering π : Y → X. Let π′ : Y ′ → X be a twist of π. Then
there is an isomorphism ϕ : Y ′

k̄
→ Yk̄ satisfying πk̄ ◦ ϕ = π′

k̄
. If Y ′ → X is isomorphic to

Y → X, then there is such an isomorphism over k. So we can measure in a way how
far the given twist is from being trivial (meaning, isomorphic to Y → X) by considering
the action of the absolute Galois group Γk of k on ϕ. So let σ ∈ Γk; then σϕ is another
isomorphism Y ′

k̄
→ Yk̄ (defined to send σP to σ(ϕ(P ))), with πk̄ ◦ σϕ = π′

k̄
, and so σϕ◦ϕ−1

is a deck transformation of πk̄, which means that σϕ ◦ ϕ−1 ∈ G(k̄). This gives us a map
ξ : Γk → G(k̄). Note that

στϕ ◦ ϕ−1 = σ(τϕ ◦ ϕ−1) ◦ (σϕ ◦ ϕ−1) ,

i.e., ξστ = σξτξσ.

We can replace ϕ by γ ◦ ϕ for any γ ∈ G(k̄); we have
σ(γ ◦ ϕ) ◦ (γ ◦ ϕ)−1 = σγ ◦ (σϕ ◦ ϕ−1) ◦ γ−1 .

This shows that two cocycles ξ and ξ′ describe the same twist (up to isomorphism) if and
only if there is γ ∈ G(k̄) such that ξ′σ = σγξσγ

−1 for all σ ∈ Γk.

Definition 1.5.

(1) A map ξ : Γk → G(k̄) such that ξστ = σξτξσ for all σ, τ ∈ Γk is called a 1-cocycle with
values in G; the set of all such maps is denoted Z1(k,G).

(2) Two cocycles ξ, ξ′ ∈ Z1(k,G) such that there is some γ ∈ G(k̄) with ξ′σ = σγξσγ
−1

for all σ ∈ Γk are cohomologous ; this is an equivalence relation on Z1(k,G).
(3) The quotient set of Z1(k,G) by this equivalence relation is the first Galois cohomology

set with values in G, denoted H1(k,G).

So we get an injective map Twist(π)→ H1(k,G). The map is actually bijective: given a
1-cocycle ξ with values in G, one can construct a suitable twist (one “twists” the Galois
action on Y (k̄) by ξ to construct Y ′; more precisely, we define the new action by σ ∈ Γk
to be σ · P = ξ−1

σ (σP )), so H1(k,G) classifies the twists of π.

In general, H1(k,G) is just a pointed set (a set with a distinguished element, which in this
case is the class of the trivial cocycle σ → 1G, corresponding to π itself). If G is abelian,
however, it is easy to see that Z1(k,G) is actually an abelian group as well; also, the set
of 1-cocycles that are cohomologous to the trivial cocycle form a subgroup B1(k,G) (of
“1-coboundaries”), and two cocycles are cohomologous if and only if they are in the same
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coset. So for abelian G, we can write H1(k,G) = Z1(k,G)/B1(k,G), and H1(k,G) is an
abelian group.

Proof of Theorem 1.4. Let P ∈ X(k). Fix any point Q ∈ Y (k̄) with π(Q) = P . For
σ ∈ Γk we define ξσ ∈ G(k̄) to be the unique deck transformation that sends Q to σQ.
Then ξ is a 1-cocycle (note that the effect of σξτξσ on Q is to send it first to σQ and then
to στQ), and we let π′ : Y ′ → X be the corresponding twist. This twist is constructed
in such a way that Q ∈ Y ′(k̄) = Y (k̄) is fixed by the Galois action, so Q ∈ Y ′(k).
Conversely, if π′′ : Y ′′ → X is another twist lifting P to a k-rational point Q′ on Y ′′, then
there is a unique isomorphism ϕ (over k̄) of coverings between Y ′′ and Y ′ sending Q′

to Q. The uniqueness together with the fact that ϕ sends one k-rational point to another
k-rational point imply that ϕ is already defined over k and hence that the two twists are
isomorphic. �

The statement of the theorem remains valid for ramified (but still geometrically Galois)
coverings, as long as we stay away from the branch points. (The existence statement still
holds there, but uniqueness fails.)

Theorem 1.4 provides us with a map X(k)→ Twist(π) = H1(k,G).

So if we get some control on the twists (and their rational points), then we may get
information on X(k) as well. For example, if we could show that for every twist Y ′ → X,
the set Y ′(k) is actually empty, then it would follow that X(k) = ∅ as well. One way of
doing this is to check if Y ′ is ELS. So we make the following definition.

Definition 1.6. Let π : Y → X be as above. We define the π-Selmer set of X to be the
subset Selπ(X) of Twist(π) consisting of twists Y ′ → X such that Y ′ is ELS.

Corollary 1.7. If Selπ(X) is empty, then X(k) = ∅.

Now here is another important fact.

Theorem 1.8. The Selmer set Selπ(X) is finite. If π is given explicitly, then the Selmer
set is effectively computable (at least in principle).

Proof. For all but finitely many places v of k, both X and Y will have good reduction,
and the reduction of π will still be étale. This implies that the fibre above a point
in X(kv) will consist of points defined over an unramified extension of kv. Now assume
that the twist Y ′ has a kv-point Q. Then its image π′(Q) is a kv-point P on X, and the
fibre above P in Y consists of unramified points. If kunr

v denotes the maximal unramified
extension of kv, then the fibres above P in both Y and Y ′ consist entirely of kunr

v -points.
This implies that Y and Y ′ are isomorphic over kunr

v , i.e., the cocycle class in H1(k,G)
corresponding to π′ maps to the trivial element of H1(kunr

v , G) under the canonical map
(which is restriction of cocycles or base change to kunr

v , depending on the interpretation).
If S is the finite set of places that are either infinite or such that X, Y or π has bad
reduction, then the cocycle classes corresponding to twists with Y ′ ELS are contained in

H1(k,G;S) = {ξ ∈ H1(k,G) : ∀v /∈ S : ρv(ξ) = 0} ,
where ρv : H1(k,G) → H1(kunr

v , G) is the map mentioned above and we have used 0
to denote the trivial element of H1(K,G) for any field extension K of k. It is now a
fundamental fact that the set H1(k,G;S) is finite. (This comes down to the statement
that there are only finitely many extensions of k of bounded degree that are unramified
outside S.)
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We will see how Selmer sets can be computed in some special cases later in this lecture
series. �

Note that for Theorem 1.8 it is essential that the covering is étale! The statement is false
when π is ramified.

See [Sto07] for a detailed discussion of “descent obstructions” related to Selmer sets.

Exercises. Exercise (1) is quite instructive, but I would recommend doing Exercises (2)
and (3) if your time is limited. The first part of Exercise (4) can be done by hand, but
the second part will require the use of Magma or SAGE (or a similar system) and some
experience with working with such a system.

(1) Work out an explicit proof of Theorem 1.1 in the case when X is a hyperelliptic curve,
i.e., X is the smooth projective model of an affine plane curve of the form y2 = f(x),
where f ∈ k[x] is squarefree.

(2) Let f1, f2 ∈ Z[x] with f1 of even degree. We take k = Q. Let X be the nice curve
associated to y2 = f1(x)f2(x) and let Y be the nice curve associated to y2

1 = f1(x),
y2

2 = f2(x). Show that π : (x, y1, y2) 7→ (x, y1y2) defines an étale double cover Y → X.
Show that Twist(π) is in bijection with the set of squarefree integers, with an integer d
corresponding to Yd : dy2

1 = f1(x), dy2
2 = f2(x) and πd : (x, y1, y2) 7→ (x, dy1y2).

(3) Continuing the previous exercise, show that Yd is not ELS if d is divisible by a prime p
that does not divide the resultant of f1 and f2 (or the leading coefficient of f1 when
f2 has odd degree).

(4) [Computational] Check that X : y2 = (−x2 − x + 1)(x4 + x3 + x2 + x + 2) is ELS,
but its Selmer set with respect to the double cover constructed as in Exercise (2) is
empty. Try to produce more examples of hyperelliptic curves X : y2 = f(x) over Q
with these properties!.

2. Selmer groups

We now consider the case whenX is a group variety. Since we assume thatX is projective,
this means that X is an abelian variety. We therefore write A instead of X in this section.

If A is an abelian variety over k, then there exist natural finite étale coverings of A
coming from the structure of A as an abelian group: for each positive integer n, there is
the multiplication-by-n map A

·n→ A. This covering is geometrically Galois, with Galois
group scheme A[n], the n-torsion subgroup of A, acting by translations. Twists of the
multiplication-by-n map are called n-coverings of A. In this case, the corresponding
Selmer set is actually an abelian group, the n-Selmer group Sel(n)(A) of A.

We remark that these coverings are basically the whole story in this case: any finite étale
covering of A will (at least geometrically) be a morphism B → A of abelian varieties,
surjective with finite fibres. Up to a translation on the target (which corresponds to
a twist), this is an isogeny. Precomposing with the dual isogeny A → B, we obtain a
multiplication-by-n map that (up to twist) factors through the original covering, and so
provides at least the same information.

This is related to the fact that the multiplication-by-n map fits into an exact sequence
of k-Galois modules:

0 −→ A[n](k̄) −→ A(k̄)
·n−→ A(k̄) −→ 0 ,
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which induces an exact sequence in Galois cohomology

0 −→ A[n](k) −→ A(k)
·n−→ A(k)

δ−→ H1(k,A[n]) −→ H1(k,A)
·n−→ H1(k,A)

giving rise to a short exact sequence

0 −→ A(k)

nA(k)
−→ H1(k,A[n]) −→ H1(k,A)[n] −→ 0 .

The middle group H1(k,A[n]) classifies the twists of the multiplication-by-n map; a twist
has k-rational points if and only if it is in the image of A(k): the map δ : A(k) →
H1(k,A[n]) maps a point P ∈ A(k) to the n-covering A → A, Q 7→ nQ + P , which
is the n-covering lifting the point P . (By definition, δ(P ) is the class of the cocycle
σ 7→ σQ − Q for any point Q ∈ A(k̄) such that nQ = P . Under the twisted action, we
have σ · Q = ξ−1

σ (σQ) = σQ − (σQ − Q) = Q, so that Q becomes a k-rational point on
the corresponding twist, hence P lifts to a k-rational point on this twist.) Conversely, if
an n-covering has a k-rational point Q, then it lifts some k-point of A, namely the image
of Q.

The same argument works over any field of characteristic not dividing n; in particular,
we can use it over kv for each place v of k. Considering all places simultaneously, we
obtain a commutative diagram with exact rows:

0 // A(k)

nA(k)

��

// H1(k,A[n])

��

//

α

&&

H1(k,A)[n]

ρ

��

// 0

0 //
∏
v

A(kv)

nA(kv)
//
∏
v

H1(kv, A[n]) //
∏
v

H1(kv, A)[n] // 0

The n-Selmer group consists of those twists that have points everywhere locally, which
translates into the subgroup of H1(k,A[n]) consisting of those elements whose image
under the vertical map is contained in the image of the horizontal map into the product
of the H1(kv, A[n])’s. This is equivalent to the statement

Sel(n)(A) = kerα .

Definition 2.1. We define the Shafarevich-Tate group of A to be

X(A) = ker
(
H1(k,A) −→

∏
v

H1(kv, A)
)
.

We then have that ker ρ =X(A)[n], and we obtain the short exact sequence

0 −→ A(k)

nA(k)
−→ Sel(n)(A) −→X(A)[n] −→ 0 .

The Shafarevich-Tate group has a geometric interpretation: its elements correspond to
the principal homogeneous spaces X for A over k that are ELS, up to k-isomorphism.
Every n-covering of A is a principal homogeneous space for A in a natural and unique
way; the map H1(k,A[n]) → H1(k,A) and its restriction Sel(n)(A) → X(A)[n] is in
this interpretation just the forgetful map that forgets the n-covering structure and only
retains the principal homogeneous space structure.

Now we have the following well-known result due to Mordell (for elliptic curves over Q;
[Mor22]) and Weil (in full generality; [Wei29]).
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Theorem 2.2. If A is an abelian variety over a number field k, then the group A(k) of
k-rational points on A is a finitely generated abelian group.

In fact, the finiteness of the Selmer group (for any n ≥ 2; see Theorem 1.8) is an important
ingredient in the proof, since it shows that A(k)/nA(k) is finite (“weak Mordell-Weil
Theorem”), which is a necessary condition for A(k) to be finitely generated. (The other
important ingredient is the theory of heights.) Compare Adam Morgan’s first lecture.

By the classification theorem for finitely generated abelian groups, we can therefore write
A(k) ' A(k)tors ⊕ Zr, where A(k)tors ⊂ A(k) is the finite torsion subgroup of A(k) and r
is a nonnegative integer, the rank of A(k). So we obtain an embedding

A(k)tors

nA(k)tors

⊕
( Z
nZ

)r
↪→ Sel(n)(A) .

In particular, the size of the n-Selmer group (for n ≥ 2) gives us an upper bound on the
rank r. (If we know A(k)tors/nA(k)tors, which is often easy to figure out, then the bound
has a chance to be sharp). The n-torsion ofX(A) measures how far this upper bound is
from the truth.

There is the following important conjecture.

Conjecture 2.3. The Shafarevich-Tate group X(A) is finite.

Note that the finiteness of the Selmer groups together with the exact sequence above show
that for all n, the n-torsion subgroup of X(A) is finite. It is also known that H1(k,A)
and therefore its subgroupX(A) is a torsion group, i.e., all its elements have finite order.
The conjecture is wide open in general; it is known for elliptic curves over Q of analytic
rank 0 or 1 (a famous result due to Kolyvagin) and, more generally, for certain “modular”
abelian varieties over Q with a similar restriction on the analytic rank (due to Kolyvagin
and Logachëv).

Assuming Conjecture 2.3, we obtain an algorithm for determining the rank r of A(k):

By day, compute Sel(p)(A) for successive prime numbers p and set

R(p) = min{dimFq Sel(q)(A) : q ≤ p} ;

this is an upper bound for r.

By night, search for points in A(k) up to increasing height h and set r(h) to be the rank
of the subgroup generated by the points found up to this height; this is a lower bound
for r. The conjecture guarantees that after finitely many days and nights we will have
that r(h) = R(p); this number is the rank.

In practice (at least when dimA ≥ 2), we often can compute only one Selmer group; we
then hope that the relevant torsion ofX vanishes, so that the upper bound on the rank
we can deduce gives the actual rank. We then need to find sufficiently many independent
points in A(k) to actually reach this bound. This is the standard way of determining the
rank unconditionally (or sometimes conditional on the Generalised Riemann Hypothesis
to make certain number field computations feasible), and it often works.

If we can compute several Selmer groups (for example, when A is an elliptic curve over Q
and the coefficients in its defining equation are reasonably small), then we can also obtain
information on X. For example, if we know that A(k)tors is trivial, we know one non-

trivial point in A(k), and we can show that dimF2 Sel(2)(A) = 3 and dimF3 Sel(3)(A) = 1,
then we can conclude that A(k) ' Z and thatX(A)[2] ' (Z/2Z)2 andX(A)[3] = 0.
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For computational purposes, the following facts are relevant.

Proposition 2.4. Let A be an abelian variety over k and let p be a prime number.

(1) Let v be a finite place of k. Then

dimFp

A(kv)

pA(kv)
= dimFp A(kv)[p] +

{
[kv : Qp] dimA if v is above p,

0 else.

If v is an infinite place of k and p is odd or v is complex, then A(kv)/pA(kv) = 0. If
v is real, then

dimF2

A(kv)

2A(kv)
= dimF2 A(kv)[2]− dimA .

(2) If v is a finite place of k such that v - p and such that A has good reduction at v, then
the image of A(kv) in H1(kv, A[p]) is exactly the unramified subgroup, i.e., the kernel
of H1(kv, A[p])→ H1(kunr

v , A[p]).
(3) Let S be the set of places above p and the places of bad reduction for A, together with

the real infinite places of k when p = 2 (then S is finite). Then

Sel(p)(A) = {ξ ∈ H1(k,A[p];S) : ∀v ∈ S : resv(ξ) ∈ im(δv)} ,
where δv : A(kv)→ H1(kv, A[p]) and resv : H1(k,A[p])→ H1(kv, A[p]) are the canon-
ical maps.

The last statement reduces the computation of Sel(p)(A) to that of (a suitable repre-
sentation of) H1(k,A[p];S) together with the determination of the image of δv for the
finitely many places in S. Since the first statement tells us how large the image is, we
can just find the images of (randomly or systematically generated) points in A(kv) until
these images generate a subspace of the correct dimension. Assuming that we have a
computable description of the maps resv, this reduces the task to linear algebra over Fp.

Proof.

(1) First assume that v is finite, of residue characteristic q. We use the fact that A(kv)

contains a finite-index subgroup isomorphic to Z[kv :Qq ] dimA
q . Consider the Snake

Lemma diagram

0 // Z[kv :Qq ] dimA
q

//

·p
��

A(kv) //

·p
��

T //

·p
��

0

0 // Z[kv :Qq ] dimA
q

// A(kv) // T // 0

(where T is the finite quotient). We obtain an exact sequence of Fp-vector spaces

0 −→ A(kv)[p] −→ T [p] −→
( Zq
pZq

)[kv :Qq ] dimA

−→ A(kv)

pA(kv)
−→ T

pT
−→ 0 .

This gives us (taking into account that dimT [p] = dimT/pT )

dim
A(kv)

pA(kv)
= dimA(kv)[p] + [kv : Qq](dimA) dim

Zq
pZq

.

If v - p, then Zq/pZq = 0, and we obtain the desired result. If v | p, then Zq/pZq ' Fp,
and we get the stated correction term.

If v is a complex infinite place, then the multiplication-by-pmap is surjective on A(kv).
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The same is true for real places when p is odd, since the preimage of any kv-point
has an odd number of geometric points, so at least one point must be real. In the
case v real and p = 2, we use that A(kv) has a finite-index subgroup isomorphic to
(R/Z)dimA. We then use the Snake Lemma in a similar way as before.

(2) This follows from (1) and the fact that the dimension of the unramified subgroup
is also dimA(kv)[p], together with the statement already used earlier that under
the assumptions made the image of δv is contained in the unramified subgroup
of H1(kv, A[p]).

(3) Statement (2) implies that

H1(k,A[p];S) = {ξ ∈ H1(k,A[p]) : ∀v /∈ S : resv(ξ) ∈ im(δv)} .

So to get the Selmer group, we just have to impose the remaining conditions at the
places v ∈ S. �

Exercises. Exercise (5) is a standard fact on Selmer groups. Exercise (6) is perhaps
more interesting, since it provides a possible way how one can improve the upper bound
on the rank obtained from a Selmer group computation.

(5) Let A be an abelian variety over k and let m and n be two coprime integers ≥ 1.
Show that

Sel(mn)(A) ' Sel(m)(A)⊕ Sel(n)(A) .

(This means that it is usually sufficient to restrict n to be a prime power.)

(6) It is well possible that the upper bound on the rank obtained from a Selmer group is
not tight. Assume that A = E is an elliptic curve y2 = f(x) over Q. Let d 6= 1 be a
squarefree integer; then we can define the quadratic twist of E by d to be the elliptic
curve E(d) : y2 = df(x). It is known that

rankE(Q) + rankE(d)(Q) = rankE(Q(
√
d)) .

Assume also that you can compute the 2-Selmer groups of E over Q and over Q(
√
d),

and that you know the rank of E(d)(Q). How could you (in favourable circumstances)
deduce a better upper bound for rankE(Q) from this information?

(This works in the same way for Jacobians of hyperelliptic curves.)

3. Selmer groups of elliptic curves

Let A be an abelian variety over k and fix a prime number p. Recall the description of
the p-Selmer group from the last lecture:

Sel(p)(A) = {ξ ∈ H1(k,A[p];S) : ∀v ∈ S : resv(ξ) ∈ im(δv)} ,

where S is the set of places of k containing the places dividing p, the places of bad
reduction for A and, if p = 2, the real infinite places of k. So if we want to compute this
p-Selmer group, we have to do several things:

1. We need a sufficiently explicit representation of H1(k,A[p]) and of H1(kv, A[p]) to-
gether with the maps resv.

2. We have to be able to determine the finite subgroup H1(k,A[p];S) of H1(k,A[p]).
3. We need an explicit way of evaluating the maps δv on points of A(kv) (in terms of the

representation of H1(kv, A[p])).
8



In this section, we will look at the case when A = E is an elliptic curve, which we will
assume to be given by a Weierstrass equation y2 = f(x) with f ∈ Ok[x], where Ok is
the ring of integers of k. We will consider the case p = 2 first. The elements of E[2] are
the origin O of the group law on E (which is the point at infinity in the given model)
together with the three points (θ, 0) with θ a root of f . The action of Γk on E[2] fixes O
and permutes the three nontrivial elements in the same way as it permutes the roots
of f . Let L = k[x]/〈f〉; this is an étale algebra over k, which is the coordinate ring of
the k-scheme whose geometric points are the three nontrivial 2-torsion points on E. Put
differently, the elements of L correspond to Γk-equivariant maps E[2] \ {O} → k̄. Note
that L splits as a product of finite field extensions of k, corresponding to the irreducible
factors of f in k[x] (by the Chinese Remainder Theorem).

Using the Weil pairing, a 2-torsion point T gives rise to a map wT : E[2] \ {O} → µ2(k̄),
T ′ 7→ e2(T, T ′); such maps are given by the elements of µ2(L̄), where L̄ = L ⊗k k̄, and
the association T 7→ wT is Γk-equivariant. An element w of µ2(L̄) is of the form wT for
some T ∈ E[2] if and only if

∏
T ′∈E[2]\{O}w(T ′) = 1 (this is because the Weil pairing is a

perfect pairing). In other words, the norm of w with respect to the extension L̄/k̄ is 1.
This leads to a short exact sequence of k-Galois modules

0 −→ E[2] −→ µ2(L̄)
N−→ µ2(k̄) −→ 0 .

This sequence is actually split; the inclusion µ2(k̄)→ µ2(L̄) provides a section. Applying
Galois cohomology, we obtain a representation of H1(k,E[2]) in the form

H1(k,E[2]) ' ker
( L×
L×2

N−→ k×

k×2

)
.

Here N denotes the map induced by the norm map from L to k. Note that we have used
the Kummer isomorphisms H1(k, µ2(k̄)) = k×/k×2 and H1(k, µ2(L̄)) = L×/L×2, which
can be deduced from the short exact sequence

0 −→ µ2(k̄) −→ k̄×
·2−→ k̄× −→ 0

(and the corresponding sequence for L̄) together with “Hilbert’s Theorem 90”H1(k, k̄×) =
0 and its easy extension H1(k, L̄×) = 0. This description works over any field of charac-
teristic 6= 2 in place of k, in particular for the completions kv.

This takes case of the first point in our list of tasks. Note that the restriction maps resv
in this representation are simply induced by the inclusions L ↪→ Lv.

An element of H1(k,E[2]), represented by some α ∈ L×, is unramified at some finite
place v of k if and only if its image in H1(kunr

v , E[2]) is trivial. In terms of our representa-
tion, this means that α becomes a square in L⊗k kunr

v . If v is odd, then this is equivalent
to saying that the valuation of α is even at each place above v in each component of L
(regarding L as a product of finite field extensions of k).

Definition 3.1. If k is a number field, S is a finite set of places of k and L is an étale
k-algebra, then we define

L(S, 2) = {α ∈ L×/L×2 : ∀v /∈ S ∀w | v : w(α) ∈ 2Z} ,

where v runs through the finite places of k not in S, w runs through the places of L (more
precisely, of the components of L) above v, and we abuse notation by writing w(α) for
the normalised additive valuation of α associated to w.

9



Then L(S, 2) is a finite-dimensional F2-vector space (sometimes called the 2-Selmer group
of OL,S, the ring of S-integers of L), which can be computed; this computation requires
information on the class groups of the components of L and on their unit groups. If the
number fields involved have large degree or the coefficients of f get large, one can reduce
the computation time considerably by assuming the Generalised Riemann Hypothesis.
Note that k itself is an étale k-algebra, so k(S, 2) is defined as well.

If S is the set of “bad” places for 2-descent on E (so S consists of the real infinite places,
the places above 2 and the places of bad reduction for E), then these considerations imply
that

H1(k,E[2];S) ' ker
(
N : L(S, 2)→ k(S, 2)

)
.

This takes care of the second point in our list of tasks.

One can check that the connecting homomorphism δ : E(k) → H1(k,E[2]) is given by
sending a point P = (ξ, η) to the class of ξ − θ in L×/L×2, where θ is the image of x
in L (θ is “the generic root of f”). The origin P = O clearly goes to the trivial class. If
P = (ξ, 0) is a 2-torsion point, then the image of P would be zero in the component of L
corresponding to θ = ξ; this can be patched by using that the norm of the image has to
be a square. We will abuse notation and write δ and δv for the compositions

E(k)→ H1(k,E[2])→ L×/L×2 and E(kv)→ H1(kv, E[2])→ L×v /L
×2
v ,

where Lv = L⊗k kv. Similarly, we write resv for the canonical map L×/L×2 → L×v /L
×2
v .

Note that (a standard fact) L×v /L
×2
v is a finite-dimensional F2-vector space, with which

we can compute reasonably easily.

So we can also deal with the last point in our list.

We obtain the following computable description of the 2-Selmer group of E:

Sel(2)(E) '
{
α ∈ L(S, 2) : N(α) = 1,∀v ∈ S : resv(α) ∈ im(δv)

}
.

As mentioned at the end of the previous lecture, we can determine the dimension of im(δv)
beforehand. We then just have to find enough points in E(kv) to generate a subspace
of im(δv) of the correct dimension. (For odd places v, it usually suffices to consider the
2-torsion points in E(kv).) Given explicit F2-bases of L(S, 2), k(S, 2) and the L×v /L

×2
v

for the places v ∈ S, we can represent the norm map and the maps resv by matrices
over F2, and we can describe the images of the maps δv by generators. This reduces the
determination of the Selmer group to simple linear algebra over F2.

We remark that a very similar approach works when A = J is the Jacobian variety of a
hyperelliptic curve

C : y2 = f(x)

with a squarefree polynomial f ∈ k[x] of odd degree. (The even degree case is a little bit
more involved. For details, see [Sto01].)

Before we try to extend this to p-Selmer groups with p ≥ 3, we should stop for a moment
and think about what was essential for our approach to work. The main point was that
we could represent E[2] as a submodule of a Galois module of the form µ2(L̄) with an étale
k-algebra L. We obtained this representation by using the Weil pairing on E[2]; L was
the coordinate ring of a finite k-scheme X whose geometric points form a (Galois-stable)
generating set of E[2].

So we now choose a k-subscheme X of E[p] that generates E[p] and let L be the corre-
sponding étale algebra. (Usually the Galois action will be transitive on E[p] \ {O}; then

10



L is a field extension of k of degree p2 − 1.) In the same way as before, this gives us an
injective homomorphism of Galois modules

w : E[p] −→ µp(L̄), T 7−→
(
T ′ 7→ ep(T, T

′)
)
,

where we have again identified the elements of µp(L̄) with maps X → µp(k̄). We obtain
an exact sequence

Q(k) −→ H1(k,E[p]) −→ L×

L×p
,

where Q is the quotient of µp(L̄) by the image of w. It can be shown that the left map
is zero when the size of X (i.e., the degree of L) is not divisible by p, which applies in
particular in the generic case when X = E[p] \ {O}. This also applies over kv for any
place v of k. So we have an embedding of H1(k,E[p]) into L×/L×p (and similarly for
the local versions). It remains to describe the image of this embedding as a kernel of a
further map. This can be done. For p = 3, we obtain the following description.

Proposition 3.2. Let E be an elliptic curve over k. Let L be the étale algebra correspond-
ing to the nonzero elements of E[3], and let L′ be the étale algebra corresponding to the
nonzero elements of Hom(E[3],Z/3Z). There is a subalgebra L+ of L, which corresponds
to the unordered pairs {P,−P} of nonzero elements of E[3]. Then

H1(k,E[3]) ' {α ∈ L×/L×3 : NL/L+(α) = 1, u(α) = 1} ,

where u : L×/L×3 → L′×/L′×3 is induced by a certain group homomorphism L× → L′×.

(The homomorphism L× → L′× is defined in the following way. LetM be the étale algebra
corresponding to the subset Y = {(P, φ) : φ(P ) = 1} of (E[3]\{O})×(Hom(E[3],Z/3Z)\
{0}). The projections to the first and second components induce inclusions iM/L : L→M
and L′ →M . The homomorphism is then given as NM/L′ ◦ iM/L. The background for this
is the following. Let p be an odd prime, and let V be a two-dimensional Fp-vector space.
Then a map φ : V → Fp is a homomorphism if and only if φ is homogeneous of degree 1
(i.e., φ(λv) = λφ(v) for λ ∈ Fp and v ∈ V ) and has the property that

∑
v∈` φ(v) = 0 for

every affine line 0 /∈ ` ⊂ V . The first condition translates into NL/L+(α) = 1 and the
second into u(α) = 1. This generalises to larger odd p; the first condition gets a bit more
involved, though. In the general case, L+ corresponds to the set of cyclic subgroups of
order p of E[p].)

This description can then be used in an analogous way as before for p = 2 to com-
pute Sel(3)(E). When k = Q, this involves number fields of degree 8 and their class and
unit groups. These computations are quite feasible when the coefficients in the defining
equation of E are not too large; Magma has an implementation.

For details, see [SS04].

Exercises. I recommend doing Exercise (7) to get a feeling of how the computation of a
Selmer groups works in a fairly simple case. For Exercise (8), you probably need to use
a suitable computer algebra system again.

(7) Consider the curves Ep : y2 = x3 − p2x with a prime p. Try to determine the F2-

dimension of Sel(2)(Ep).

(8) [Computational] Produce an example where the approach of Problem (6) actually
gives a better bound!
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4. Selmer sets of hyperelliptic curves

Let C : y2 = f(x) be a hyperelliptic curve over k, where f ∈ k[x] is a squarefree polynomial
of odd degree 2g+1 or even degree 2g+2; then g is the genus of the curve. In the exercises
to the first lecture, you have seen that if f factors as f = f1f2 with at least one of the
factors of even degree, then there is an étale double cover π : D → C, which one can use
to define and compute a Selmer set of C. In general, however, the polynomial f will not
factor in this way (generically, f will even be irreducible), and so we need to come up
with another way of constructing an étale covering of C.

We consider the odd degree case first. By scaling x and y suitably, we can arrange for
f to be monic and to have coefficients in the ring of integers of k. Let J denote the
Jacobian variety of C; this is an abelian variety of dimension g (the genus of C). The
smooth projective model of C has a unique point “at infinity” (which is not a point on
the affine model given above); it is k-rational (because it is unique), and we will denote
it by ∞. Then there is a canonical embedding i of C into J , given by sending P ∈ C to
the divisor class [P −∞]. Now the multiplication-by-2 map J → J is étale, and we can
pull it back to C along i. This gives a Cartesian diagram

D �
� //

π
��

J

·2
��

C �
� i // J

with an étale covering π : D → C, which is geometrically Galois with Galois group
scheme J [2]. As already hinted at in the previous lecture, we can represent H1(k, J [2]) in
a way analogous to H1(k,E[2]) for an elliptic curve E. We describe this in more detail.
Let again L = k[x]/〈f〉. The 2-torsion subgroup J [2] is generated by the divisor classes
Tθ = [(θ, 0) −∞], where θ runs through the roots of f ; the only relation between these
generators is that their sum vanishes (the divisor

∑
θ(θ, 0)− (2g+ 1) ·∞ is the principal

divisor of the function y). We can again define a homomorphism

w : J [2] −→ µ2(L̄), w(T ) =
(
θ 7→ e2(T, Tθ)

)
,

which sits in a split exact sequence

0 −→ J [2]
w−→ µ2(L̄)

N−→ µ2(k̄) −→ 0

as before. In the same way as for elliptic curves, this results in

H1(k, J [2]) ' ker
(
N :

L×

L×2
−→ k×

k×2

)
.

Since kv-points on C map via i to kv-points of J , we get a natural inclusion of Selπ(C)

into the 2-Selmer group Sel(2)(J) of J ; in particular, Selπ(C) ⊂ H1(k, J [2];S), where S
is the finite set containing the infinite places of k, the places above 2 and the places of
bad reduction for J (the latter subset is contained in the set of places of bad reduction
for C, which is in turn contained in the set of prime divisors of twice the discriminant
of f). However, it is no longer true that for each place v outside S, the image of C(kv)
in H1(kv, J [2]) is the full kernel of the restriction homomorphism to H1(kunr

v , J [2]). We
now assume that S contains all places of bad reduction for C (not just for J). We can
prove that we get the full kernel in general only when v is sufficiently large, in the sense
that the residue class field of v is sufficiently large. The point is that when the residue
class field κv is large, then the Weil bounds guarantee that Dξ(κv) 6= ∅ (recall that Dξ has
good reduction at places v /∈ S, so it makes sense to consider D(κv)) for any unramified
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twist ξ ∈ H1(kv, J [2]), and Hensel’s Lemma will then produce kv-points on Dξ; the image
on C of any such point will map to ξ.

So how large has κv to be for this argument to work? The Weil bounds imply that Dξ(κv)
is non-empty when p + 1 > 2g′

√
p, where g′ is the genus of D (which is also the genus

of Dξ). This will be the case when p ≥ 4g′2 (then p + 1 > 2g′
√
p+ 1 > 2g′

√
p; the best

bound is only slightly better). Now, by the Riemann-Hurwitz formula, we have that

g′ − 1 = (deg π)(g − 1) = #J [2] · (g − 1) = 4g(g − 1) .

For g = 2, this gives g′ = 17, and our lower bound above for p is 4 · 172 = 1156, and
the smallest prime for which the Weil lower bound is positive is p = 1163 (it is still
negative for the preceding prime 1153). For g = 3, the largest prime for which the bound
is negative is p = 66553.

So, taking S ′ = S ∪ {v finite : #κv < 4(4g(g − 1))2} and

δC,v : C(kv) −→
L×v
L×2
v

, (ξ, η) 7−→ (ξ − θ) · L×2
v

(with some patching for points with η = 0), where θ is again the image of x in Lv, we
have the following explicit description of the π-Selmer set of C (which is usually called
the 2-Selmer set of C, since the covering is induced by the multiplication-by-2 map on
the Jacobian):

Sel(2)(C) = Selπ(C) =
{
α ∈ L(S, 2) : N(α) = 1,∀v ∈ S ′ : resv(α) ∈ im(δC,v)

}
.

In practice (at least when g ≥ 3), it takes too long to compute the image of δC,v for all
the places in S ′ \ S: this is basically equivalent to enumerating all κv-points on C, so
will take time at least proportional to #κv. Also, it is fairly rare that the image of δC,v
is not the full unramified subgroup of H1(kv, J [2]) when κv is moderately large, so that
these larger places almost never make a difference. So what one does is to use a smaller
set S ′ that includes S and all places up to some bound for κv that is quite a bit smaller
than the theoretical bound. This may not give Selπ(C), but in any case it will result in
a set that contains Selπ(C). If we can find enough k-rational points on C so that their
images under δC cover the full set we have computed, then we know that we actually have
computed Selπ(C). Note that for f of odd degree, there is always the point ∞ ∈ C(k),
so that Selπ(C) always contains the neutral element of H1(k, J [2]).

We now discuss what changes when f has even degree. The main complication is that
there is no longer the nice split exact sequence that exhibits J [2] as a submodule of µ2(L̄).
In the odd degree case, we could use the point at infinity as a kind of base-point. We
can try to do something similar, but with fixing one of the ramification points (θ0, 0) as
a base-point. This gives a map

wθ0 : J [2] −→ µ2(L̄), T 7−→
(
θ 7→ e2([(θ, 0)− (θ0, 0)], T )

)
.

However, this map is no longer a homomorphism of Galois modules (unless θ0 ∈ k, but
then we can transform our equation for C into one of odd degree). If we replace θ0 by θ1,
then we find that

wθ1(T ) = wθ0(T ) · e2

(
[(θ0, 0)− (θ1, 0)], T

)
∈ wθ0(T ) · µ2(k̄) .

This shows that we do obtain a homomorphism of Galois modules (which can be checked
to be injective)

w : J [2] −→ µ2(L̄)

µ2(k̄)
, T 7−→ wθ0(T ) · µ2(k̄)

13



for any θ0 that is a root of f . The image of w is again the subgroup of elements whose norm
is 1 (note that here both elements of µ2(k̄) have norm 1, so that the norm map descends
to the quotient). We obtain a commutative diagram with exact rows and columns:

0

��

0

��
µ2(k̄)
� _

��

µ2(k̄)
� _

��
0 // µ2(L̄)0 � � //

��

µ2(L̄)

��

N // µ2(k̄) // 0

0 // J [2]
w //

��

µ2(L̄)

µ2(k̄)

N //

��

µ2(k̄) // 0

0 0

Here µ2(L̄)0 denotes the kernel of the norm map on µ2(L̄). This gives a diagram in
cohomology:

L×

k×L×2
� _

��

µ2(k)
∂ // H1(k, J [2])

w∗ // H1
(
k,
µ2(L̄)

µ2(k̄)

)
N∗ //

��

k×

k×2

Br(k)[2]

It can be shown that the image of the 2-Selmer group of J under w∗ is contained in
the image of the upper vertical map (one can write down an explicit map J(kv) →
L×v /(k

×
v L
×2
v ) that is compatible with w∗, so the image in Br(kv) is trivial; one then uses

the local-global principle for the Brauer group of k) so that we obtain an inclusion

w∗
(
Sel(2)(J)

)
⊂ ker

(
N :

L×

k×L×2
→ k×

k×2

)
.

It is also true that the image of ∂ is contained in the Selmer group. The map ∂ is nontrivial
if and only if there is an element of norm −1 in H0(k, µ2(L̄)/µ2(k̄)), which is the case if
and only if either f splits off a factor of odd degree over k or else f is a constant times
the product of two conjugate factors of odd degree defined over a quadratic extension
of k. Generically, ∂ is nontrivial and so the “fake 2-Selmer group”

Sel
(2)
fake(J) = w∗

(
Sel(2)(J)

)
⊂ L×

k×L×2

has F2-dimension one less than the Selmer group itself. The fake 2-Selmer group is what
can be computed (at least when g is even or C has points everywhere locally), which is
done in a way similar to the odd degree case. For details, we refer to [PS97] and [Sto01].
For the general theory of “true” and “fake descents”, see [BPS16].
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Even though in the even degree case there is no canonical embedding of C into J (maybe
even none at all that is defined over k!), we can still define a “fake 2-Selmer set” of C in
a very similar way as before:

Sel
(2)
fake(C) =

{
α ∈ L×

k×L×2
: N(α) = ck×2,∀v : resv(α) ∈ im(δC,v)

}
,

where δC,v evaluates to (ξ − θ) · k×v L×2
v at a point (ξ, η) ∈ C(kv) (with the usual patches

when η = 0 or the point is at infinity) and c is the leading coefficient of f . We can again
reduce to (the image of) L(S, 2), but we now have to include the places dividing c in S.
As before, we compute in practice a superset of the fake Selmer set, which we can show
to be the fake Selmer set if we find enough points to cover it. In contrast to the odd
degree case, where there is always the rational point at infinity, now it is quite possible
that the fake 2-Selmer set is empty (which follows if the superset we compute is empty),
which then proves that C has no k-rational points.

For details on computing 2-Selmer sets of hyperelliptic curves, see [BS09]. In [Bha13],
Bhargava uses 2-Selmer sets together with statistical information that comes out of his
“geometry of numbers” approach to Selmer group sizes and other data to show that (as
the genus gets large), “almost no” hyperelliptic curves over Q have Q-rational points.
In [PS14], a similar approach is used to show that (again as the genus gets large), most
odd degree hyperelliptic curves over Q have the point at infinity as their only rational
point.

Exercises. Exercise (10) is similar to Exercise (9), which already contains most of the
relevant considerations.

(9) Let C : y2 = f(x) be hyperelliptic of odd degree. Consider an element of Sel(2)(C),
represented by some α ∈ L×. Work out how one can obtain explicit equations for the
corresponding twist Dα → C!

Hint. Consider the equation αz2 = x − θ for x ∈ k and z ∈ L. Write z in terms
of a k-basis of L. You should get an intersection of quadrics in a suitable projective
space.

(10) Do the same in the even degree case. How is the fact that an element of the fake
2-Selmer group can represent two different twists reflected in the construction?
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