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Introduction

Rational points and ranks of elliptic curves are subjects of many important conjectures,

such as the Birch-Swinnerton-Dyer conjecture and conjectures on ’typical’ and ’maximal’

ranks. In a recent series of papers, Manjul Bhargava and his collaborators made several

fundamental breakthroughs on average ranks and Selmer ranks of elliptic curves over the

rationals. In particular, they prove that the average rank of all elliptic curves over Q is less

than 1, and deduce that a positive proportion of elliptic curves satisfy the Birch-Swinnerton-

Dyer conjecture. This beautiful work combines techniques from invariant theory, Selmer

groups, geometry and analytic number theory. The goal of the mini-course was to give a

brief and quite elementary overview of these results, and to give an introduction to some of

the ingredients of the proofs.
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1. Diophantine equations

The main field of interest of arithmetic geometry are the so-called algebraic varieties,

i.e. sets of solutions of systems of equations of the form

V :


f1(x1, . . . , xn) = 0

. . .

fk(x1, . . . , xn) = 0

where fi ∈ K[x1, . . . , xn] are polynomials with coefficients in a fixed field K (in these lectures

we will be interested mostly in the case K = Q, and have fi with Z-coefficients). We say that

V is defined over K and write V/K to denote it. Let V (K) denote the set of K – rational

points on V , i.e. V (K) = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0, i = 1, . . . , k}; analogously

we define sets V (Z), V (C), V (Fp), etc.

Given an algebraic variety V/Q we will be interested in the following questions:

Question 1: Is V (Q) empty? Is V (Z) empty?

Question 2: Is V (Q) infinite?

Question 3: How does #{P ∈ V (Q) : H(P ) < c} grows with c→∞?

(H denotes a height function, measuring the “complexity” of points)

In full generality, all three questions are extremely hard. The problem of determining if

V (Z) 6= ∅ is known as Hilbert’s tenth problem and is proven to be undecidable – there

exists no algorithm that given any variety V/Q decides, if it has any integral points. Poo-

nen showed that if the answer to the following question is affirmative, then the first part of

Question 1 is also undecidable:

Question 1.1. There exists a V/Q and a rational map g : V → Q such that g(V (Q)) is

infinite and discrete.

In the lectures we will focus on the “well–understood” case of algebraic varieties, i.e. curves.

2. Curves

With an algebraic variety V/K given as above we can associate its field of rational

functions:

K(V ) := field of fractions of K[x1, . . . , xk]/〈f1, . . . , fk〉
The dimension of the variety is definied as the transcendence degree of the extension

K(V )/K (i.e. the cardinality of maximal subset of K(V ) that doesn’t satisfy any poly-

nomial with coefficients in K).
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A curve is a projective algebraic variety of dimension 1; for simplicity all considered curves

will be smooth and absolutely irreducible (i.e. we can not decompose it as a union of two

algebraic sets in K).

Note that C(C) is a Riemann surface and can be viewed as a two-dimensional, compact, ori-

entable manifold. By the classification theorem of surfaces, any such manifold is made

of some finite number g of “glued” tori; this number is defined to be the genus of the curve;

it determines many geometric and arithmetic properties of the curve.

C(C) = • • •

g holes

Figure 1. The genus of a curve

In particular, the answer to the Questions 1,2,3 depends on genus:

• if g = 0, then C is a line or a conic and C(Q) is either empty or infinite.

Exercise 1. Suppose C : ax2 + by2 = c (a, b, c ∈ Q) is a conic. Prove that either

C(Q) = ∅ or C(Q) is infinite.

Moreover, we have a method of determining, which one of these two possibilities

occurs:

Theorem 2.1. (Hasse–Minkowski)

If C : F (x, y) = 0 is a conic over Q, then C(Q) 6= ∅ iff C(R) 6= ∅ and for all prime

p: C(Qp) 6= ∅ (i.e. F (x, y) = 0 has solutions (mod pn) for all n).

Exercise 2. Prove that for C : x2 + y2 = 3 we have C(Q) = ∅.

In other words we can say that C is soluble (i.e. has a rational point) if and only

if it’s locally soluble (i.e. has a point in every completion of Q). This theorem, also

known as the local–global principle, fails for curves of higher genus, as shown by

Selmer – the curve 3x3 + 4y3 = 5 is locally soluble, but has no rational points. We’ll

come across this problem in section 5.

• if g = 1 and C(Q) 6= ∅ then C is called an elliptic curve. Otherwise, if C(Q) = ∅
then there exists an elliptic curve E (the Jacobian of C) such that C and E are

isomorphic over Q.
3



• if g ≥ 2 then the following theorem gives us an answer to the Question 2:

Theorem 2.2. (Faltings, 1983) If genus of a curve C over Q is ≥ 2 then C(Q) is

finite.

In the next sections we’ll study the genus one case closer.

3. Elliptic curves – models and group structure

Theorem 3.1. If charK 6= 2, 3 then any elliptic curve E/K can be embedded in P2(K) as

a plane cubic with an equation of the form y2 = x3 + Ax + B, where A,B ∈ K and ∆ :=

16(4A3 + 27B2) 6= 0. This equation is unique up to change of variables (A,B) 7→ (t4A, t6B),

t ∈ K×. Conversely, any curve of this form is an elliptic curve.

Proof (sketch):

Let’s pick any point O ∈ E(K).

For any curve C/K and O ∈ C(K) we can consider the K-linear subspace of the function

field K(C):

L(nO) := {f ∈ K(C) : f has a pole of order at most n at O and no other poles}

It turns out, that the dimension of L(nO) equals n − genus(C) + 1 for n ≥ 2g − 1 (the

Riemann–Roch theorem) – thus, in the case of elliptic curves: dimL(nO) = n for any

n ≥ 1. Let’s have a look at L(nO) for small n. For n = 1 we have dimL(O) = 1 and

thus L(O) = 〈1〉 (the constant functions have no pole at O). Then, since dimL(2O) = 2,

we must have L(2O) = 〈1〉 ⊕ 〈x〉 for some function x ∈ K(E) with pole of order 2 in O.

Analogously, we have L(2O) = 〈1〉 ⊕ 〈x〉 ⊕ 〈y〉 for some y ∈ K(E) with pole of order 3.

Then the seven functions: 1, x, y, x2, xy, x3, y2 belong to the 6 dimensional space L(6O).

Thus we must have a K-linear relation between them; the analysis of order at O shows also

that the coefficients by y3 and x3 sum to 0. In this way we obtain a relation of the form:

y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 for a1, . . . , a6 ∈ K. After shifting x and y (here we use

charK 6= 2, 3) we obtain the desired short Weierstrass form y2 = x3 + Ax + B. One shows

that P 7→ [x(P ) : y(P ) : 1] is an embedding of E into P2(K). The converse theorem follows

for example from Plücker genus formula. �

As pointed out by Poincaré, E(K) has a structure of an abelian group.

In case of K = R we can describe the addition of points geometrically: given points P,Q

on curve E : y2 = x3 + Ax + B we draw a line L through P and Q (if P = Q we draw a

tangent at P ) and denote by R the third point of intersection of L and E. Then P + Q is

defined to be R reflected through x-axis. The neutral element is O = [0 : 1 : 0] (“the point in

infinity”) and the inverse element of a point P is defined to be its reflection through x-axis.

Thus for P = (x1, y1) and Q = (x2, y2), P 6= ±Q we have P +Q = (x3, y3) where
4



x

y

P •

Q
•

•

•P +Q

Figure 2. Addition law on an elliptic curve

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2, y3 = − y2 − y1

x2 − x1

x3 −
y1x2 − y2x1

x2 − x1

This group law seems to be complicated, however what is most important, the addition of

points is given by rational functions in coordinates of the points and E is an algebraic group.

Note that these formulas define the group law for an arbitrary field K. For K = R or C it is

easy to describe structure of E(K):

• E(C) ∼= S1×S1 is a complex torus (note that E(C) must be homeomorphic to torus,

as it a Riemann surface of genus 1),

• E(R) is a compact Lie group with one or two components (depending on sign of ∆).

The only compact and connected Lie group is S1, thus

E(R) ∼=

{
S1, ∆ < 0

S1 × Z/2, ∆ > 0

y2 = x3 + 2x

x

y

(a) ∆ < 0⇒ E(R) ∼= S1

y2 = x3 − 2x

x

y

(b) ∆ > 0⇒ E(R) ∼= S1 × Z/2

Figure 3. Structure of E(R)
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The question about structure of E(K) when K is a number field was solved by Mordell

and Weil:

Theorem 3.2. (Mordell–Weil) If K is a number field and E/K an elliptic curve, then E(K)

is a finitely generated abelian group, i.e. it is of the form:

E(K) ∼= E(K)tors ⊕ Zr

where E(K)tors is a finite subgroup of torsion elements.

The number r is called the rank of the curve over K and is denoted by rkE/K.

Proof (overview):

The proof consists of two steps:

1) “the weak Mordell–Weil theorem”: one shows that for some n > 1 (usually

n = 2) the group E(K)/nE(K) is finite: E(K)/nE(K) = {[Q1], . . . , [Qr]},

2) “the descent argument”: one considers the height function h : E(K) → R – in

the case of in the case K = Q it’s given by:

h(P ) = log max{ numerator of x(P ), denominator of x(P )}

and shows that it has the following properties:

(i) for any Q ∈ E(K) there is a constant CQ > 0 (depending on E and Q) such that

h(P +Q) ≤ 2h(P ) + CQ for all P ∈ E(K),

(ii) for any n ≥ 2 there exists a constant Dn > 0 (depending on E and n) such that

h(nP ) ≥ n2h(P )−Dn for all P ∈ E(K),

(iii) for every constant C > 0 the set {P ∈ E(K) : h(P ) ≤ C} is finite.

Then it’s possible to show that the set:

{Q1, . . . , Qr} ∪
{
Q ∈ E(K) : h(Q) ≤ 1 +

1

2
(C +Dn)

}
(where C = max{C−Qi

: i = 1, . . . , r}) generates E(K).

�

The proof of Mordell–Weil theorem shows that finding generators of E(Q) comes down to

determining generators of E(Q)/nE(Q) for any n. Unfortunately, as of today there is no

known procedure that is guaranteed to give generators for this group. However, the torsion

subgroup of E(Q) is well-understood and for any given curve it can be easily found by using

the following theorems:
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Theorem 3.3. (Lutz–Nagell) If E : y2 = x3 + Ax + B (A,B ∈ Z) is an elliptic curve and

P = (x, y) ∈ E(Q) is a torsion element, then x, y ∈ Z and we have: y = 0 (equivalently

[2]P = O) or y2|∆.

Theorem 3.4. Let E : y2 = x3+Ax+B, (A,B ∈ Z) be an elliptic curve and let’s consider its

reduction (mod p) for a prime p - ∆: Ẽ(Fp) : y2 = x3 + Ãx+ B̃ (the tilde denotes reduction

(mod p)). Then the reduction map E(Q) → Ẽ(Fp), (x, y) 7→ (x̃, ỹ) is a homomorphism.

Thus, (by Lutz–Nagell theorem) it is injective on torsion points.

Exercise 3. Let E/Q be the elliptic curve y2 = x3 + 1.

(a) find 6 rational points on E and show that they generate a 6-element cyclic subgroup

of E(Q),

(b) use the two previous theorems to find E(Q)tors.

Theorem 3.5. (Mazur) The group E(Q)tors is isomorphic to one of the following groups:

Z/NZ for N ∈ {1, 2, . . . , 10, 12} or Z/2Z × Z/NZ for N ∈ {1, 2, 3, 4}. Conversely, each of

this groups is isomorphic to E(Q)tors for some elliptic curve E/Q.

It turns out that finding generators of E(Q)/nE(Q) comes down to finding rational points

on some special curves (the so-called Selmer Curves); however the failure of Hasse principle

makes this procedure difficult. We don’t know which integers can occur as rank of an elliptic

curve over Q or whether the rank over Q is bounded. We mention two more conjectures

concerning rank in the family of quadratic twists of a given elliptic curve:

Definition 3.1. Let E : y2 = x3 +Ax+B be an elliptic curve over Q. Then for any d ∈ Q×

we can define its quadratic twist by d as the curve: Ed : dy2 = x3 +Ax+B or equivalently

Ed : y2 = x3 + Ad2x+Bd3 (note that E and Ed are isomorphic over Q, but not over Q).

Conjecture 3.6. For any E/Q the set {rkEd/Q : d ∈ Q×} is unbounded.

Conjecture 3.7. (Honda, Granville, Watkins) For any E/Q there are only finitely many

d ∈ Q×/(Q×)2 such that rkEd/Q > 9.

Note that the two conjectures contradict each other!

Exercise 4. Find injections E(Q) ↪→ E(Q(
√
d)) and Ed(Q) ↪→ E(Q(

√
d)). Prove that

rkE/Q(
√
d) = rkE/Q + rkEd/Q.

Exercise 5. Let K/Q be an odd degree Galois extension. Show that rkE/K≡rkE/Q mod 2.

The largest known rank is 28 (an example was given by Noam Elkies). It is conjectured

that the rank is unbounded; however, as shown by Bhargava–Shankar, the average rank of

all elliptic curves over Q is < 1. To define what average rank means, we need to order the

curves by height. Note that every elliptic curve E/Q has a unique representation in the form

y2 = x3 + Ax+B for A,B ∈ Z such that ∀p p4 - A or p6 - B.
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Definition 3.2. For E = EA,B : y2 = x3 + Ax + B (A,B ∈ Z) we define its height as

HE = HA,B = max{4|A|3, 27B2}.
Let us denote E := {EA,B : A,B ∈ Z, 4A3 + 27B2,∀p p4 - A, p6 - B}. We say that the

density of a set F ⊂ E is equal to α if:

lim
X→∞

#{E ∈ F : HE < X}
#{E ∈ E : HE < X}

= α

Example 3.8.

(1) if F ⊂ E is a set of elliptic curves satisfying finitely many congruence conditions on

A,B (eg. A ≡ 1 (mod 5)) then F has positive proportion.

(2) 100% of elliptic curves/Q have E(Q)tors = {O} (by Mazur’s theorem it suffices to

prove that 100% of elliptic curves has no 2-, 3-, 5-, 7- tosion points).

Exercise 6. Prove that for 100% of elliptic curves/Q: E(Q)[2] = {O} .

4. BSD Conjecture

With every elliptic curve E/Q we can associate its L–function, defined as a product of

local factors. It is given in a form of a Dirichlet series: L(E, s) =
∑∞

n=1
an
ns (the series is

convergent for Re s > 3
2
). It turns out that every such L-function comes from a modular

form and thus shares properties of L-functions associated with modular forms. The proof of

this fact was the main ingredient of Wiles’ proof of Fermat’s Theorem.

Theorem 4.1. (Wiles–Taylor et al) Elliptic curves/Q are modular; in particular:

• L(E, s) has an analytic continuation to C,

• L(E, s) satisfies the functional equation

L̂(E, 2− s) = wE/Q · L̂(E, s)

where L̂(E, s) := (
√
N

2π
)s ·Γ(s)L(E, s) is the completed L-function and wE/Q = ±1

is the (global) root number (we’ll return to this number later).

Conjecturally, the L-function encodes also the most important arithmetic properties of the

elliptic curve:

Conjecture 4.2. (Birch and Swinnerton-Dyer conjecture, BSD)

ords=1 L(E, s) = rkE/Q

and the first non-zero Taylor coefficient of the L-function at s = 1 equals

lim
s→1

L(E, s)

(s− 1)rkE/Q =
#X(E)ΩERE

∏
p|N cp

(#E(Q)tors)2

The quantities on the right hand side are arithmetic invariants of the curve; in particular

#X(E) is the cardinality of Shafarevich-Tate group (which is not even known to be

finite!). An easy consequence from BSD conjecture is
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Conjecture 4.3. (Parity conjecture) wE/Q = (−1)rkE/Q.

Today we know only that the BSD conjecture is true when the left side is ≤ 1 (as shown by

Gross–Zagier–Kolyvagin). The parity conjecture is proven in a weaker form by Dokchitser–

Dokchitser:

Theorem 4.4. (Dokchitser - Dokchitser 2010, the p-Parity Theorem)

For all elliptic curves E/Q and primes p: wE/Q = (−1)rkE/Q+rkp(X(E)[p]).

Note that if the X(E) group is finite, then X(E)[p] = 0 for sufficiently big p and the

p-Parity Theorem implies the Parity Conjecture.

The root number is defined as a product of “local” root numbers:

wE/Q = wE/R︸ ︷︷ ︸
=−1

·
∏
p∈P

wE/Qp .

Analogously, for any other number field we take a product over all of its completions (with

every infinite prime contributing −1). The formal definition of wE/Qp is complicated; however

we have a following classification:

• if E has good reduction at p (p - ∆E) then wE/Qp = 1,

• if E has split multiplicative reduction at p (p|∆E, Ẽ : y2 = x3 + ηx, η ∈ F×2
p ) then

wE/Qp = 1,

• if E has non-split multiplicative reduction at p (p|∆E, Ẽ : y2 = x3 + ηx, η 6∈ F×2
p ),

then wE/Qp = 1,

• if E has additive reduction at p (p|∆E, Ẽ : y2 = x3) then wE/Qp = ±1 (it’s possible

to give a full classification, this was done by Halberstadt and there are ≈ 50 cases)

Example 4.5. Let E : y2 + y = x3 − x2. Then ∆E = −11, thus E has good reduction away

from 11. It has split multiplicative reduction at 11, and so wE/Q = (−1) · (−1) = 1.

Exercise 7. Let K = Q(
√

17, i). Prove, assuming the Parity Conjecture, that all elliptic

curves defined over Q have even rank over K.

We have also the following

Conjecture 4.6. (Root Number Equidistribution Conjecture) 50% of elliptic curves/Q have

w = 1 and 50% have w = −1.

It is equivalent to the following estimate:∑
A,B∈Z
HA,B<x

µ(4A3 + 27B2) = o(x5/6).

Bhargava and Shankar needed in their work a weaker result: curves with both root numbers

have positive proportion.
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Theorem 4.7. (Bhargava – Shankar) Positive proportion of elliptic curves over Q have

wE/Q = 1 and wE/Q = −1.

Proof (sketch):

Let us for any curve E : y2 = x3 +Ax+B denote: E−1 : y2 = x3 +Ax−B (quadratic twist

of E by −1). The proof conists of constructing a positive proportion family of elliptic curves

F ⊂ E such that for any E ∈ F we have E−1 ∈ F and wE/QwE−1/Q = −1. Thus the root

number is equidistributed in F , and since F has positive proportion (finer analysis allows

to show that root number is equidistributed among at least 55% of curves.), the theorem

follows. �

Another interesting problem is to analyse the distribution of the root number in various

families of curves, like for example elliptic curves passing through the point (0, 0). A conjec-

ture of Goldfeld asserts for example that in the family of quadratic twists of a given curve

the root number is equidistributed. The next conjecture justifies our interest in distribution

of root number in families of curves.

Let’s consider an elliptic curve E/Q(t) over function field in one variable (i.e. its coefficients

are in fact rational functions in t). Then after substituting a number a ∈ Q in the place of t

we obtain (in almost all cases) an “ordinary” elliptic curve Et=a/Q (for example, if we take

E : ty2 = x3 + Ax+B with A,B ∈ Z fixed, we obtain the “family of quadratic twists”).

Conjecture 4.8. (Minimalistic conjecture.) Let E/Q(t) be an elliptic curve of rank r. Then

in the family F = {Et=a} for 100% of curves in F we have:

rk(Et=a(Q)) =

{
r if w(Et=a) = (−1)r

r + 1 if w(Et=a) = (−1)r+1

Note that this conjecture reveals the meaning of the root number – it controls the rank of

a generic curve in a family.

5. Selmer groups

Definition 5.1. (n-covering of a curve) A n-covering of an elliptic curve is a morphism

C
π→ E from any curve C of genus 1 such that π = [n] ◦ϕ for some isomorphism ϕ : C

'→ E

defined over Q (here [n] denotes the multiplication–by–n map: [n]P = P +P + . . .+P ).

The covering is soluble if C(Q) 6= ∅.

The covering is locally soluble if C(R) 6= ∅ and C(Qp) 6= ∅ for any prime p.

We call two n-coverings (C, π = [n]◦ϕ), (C ′, π′ = [n]◦ϕ′) isomorphic, if ϕ′−1 ◦ϕ : C → C ′

is defined over Q.

It turns out that the classes of isomorphisms of n-coverings are in 1-1 correspondence

with the cohomology group H1(GQ/Q, E[n]), which allows us to introduce a group structure
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in the set of n-coverings. The subgroup of soluble n-coverings corresponds to subgroup

E(Q)/nE(Q) of H1(GQ/Q, E[n]); the isomorphism is given by:

E(Q)/nE(Q)→ { soluble n-coverings }
/
∼

[P ] 7−→

(
n-covering π : E → E

π(Q) = [n]Q+ P

)
The locally soluble n-coverings form a subgroup called nth Selmer group (denoted SelnE).

It’s a finite abelian group with exponent n. In particular, for prime p we have (Z/pZ)sp(E) for

some sp(E) called p-Selmer rank. Since E(Q)/pE(Q) ∼= E(Q)tors
pE(Q)tors

⊕ (Z/pZ)rk(E/Q) injects

into Selp(E) we have an inequality

rkE/Q ≤ sp(E)

The Selmer groups are in principle computable. They fit into an exact sequence:

1 −→ E(Q)/nE(Q) −→ SelnE −→X(E)[n] −→ 1

where X(E)[n] denotes the n-torsion in the already mentioned Tate–Shafarevich group.

Thus, this group measures the extent to which the Hasse principle fails to hold. Conjecturally,

this group is finite, which gives us a chance of inventing an algorithm, that computes the

rank of a given elliptic curve (note that then X(E)[n] = 0 for sufficiently large n and

E(Q)/nE(Q) ∼= Seln(E)). However, at present, the Tate-Shararefich group remains one of

the most mysterious groups in the number theory. It is known to be finite in the case when

ords=1 L(E, s) ≤ 1 (as shown by Gross – Zagier – Kolyvagin) and not in a single other case!

We know also that the p-torsion parts of X(E) can get arbitrarly large for p = 2, 3, 5, 7.

However, a heuristics of Poonen and Rains predicts that the average size of Seln in E is σ(n)

(the sum of positive divisors of n) – in particular 1 + p when n = p is a prime. Knowing the

average size of Selmer group for a fixed n helps to bound the average rank of elliptic curves

– to obtain their results, Bhargava and Shankar showed that heuristics of Poonen and Rains

is correct for n = 2, 3, 4, 5.

In this four cases we are able to say something more about the n-coverings, using the

following theorem:

Theorem 5.1. (Swinnerton–Dyer–Cassels) Every soluble n-covering C of an ellitpic curve

E/Q has a divisor D ∈ Divn(C) defined over Q.

This theorem enables us (analogously as in theorem 3.1) to obtain an explicit embedding

C
|D|−→ Pn−1 defined over Q into projective space for n ∈ {2, 3, 4, 5}:
• n = 2: C −→ P1 is a double cover, and realizes C a binary quartic curve:

y2 = ax4 + bx3y + . . .+ ey4, a, . . . , e ∈ Q
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• n = 3: C ↪→ P2, image of C is given by a ternary cubic ax3 + bx2y + . . .+ jz3 = 0

• n = 4: C ↪→ P3, image of C is an intersection of two quartics,

• n = 5: C ↪→ P4, image of C is defined by a degree 5 polynomial.

We will concentrate on two cases:

(A) n = 2 – we have a correspondence:{
2–Selmer elements

of elliptic curves

}
1−1←→

{
locally soluble

binary quartics

}/
Gl2(Q)–equivalence

(B) n = 3 – we have a correspondence:{
3–Selmer elements

of elliptic curves

}
1−1←→

{
locally soluble

ternary cubics

}/
Gl3(Q)–equivalence

6. Composition of forms

The idea of composing forms comes from Gauss, who introduced composition of binary

quadratic forms in his Disquisitiones Arithmeticae.

Let us denote by V = {f(x, y) = ax2 + bxy + cy2 : a, b, c ∈ Z} the set of binary quadratic

forms. We summarise briefly the main results concerning binary quadratic forms:

• Sl2(Z) acts on V – matrix

(
α β

γ δ

)
takes f(x, y) to f(αx+ βy, γx+ δy),

• there is a unique polynomial Sl2(Z)–invariant (“discriminant”) given by Df = b2−4ac,

that generates the invariant ring: Z[a, b, c]Sl2(Z) = Z[b2 − 4ac].

• number D is a discriminant of a form from V if and only if it satisfies the congruence

condition D ≡ 0, 1 (mod 4),

• the set HD = {f ∈ V : Df = D}
/

(Sl2(Z)− equivalence) of orbits of Sl2(Z)–action on

quadratic forms with given discriminant is finite – its size is denoted by hD; it can be

identified with a narrow class group of a unique quadratic order of discriminant D,

namely RD = Z+nOQ(
√
D0) (where D = n2D0 and D0 is a fundamental discriminant);

thus we can compose forms by transferring the group law.

• we have following asympthotic formulas for negative and positive discriminants (con-

jectured by Gauss and proven by Siegel and Mertens respectively):∑
−x<D<0

hD ∼
π

18ζ(3)
x3/2,

∑
0<D<x

hD log εD ∼
π2

18ζ(3)
x3/2, for x→∞

where εD denotes the fundamental unit of RD.

12



Gauss’ idea can be generalized for example in the case of binary cubic forms. Analogously

we introduce action of Gl2(Z) on V = {f(x, y) = ax3 + bx2y+ cxy2 + dy3 : a, b, c, d ∈ Z} and

a discriminant Df . The set of Gl2(Z)-equivalence classes of forms with given discriminant

D is finite and can be identified with orders of discriminant D in cubic fields. Moreover, as

shown by Davenport, we have asympthotic formulas:∑
−x<D<0

hD ∼
π2

24
x and

∑
0<D<x

hD ∼
π2

72
x for x→∞

In his PhD thesis, Manjul Bhargava studies 10 more situations when there is a space of

forms (or objects closely related to forms) with one polynomial invariant, the discriminant,

and introduces a group structure analogous to Gauss’ composition law. Recently, Bhargava

and Shankar have developed a machinery to analyze and count orbits on ‘coregular spaces’

with more than one invariant. (‘Coregular’ simply means that the invariant ring is a poly-

nomial ring in finitely many basic invariants.) Two of these cover the cases that we want to

discuss:

(A) V = {f(x, y) = ax4 + bx3y + . . . + ey4 : a, . . . , e ∈ Z} – binary quartic forms with

action of G = Gl2(Z),

(B) V = {f(x, y, z) = ax3 + . . .+ jz3 : a, . . . , j ∈ Z} – ternary cubic forms with action of

G = Sl3(Z).

Both cases can be treated similarly – there exist two G-invariants I = If , J = Jf (some

specific polynomials in the coefficients of f , defined separately for case (A) and (B)), such

that the ring of G–invariants is freely generated by I, J . Agan, integers I, J ∈ Z are invariants

of some form iff they satisfy certain congruence conditions. We define the discriminant of a

form to be ∆f := 4I3−J2

27
and the height of a form: Hf = HI,J = max{|I|3, 1

4
|J |2}.

Let us look at Case (B). As before, it is possible to estimate the number of desired ternary

cubic forms with given invariants (an analogous theorem holds also for binary quartic forms):

Theorem 6.1. (Bhargava–Shankar) Let hI,J be the number of strongly irreducible ternary

cubic forms with invariants I, J , up to equivalence. Then∑
I,J :HI,J<x

hI,J =
32

45
ζ(2)ζ(3)x5/6 + o(x5/6), for x→∞

(note that the sum on the left hand side has approximately 32
45
x5/6 terms, so that we get that

on average hIJ equals ζ(2)ζ(3)) and∑
I,J :HI,J ,

∆<0

hI,J =
128

45
ζ(2)ζ(3)x5/6 + o(x5/6), for x→∞

This theorem applies also to forms in any congruence family of forms.
13



Proof (overview):

In order to count the eligible forms, we parametrize them as the orbits of an algebraic group

acting on a real vector space. Then we consider the fundamental domain for the group ac-

tion and approximate the number of lattice points inside of it by its volume (using methods

from Minkowski’s geometry of numbers). The hardest part is dealing with cusps inside the

fundamental domain, however it turns out that they mostly contain reducible forms. �

This result can be applied to find the average cardinality of Selmer groups:

Theorem 6.2. (Bhargava–Shankar)

The average cardinality of Seln(E) for n ∈ {2, 3, 4, 5} is σ(n).

Proof (overview):

We present the main steps of Bhargava–Shankar’s proof for n = 3:

1) we have a one-to-one correspondence between the sets
PGl3(Q)-orbits of strongly irreducible

locally soluble ternary cubic forms with

rational coefficients and invariants

If = −3A, Jf = −27B


1−1←→

{
nontrivial elements of Sel3(EA,B)

}

– any ternary cubic form f yields a curve C : f = 0 from the Selmer group.

2) the results of Cremona–Fisher–Stoll concerning Z-models for genus 1 curves allow to

minimise and reduce the Selmer elements, by replacing Q-coefficients by Z-coefficients

and PGl3(Q)–orbits by PGl3(Q)–equivalence classes.

3) each PGl3(Q)–orbit is a finite sum of Sl3(Z) orbits. After introducing a proper

“weight” (equal to 1
# orbits

) we can count Sl3(Z)–orbits.

4) Count the orbits using Theorem 6.1.

5) Sieving allows infinitely many congruence conditions to get the result for locally sol-

uble forms.

�

7. Average rank

In this section we’ll show how to obtain bounds on average rank knowing the average cardi-

nality of Selmer groups. Denote by avg and avg the average and upper average respectively.

Let’s suppose for a moment that the Poonen–Rains heuristics works for infinitely many
14



p, i.e. avg #Selp(E) = 1 + p. Then combining the inequalities: rkE/Q ≤ sp(E) and

(p2 − p)k + 2p− p2 ≤ pk (valid for k = 0, 1, 2, . . .):

(p2 − p) rkE/Q + 2p− p2 ≤ (p2 − p)sp(E) + 2p− p2 ≤ psp(E) = # Selp(E)

By substituting avg Selp = 1 + p we get:

avg rkE/Q ≤ 1 +
1

p2 − p
– thus with p → ∞ we would get the bound avg rkE(Q) ≤ 1. This shows, that in order to

show that the average rank is ≤ 1
2
, we need some additional input. It comes from the parity

of the rank:

Proposition 7.1. If avg Selp(E) = 1+p for infinitely many primes p and the Root Number

Equidistribution Conjecture 4.6 holds, then avg rkE/Q ≤ 1
2

and elliptic curves of rank 0

have density ≥ 1
2
. If we assume moreover the Parity Conjecture 4.3 then avg rkE/Q = 1

2

and elliptic curves of rank zero and one each have density 1
2
.

Proof (sketch):

We need to consider odd and even rank separately, using the inequalities:
p2−1

2
· k + 1 ≤ pk for even k,

p3−p
2
· k + 3p−p3

2
≤ pk for odd k.

Using p-Parity Theorem and Root Number Equidistribution we obtain the inequality

avg rkE/Q ≤ 1
2
p+1
p−1

and by taking p→∞: avg rkE/Q ≤ 1
2
. �

The final argument in Bhargava–Shankar’s proof that the average rank of elliptic curves

over Q is less than 1 is similar to the above reasoning. They use the result avg Sel5(E) =

6, the p-parity theorem and the fact that the Equidistribution Root Number Conjecture

holds for 55% of curves (4.7) to get average rank below 1 (approximately 0.885). They

also deduce that positive proportion of elliptic curves over Q satisfies BSD conjecture by

using Skinner-Urban Theorem (which can be roughly restated like this: if p is an odd prime,

sp(E) = 0 and E satisfies some technical conditions, then L(E, 1) 6= 0) and the result of

Gross–Zagier–Kolyvagin. Currently Bhargava and Shankar are working on analogous results

for hyperelliptic curves.

Hints for the exercises

Exercise 1. Let P0 ∈ C(Q). Parametrize other points in C(Q) by considering all lines through P0

with rational slopes and their intersections with C.

Exercise 2. Show that x2 + y2 = 3 has no solutions in Q3; in other words show that if X2 + Y 2 =

3Z2 for X, Y, Z ∈ Z then 3|X, Y, Z.
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Exercise 3. Note that {O, (−1, 0), (0,±1), (2,±3)} ⊂ E(Q)tors. We have: #Ẽ(F5) = 6 – thus 3.4

and Lagrange theorem imply #E(Q)tors|6.

Exercise 4. The injection Ed(Q) ↪→ E(Q(
√
d)) is ι((x, y)) = (x,

√
dy). Show that:

ι(Ed(Q))∩E(Q) ⊂ E(Q)[2] and 2E(Q) ⊂ ι(Ed(Q)) +E(Q) to obtain the equality of

ranks.

Exercise 5. If you view E(K) ⊗ C as a representation of G = Gal(K/Q), it decomposes into

irreducible complex representations of G. The rank of E(Q) is equal to number of

trivial representations in this decomposition. Prove that every group of odd order

has only one irreducible representation which is real, namely the trivial one, and

the rest come in complex-conjugate pairs (note that in every group the number of

self-inverse conjugacy classes equals the number of real irreducible representations).

Alternatively, use the Feit-Thompson theorem.

Exercise 6. Use Vieta’s formulas to show that if x3 + Ax + B has integer roots then A and B

must be “large”.

Exercise 7. This is a question about how primes split in Q(
√

17, i). Use the definition of the

global root number as a product of local root numbers.
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