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1 Introduction

The redlib library is a collection of routines for working with

� Combinatorics of special fibres of minimal regular models with normal crossings, their dual graphs
and reduction types (Magma, Python, JavaScript),

� General discrete valuation rings (Magma),

� Reduction types of general curves over DVRs (Magma).

The Magma version implements computing reduction types for

� ∆v-regular curves (see [Do1])

� Hyperelliptic curves of any genus in residue characteristic ̸= 2 (Muselli’s algorithm [Mu]).

All three versions implement conversion between dual graphs of special fibres, reduction types and their
labels, and implement drawing reduction types and their associated shapes in TeX. Magma version also
implements drawing special fibres in TeX.

To install the library, unpack it into a working directory, and use

AttachSpec("redlib.spec"); Magma see ex-redlib.m

import redtype Python see ex-redlib.py

import redlib from ’./redtype.ts’; standalone JavaScript see ex-redlib.js

<script src="redtype.js"></script> JavaScript in html

This library accompanies the paper [Do2] on the classification of reduction types. We now describe the
functionality in Magma. See §10 for the python version and §11 for the JavaScript version.

1.1 Examples: reduction types and labels

Example (Type II∗ elliptic curve).

> R:=ReductionType("II*"); // Kodaira-Neron type II*
> G:=DualGraph(R);
> TeX(G);
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6
Γ1

5

43

2 1

4

2

3

> Sprint(G,"Magma");
DualGraph([6,5,4,3,2,1,4,2,3], [0,0,0,0,0,0,0,0,0],
[[1,2],[1,7],[1,9],[2,3],[3,4],[4,5],[5,6],[7,8]])

> R:=ReductionType("[10]II*"); // same II*, but now with multiplicity 10
> TeX(DualGraph(R));

60
Γ1

50

4030

20 10

40

20

30

> Genus(R); // any such type has chi=0 and genus 1
1

Example (Reduction type in large genus).

> R:=ReductionType("III=(3)III-II-{2-2}18g2ˆ2,2,2,12-c1");
> Genus(R); // Genus of the generic fibre
58
> TeX(R); // Reduction type as a graph

[2]91,1,1,6g2

III

III

II

3

> TeX(DualGraph(R)); // associated special fibre

18 g2
Γ1

2 12

6
2

4
Γ2

1 1 4
4

2

6
Γ4

3
1

4
Γ3

1 2

Example (All reduction types in a given genus).

> #ReductionTypes(2); // 104 reduction type families for g=2
104
> semistable:=ReductionTypes(2: semistable); // of which 7 are semistable
> [TeX(R): R in semistable];

1g2 I1,g1 I1,1 1g1 1g1 1g1 I1 I1 I1 1 1

Example (Reduction types of a given shape).

> L:=[D[1]: D in Shapes(3) | D[2] in [5..8]]; // Genus 3 shapes
> &cat [TeX(S): S in L]; // with 5..8 reduction types in them

31,1,1

(5) 1 31,2

(6) D
2

21,1

(8)

1

1

21,1

(8)

D

D

2
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> ReductionTypes(L[2]); // Labels of reduction types in the second one
[III*-{2-2}-D,I1*-=D,I0*-=D,III--{2-2}D,II*-{4-2}-D,II--{2-2}D]
> PrincipalTypes(-3,[1,2]); // and 6 principal types that can be a leftmost vertex
[I0*-{1}=,I1*-{1}=,III-{1}-{2},III*-{3}-{2},II-{1}-{2},II*-{5}-{4}]

1.2 Examples: Muselli’s algorithm for hyperelliptic curves

Example (Hypereliptic curves over Q).

> R<x>:=PolynomialRing(Q);
> C:=HyperellipticCurve(xˆ9+10); // C/Q: yˆ2=xˆ9+10
> ReductionType(C,3); // bad
12ˆ1,5,6-{5-2}IV*
> ReductionType(C,5); // bad
18ˆ1,8,9
> ReductionType(C,7); // good
1g4
> ReductionType(C,2); // uses Delta_v-regular models (see below)
18ˆ1,8,9

Example (Genus 2 curves over Qp).

> K:=pAdicField(3,20); // work over Q_3
> R<x>:=PolynomialRing(K);
> ReductionType(HyperellipticCurve(xˆ3+3)); // yˆ2=xˆ3+3 (elliptic, same as Kodaira)
II
> R:=ReductionType(HyperellipticCurve(xˆ6+3*xˆ3+9));
> R; // yˆ2=xˆ6+3xˆ3+9 (genus 2)
T=(3)T
> nu,page:=NamikawaUeno(R);
> nu; // Namikawa-Ueno type name in genus 2
III$_{3}$
> page; // and page in their paper to avoid ambiguities
184
> ReductionType(HyperellipticCurve(xˆ9+3)); // yˆ2=xˆ9+3 (genus 4)
18ˆ1,8,9
> ReductionType(HyperellipticCurve(xˆ81+3)); // yˆ2=xˆ81+3 (genus 40)
162ˆ1,80,81

Example (Hypereliptic curves over number fields).

> R<x>:=PolynomialRing(Q);
> C:=HyperellipticCurve(xˆ5+3); // yˆ2=xˆ5+3 at p=3
> ReductionType(C,3); // bad reduction over Q
10ˆ1,4,5
> K<r5>:=NumberField(xˆ5-3);
> CK:=BaseChange(C,K);
> PK:=ideal<Integers(K)|r5>;
> ReductionType(CK,PK); // nearly good over Q(3ˆ(1/5))
2ˆ1,1,1,1,1,1
> L<r10>:=NumberField(xˆ10-3);
> CL:=BaseChange(C,L);
> PL:=ideal<Integers(L)|r10>;
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> ReductionType(CL,PL); // good over Q(3ˆ(1/10))
1g2

Example (Hypereliptic curves over extensions of p-adics).

> K:=pAdicField(3,20); // same example as above but much faster, because
> R<x>:=PolynomialRing(K); // no need to compute rings of integers
> // in number fields, which is slow
> C:=HyperellipticCurve(xˆ5+3); // yˆ2 = xˆ5+3 over Q3
> ReductionType(C); // bad reduction over Q3
10ˆ1,4,5
> L1:=ext<K|xˆ5-3>;
> ReductionType(BaseChange(C,L1)); // nearly good over Q3(3ˆ(1/5))
2ˆ1,1,1,1,1,1
> L2:=ext<K|xˆ10-3>;
> ReductionType(BaseChange(C,L2)); // good over Q3(3ˆ(1/10))
1g2

Example (Hypereliptic curves over F3(t) at t = 0).

> K<t>:=RationalFunctionField(GF(3));
> R<x>:=PolynomialRing(K);
> C1:=HyperellipticCurve(xˆ5+t); // yˆ2=xˆ5+t over F_3(t)
> Model(C1,t);
Muselli model of xˆ5+t=0 at 3 of type 10ˆ1,4,5

Example (Higher degree MacLane valuations).

> R<x,y>:=PolynomialRing(Q,2);
> p:=7;
> f:=yˆ2 - (xˆ2-p)ˆ3 - pˆ7;
> M1:=DeltaRegularModel(f,DVR(Q,p)); // not Delta_v-regular in any model
> TeX(M1: Delta, Charts);

F1

3

3/2

0

5/2

1

2

1/2

3/2

0

1 1/2 0a

2
F1

• 1 1

F1 x = X−1Y Z X = y−2p3 6Y 6 + 3XY 4 + 4X2Y 2 +X3 +X2 = 0
y = X−2Z3 Y = xy−1p Z2 = 0
p = X−1Z2 Z = y−1p2

a L = 1 r = [1]3

> M2:=Model(f,p); // default Model uses Muselli's algorithm
> TeX(M2: Charts); // and higher degree MacLane valuations

2
6: v(x)≥1/2

1 1 2

6
6: v(x2−7)≥7/3

2 2

s v |s| dv bv ev νv nv mv tv pv sv γv p0v s0v γ0
v uv g

s1 v(x2−7)≥7/3 6 2 3 6 7 2 6 3 1 7/6 1 2 −7/6 1 1 0
s2 v(x)≥1/2 6 1 2 2 3 2 2 6 2 1/2 1 2 −1 2 2 0
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1.3 Examples: ∆v-regular models for plane curves

Example (Curve from [Do1, Table 1 (i)]).

> R<x,y>:=PolynomialRing(Q,2);
> p:=3;
> f:=x*yˆ2-xˆ4-xˆ2-pˆ3;
> M:=Model(f,3); // by default uses Muselli's algorithm, as
> TeX(M); // it is hyperelliptic and p<>2

4
3: v(x)≥3/2

3

21

2 3
2

1 g1
5: v(x)≥0

> M:=Model(f,3: model:="delta"); // force Magma to use Delta_v-regular machinery
> TeX(M: Delta); // and show Newton polygon as well

F1 F2

3 3/2

3/4

0

0

0

0 0
4

F1

3

21

2 3
2

1 g1
F2

Example (Model of y2 = x6 + 2 over Q2).

> K:=pAdicField(2,30); // no Muselli's algoritm when p=2, so Model will
> R<x>:=PolynomialRing(K); // attempt to use Delta_v-regular models
> C1:=HyperellipticCurve(xˆ6+2); // given equation is not Delta_v-regular
> TeX(Model(C1): Delta); // with a singularity along the yˆ2,y*xˆ3,xˆ6 segment

F1

1

1/2

0

5/6

1/3

2/3

1/6

1/2

0

1/3 1/6 0

a

6
F1

• 4

2

The reduced polynomial t2 + 1 has a double root, so we shift it to 0 with y 7→ y + x3

> C2:=Transformation(C1,1,xˆ3);
> TeX(Model(C2): RedType, Delta); // this is now Delta_v-regular, of type 6ˆ5,5,2

Type 65,5,2 F1

1

1/2

0

2/3 5/6 1
6

F1

5

43

2 1

5

43

2 1

2

> NamikawaUeno(ReductionType(C2)); // or V* in Namikawa-Ueno
V$ˆ*$ 156

Example (Large genus example).

> R<x,y>:=PolynomialRing(Q,2);
> p:=13;
> f:=pˆ3*yˆ5 + pˆ2*xˆ7 + pˆ5 + p*xˆ4*y + x*yˆ3;
> M:=Model(f,p); // This is Delta_v regular as seen from the picture
> DeltaTeX(M); // (nothing in red that indicates singularities)
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F1

F2

F4

5

23/5

21/5

19/5

17/5

3

32/7

32/11

16/11

0

20/9

29/7

25/11

9/11

13/9

26/7

18/11

2/3

23/7

1

19/9

20/7

4/3

17/7 2

> IsSingular(M);
false
> R:=ReductionType(M); R; // Associated reduction type
11ˆ5,8,9-{9-5}(3)9ˆ1,5,3-{3-3}(3)T-{1-8}-{2-5}c1
> Genus(R); // and genus (=number of interior pts in Newton polygon)
12
> TeX(R: scale:=2); // Reduction type as a graph

115,8,9

91,5,3

T

5-2 8-1

3-3

3

9-5

3

> TeX(M); // and picture of the special fibre

11
F4

5

4

3

2

8

5

2

1

9

75

3 1

11

1 5

9
F1

1 3

33

3
F2

1.4 Examples: Classification in genus 1 and 2

Example (Elliptic curves). Reduction types of elliptic curves come in 10 families, called Kodaira types.
They are accessed like this:

> E:=ReductionTypes(1: elliptic); E;
1g1, I1, I0*, I1*, IV, IV*, III, III*, II, II*

Define a helper function to TeX a dual graph of a reduction type given by a label, and generate their
special fibres in tikz. Note that In, In* (n ≥ 1) are families, with link chains of varying possible lengths,
while the others do not allow for any variation.

> t:=func<s|TeX(DualGraph(ReductionType(s)): xscale:=0.75)*" \\hfill ">;
> t("1g1"), t("I1"), t("I0*"), t("I1*");

1 g1
Γ1

1
Γ1

2
Γ1

1 1 1 1 2
Γ1

1 1

21 1
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> t("II"), t("III"), t("IV");

6
Γ1

1 2 3 4
Γ1

1 1 2 3
Γ1

1 1 1

> t("II*"), t("III*"), t("IV*");

6
Γ1

5

43

2 1

4

2

3 4
Γ1

3

21

3

21

2 3
Γ1

2

1

2

1

2

1

Example (Genus 1 curves). Genus 1 curves have reduction types [d]K where K is one of the Kodaira
types above, and d ≥ 1 any multiple. For example,

> R:=ReductionType("[3]II");
> Genus(R);
1
> TeX(DualGraph(R)); // 3 x Type II

18
Γ1

3 6 9

Example (Genus 2 curves). Reduction types of genus 2 come in 104 families, classified by Namikawa–
Ueno. Here is how to construct all of them by labels. Write K for one of the 10 Kodaira types

> ReductionTypes(1: elliptic);
1g1, I1, I0*, I1*, IV, IV*, III, III*, II, II*

and define again a helper function to TeX a dual graph of a reduction type given by a label

> t:=func<s|TeX(DualGraph(ReductionType(s)): xscale:=0.75)*" \\hfill ">;

Genus 2 classification (104 in total):

1. The 55 types of the form K1-K2 where K1, K2 are any of the 10 Kodaira types. For example,
IV-III, I1*-I0*, 1g1-II*, etc.

> t("IV-III"), t("I1*-I0*"), t("1g1-II");

4
Γ2

1 2 1

3
Γ1

1 1

2
Γ2

1

21 1

1

2
Γ1

1 1 1

6
Γ2

2 3

1 g1
Γ1

2. The 10 types of the form [2]K D where K is one of the 10 Kodaira types. There is a unique way
to attach a D-link in a minimal way to [2]K in every case. For example, [2]IV D, [2]I1* D, etc.

> t("[2]1g1_D"), t("[2]III_D"), t("[2]I0*_D");

21 1

2 g1
Γ1 8

Γ1

2 4

21 1

4
Γ1

2 2 2

21 1

3. The 8 types K n obtained by adding a loop to every Kodaira type except II, II*. For II, II* all the
outgoing open chains have different initial multiplicities, so this is not possible, but it is possible
for all the others, again in a unique minimal way. For example, 1g1 1, IV 0, IV* -1, etc.

> t("1g1_1"), t("I1_1"), t("IV_0"), t("IV*_-1");

1 g1
Γ1

1
Γ1

3
Γ1

1
1

3
Γ1

2

1 2

4. The 6 types K D obtained by adding a D-link to a Kodaira type whose principal component has
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even multiplicity, namely I0*, I1*, III, III*, II, II*. For example, I0* D, III D, II* D, etc.

> t("I0*_D"), t("III_D"), t("II*_D");

2
Γ1

1 1 1 1

21 1

4
Γ1

1 1

21 1

6
Γ1

5

43

2 1

3 4

21 1

5. The 16 types from cores with χ = −2, consisting of one principal component of genus 0 and
multiplicity m, and open chains with initial multiplicities d1, ..., dk ∈ Z/mZ and

∑
di = 0.

> Cores(-2);
[ 2ˆ1,1,1,1,1,1, 3ˆ1,1,2,2, 4ˆ1,3,2,2, 5ˆ1,1,3, 5ˆ1,2,2, 5ˆ2,4,4, 5ˆ3,3,4, 6ˆ1,1,4,

6ˆ2,4,3,3, 6ˆ5,5,2, 8ˆ1,3,4, 8ˆ5,7,4, 10ˆ1,4,5, 10ˆ3,2,5, 10ˆ7,8,5, 10ˆ9,6,5 ]
> t("3ˆ1,1,2,2"), t("5ˆ2,4,4"), t("10ˆ7,8,5");

3
Γ1

1 1 2

1

2

1

5
Γ1

2

1

4

32

1

4

32

1

10
Γ1

7

41

8

64

2

5

6. The 9 leftover types D–=D, [2] D,D,D, Dg1, [2]T {6}D, 4ˆ1,3 D, 1g2, T=T, 1– – –1, D {2-2}:
> left:=["D-=D","[2]_D,D,D","Dg1","[2]T_{6}D","4ˆ1,3_D","1g2","T=T","1---1","D_{2-2}"];
> [t(R): R in left]);

2
Γ2

1 1

2
Γ1

1

2
Γ1

21 1 21 1 21 1

2 g1
Γ1

1 1 6
Γ1

2 4

2
63 3

4
Γ1

1 3

21 42 2

1 g2
Γ1

3
Γ2

1 2

1
3

Γ1

1 2

1

1
Γ2

1
Γ1

2
Γ1

1 1

2 Reduction types (redtype.m)

type RedCore

type RedChain

type RedPrin

type RedShape

type RedType

The library redtype.m implements the combinatorics of reduction types, in particular

� Arithmetic of open and link sequences that controls the shapes of chains of P1s in special fibres of
minimal regular normal crossing models,

� Methods for reduction types (RedType), their cores (RedCore), link chains (RedChain) and shapes
(RedShape),

� Canonical labels for reduction types,

� Reduction types and their labels in TeX,

11



� Conversion between dual graphs, reduction type, and their labels:

{dual graphs} {reduction types} {labels}.

Example (Reduction types, labels and dual graphs).

> R:=ReductionType("I2*-I3*-I4*");
> Label(R); // Plain label
I2*-I3*-I4*
> Label(R: tex); // TeX label

I∗2 I∗3 I∗4
> TeX(R); // Reduction type as a graph
I∗2 I∗3 I∗4

> TeX(DualGraph(R)); // Associated dual graph, in TeX

2
Γ3

1 2

22

21 1

1

2
Γ2

2
2

21 1
1

2
Γ1

1
2

21 1

This is a large dual graph on 22 components, all of multiplicity 1 or 2, and all of genus 0. Taking the
associated reduction type gives back R:

> G:=DualGraph([2,2,2,1,1,2,1,1,2,1,2,1,1,2,2,1,2,1,1,2,2,2],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[[1,4],[1,9],[1,10],[2,10],[2,14],[2,16],[3,5],[3,16],[3,20],
[6,7],[6,8],[6,9],[11,12],[11,13],[11,15],[14,15],
[17,18],[17,19],[17,22],[20,21],[21,22]]);

> ReductionType(G);
I2*-I3*-I4*

2.1 Open and link chains

A reduction type is a graph that has principal types as vertices (like I∗2, I
∗
3, I

∗
4 above) and link chains as

edges. Principal types encode principal components together with open chains, loops and D-links. The
three functions that control multiplicities of open and link chains, and their depths are as follows:

intrinsic OpenSequence(m::RngIntElt, d::RngIntElt: includem:=true) ->
SeqEnum[RngIntElt]

Unique open sequence of type (m,d) for integers m>=1 and 1<d<m. It is of the form
[m,d,...,gcd(m,d)]

with every three consecutive terms d_(i-1), d_i, d_(i+1) satisfying
d_(i-1) + d_(i+1) = d_i * (integer > 1).

If includem:=false, exclude the starting point m from the sequence.

Example (OpenSequence).

12



> OpenSequence(6,5);
[ 6, 5, 4, 3, 2, 1 ]
> OpenSequence(13,8);
[ 13, 8, 3, 1 ]

intrinsic LinkSequence(m1::RngIntElt, d1::RngIntElt, m2::RngIntElt,
dk::RngIntElt, n::RngIntElt: includem:=true) -> SeqEnum[RngIntElt]

Unique link sequence of type m1(d1-dk-n)m2, that is of the form [m1,d1,...,dk,m2] with n+1 terms
equal to gcd(m1,d1)=gcd(m2,dk) and satisfying the chain condition: for every three consecutive terms

d_(i-1), d_i, d_(i+1)
we have

d_(i-1) + d_(i+1) = d_i * (integer > 1).
If includem:=false, exclude the endpoints m1,m2 from the sequence.

Example (LinkSequence).

> LinkSequence(3,2,3,2,-1);
[ 3, 2, 3 ]
> LinkSequence(3,2,3,2,0);
[ 3, 2, 1, 2, 3 ]
> LinkSequence(3,2,3,2,1);
[ 3, 2, 1, 1, 2, 3 ]

intrinsic MinimalLinkDepth(m1::RngIntElt, d1::RngIntElt, m2::RngIntElt,
dk::RngIntElt) -> RngIntElt

Minimal depth of a link chain m1=d0,d1,d2,...,dk,m2=d(k+1) of P1s between principal components
of multiplicity m1, m2 and initial link multiplicities d1,dk. The depth is defined as

-1 + number of times gcd(d1,...,dk) appears in the sequence.
For example, 5,4,3,2,1 is a valid link sequence, and MinimalLinkDepth(5,4,1,2) = -1 + 1 = 0.

Example. Example from the description of the intrinsic:

> MinimalLinkDepth(5,4,1,2);
0

For another example, the minimal n in the Kodaira type I∗n is 1. Here the chain links two components
of multiplicity 2, and the initial multiplicities are 2 on both sides as well:

> MinimalLinkDepth(2,2,2,2);
1

Here is an example of a reduction type with a link chain between two components of multiplicity 3 and
outgoing multiplicities 2 on both sides:

> R:=ReductionType("IV*-(2)IV*");
> TeX(DualGraph(R));

3
Γ1

2

1

2

1

2

11

1 2

3
Γ2

2

1

2

1

The link chain has gcd=GCD(3,2)=1 and

depth = −1 + #1’s(=gcd) in the sequence 3, 2, 1, 1, 1, 2, 3 = 2

This is the depth specified in round brackets in IV*-(2)IV*

> MinimalLinkDepth(3,2,3,2); // Minimal possible depth for such a chain = -1
-1
> R1:=ReductionType("IV*-IV*"); // used by default when no expicit depth is specified

13



> R2:=ReductionType("IV*-(-1)IV*");
> assert R1 eq R2;
> TeX(DualGraph(R1));

3
Γ2

2

1

2

1
2

3
Γ1

2

1

2

1

The next two functions are used in Label to determine the ordering of chains (including loops and
D-links), and default multiplicities which are not printed in labels.

intrinsic SortLinks(m::RngIntElt, O::SeqEnum) -> SeqEnum

Sort a sequence of multiplicities O by gcd with m, then by o. This is how open and loose
multiplicities are sorted in reduction types.

Example (Ordering open multiplicities in reduction types).

> SortLinks(6,[1,2,3,3,4,5]); // sort links in O by gcd(o,m), then by o mod m
[ 1, 5, 2, 4, 3, 3 ]

intrinsic DefaultMultiplicities(m1::RngIntElt, o1::SeqEnum, m2::RngIntElt,
o2::SeqEnum, loop::BoolElt) -> RngIntElt, RngIntElt

Default edge multiplicities d1,d2 for a component with multiplicity m1, available outgoing
multiplicities o1, and one with m2,o2. Parameter loop:boolean specifies whether it is a loop or a
link between two different principal components

Example (DefaultMultiplicities). Let us illustrate what happens when we take a principal component
91,1,1,3,3 and add five default loops of depth 2,2,1,2,3, to get a reduction type 91,1,1,3,32,2,1,2,3. How do default
loops decide which initial multiplicities to take?

We start with a component of multiplicity m = 9 and open multiplicities O = {1, 1, 1, 3, 3}.
> R:=ReductionType("9ˆ1,1,1,3,3");
> TeX(DualGraph(R));

9
Γ1

1 1 1 3 3

We can add a loop to it linking two 1’s of depth 2 by

> R:=ReductionType("9ˆ1,1,1,3,3_{1-1}2");
> TeX(DualGraph(R));

9
Γ1

1 3 3 1

1

1

In this case, {1-1} does not need to be specified because this is the minimal pair of possible multiplicities
in O, as sorted by SortLinks:

> DefaultMultiplicities(9,[1,1,1,3,3],9,[1,1,1,3,3],true);
1 1
> assert R eq ReductionType("9ˆ1,1,1,3,3_2");

After adding the loop, {1, 3, 3} are left as potential outgoing multiplicities, so the next default loop links
3 and 3. Note that 1, 3 is not a valid pair because gcd(1, 9) ̸= gcd(3, 9).

> DefaultMultiplicities(9,[1,3,3],9,[1,3,3],true);
3 3
> R2:=ReductionType("9ˆ1,1,1,3,3_2,2"); // 2 loops, use 1-1 and 3-3
> TeX(DualGraph(R2));
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3

> DefaultMultiplicities(9,[1],9,[1],true);
9 9
> R3:=ReductionType("9ˆ1,1,1,3,3_2,2,1,2,3"); // no pairs left -> next three loops
> TeX(DualGraph(R3)); // use (m,m)=(9,9)

9
Γ1

1 1

1

1 3

3

3
9

99

> assert R3 eq ReductionType("9ˆ1,1,1,3,3_{1-1}2,{3-3}2,{9-9}1,{9-9}2,{9-9}3");

2.2 Principal component core (RedCore)

type RedCore

A core is a pair (m,O) with ‘principal multiplicity’ m ≥ 1 and ‘outgoing multiplicities’ O = {o1, o2, ...}
that add up to a multiple of m, and such that gcd(m,O) = 1. It is implemented as the following type:

declare type RedCore;
declare attributes RedCore:

m, // main component multiplicity
O, // outgoing multiplicities in Z/mZ with GCD(m,O)=1, sorted with SortLinks
chi; // Euler characteristic m*(2-#O) + sum_{o in O} GCD(m,o), even <=2

intrinsic Core(m::RngIntElt, O::SeqEnum) -> RedCore

Create a new core from principal multiplicity m and outgoing multiplicities O.

intrinsic Print(C::RedCore, level::MonStgElt)

Print a principal component core through its label.

Example (Create and print a principal component core (m,O)).

> Core(8,[1,3,4]); // Typical core - multiplicities add up to a multiple of m
8ˆ1,3,4
> Core(8,[9,3,4]); // Same core, as they are in Z/mZ
8ˆ1,3,4

This is how cores are printed, with the exception of 7 cores of χ = 0 (see below) that come from Kodaira
types and two additional special ones D and T:

> Core(6,[1,2,3]); // from a Kodaira type
II
> [Core(2,[1,1]),Core(3,[1,2])]; // two special ones
[D,T]

2.3 Basic invariants and printing

intrinsic Multiplicity(C::RedCore) -> RngIntElt

Principal multiplicity m of a reduction type core.

intrinsic OpenMultiplicities(C::RedCore) -> SeqEnum

Outgoing multiplicities O of a reduction type core, sorted with SortLinks
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intrinsic Chi(C::RedCore) -> RngIntElt

Euler characteristic of a reduction type core (m,O), chi = m(2-|O|) + sum_(o in O) gcd(o,m)

intrinsic Label(C::RedCore: tex:=false) -> MonStgElt

Label of a reduction type core, for printing (or TeX if tex:=true)

intrinsic TeX(C::RedCore) -> MonStgElt

Print a reduction type core in TeX.

Example (Core labels and invariants).

> C:=Core(2,[1,1,1,1]);
> Multiplicity(C); // Principal multiplicity m
2
> OpenMultiplicities(C); // Outgoing multiplicities O
[ 1, 1, 1, 1 ]
> Chi(C); // Euler characteristic
0
> Label(C); // Plain label
I0*
> TeX(C); // TeX label

I∗0
> C: Magma; // How it can be defined
Core(2,[1,1,1,1])

intrinsic Cores(chi::RngIntElt: mbound:="all", sort:=true) -> SeqEnum

Returns all reduction type cores (m,O) with given Euler characteristic chi<=2. When chi=2 there are
infinitely many, so a bound on m must be given

Example (Cores).

> Cores(0); // I0*,IV,IV*,III,III*,II,II* (7 of them)
I0*, IV, IV*, III, III*, II, II*
> [#Cores(i): i in [0..-10 by -2]]; // 7, 16, 43, 65, 64, ...
[ 7, 16, 43, 65, 64, 193 ]

2.4 Link chains (RedChain)

Link chains between principal components fall into three classes: loops on a principal type, D-link on
a principal type, and chains between principal types that link two of their loose edge endpoints. All of
these are implemented as type RedChain that carries class=cLoop, cD or cLoose, and keeps track of all
the invariants.

declare type RedChain; // Link chain: loop, D-link or linking two loose edge
declare attributes RedChain: // endpoints of two distinct principal components

class, // cLoop, cD, cLoose - must be assigned
// all other attributes may be false if unassigned

index, // unique identifier, eventually index in a global array of edges
Si,Sj, // principal types S[i], S[j] between which the edge is going
mi,mj, // principal multiplicities of the components S[i], S[j]
di,dj, // outgoing multiplicities of the link chain, so that it is mi,di,...,dj,mj
depth, // original depth, used for sorting
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depthstr; // string for printing, by default Sprint(depth), but could me "m", "n", etc.

type RedChain

intrinsic Link(class::RngIntElt, mi::RngIntElt, di::RngIntElt, mj::Any, dj::Any:
depth:=false, Si:=false, Sj:=false, index:=false) -> RedChain

Return a link chain of a given class and specified invaraints:
class = cLoop (loop), cD (D-link) or cLoose (link chain between different principal types)
Si = originating principal type S_i (by default unspecified (Si:=false))
mi, di = principal multiplicity of S_i and outgoing multiplicity of the chain from S_i
Sj = target principal type S_j (by default unspecified (Sj:=false))
mj, dj = principal multiplicity of S_j and outgoing multiplicity of the chain from S_j
so that the chain of P1s has multiplicities [mi,di,...,dj,mj]

depth = depth of the chain (by default minimal (depth:=false))
index = index in the list of link chains of a reduction type to which the chain belongs

(by default unspecified (index:=false))

intrinsic Print(c::RedChain, level::MonStgElt)

Print a chain c like 'class mi,di - (depth) mj,dj', together with indices of Si, Sj and c if
assigned

Example (Some link chains, with no principal types specified).

> cLoop, cD, cLoose := Explode([1,2,3]);
> Link(cLoop,2,1,2,1); // loop
loop 2,1 -(0) 2,1
> Link(cD,2,2,false,false); // D-link
D-link 2,2 -(1) 2,2
> Link(cLoose,2,2,false,false); // to another (yet unspecified) principal type
loose 2,2 -(false) false,false

2.5 Invariants and depth

intrinsic Class(c::RedChain) -> RngIntElt

Class of a RedChain - cLoop, cD or cLoose depending on the type of the chain

intrinsic GCD(c::RedChain) -> RngIntElt

GCD of all elements in the chain (=GCD(mi,di)=GCD(mj,dj))

intrinsic Index(c::RedChain) -> RngIntElt

Index of the chain c used for ordering chains in a reduction type, and sorting in label.

intrinsic DepthString(c::RedChain) -> MonStgElt

String set by SetDepths how c is printed, e.g. "1" or "n"

intrinsic SetDepthString(c::RedChain, depth::Any)

Set how c is printed, e.g. "1" or "n"

Example (Invariants of link chains). Take a genus 2 reduction type I2 1
I∗2 whose special fibre consists

of Kodaira types I2 (loop of P1s) and I∗2 linked by a chain of P1s of multiplicity 1.

> R:=ReductionType("I2-(1)I2*");
> TeX(DualGraph(R));

2
Γ2

1 2

21 1

1

1
Γ1

1
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There are two principal types R!!1=I2 and R!!2=I∗2, with a loop on R!!1 (class cLoop=1), a link chain
between them (class cLoose=3), and a D-link on R!!2 (class cD=2) This is the order in which they are
printed in the label.

> [R!!1,R!!2]; // two principal types R!!1 and R!!2
[I2-{1},I2*-{1}]
> c1,c2,c3:=Explode(LinkChains(R)); c1,c2,c3;
[1] loop c1 1,1 -(2) c1 1,1
[2] loose c1 1,1 -(1) c2 2,1
[3] D-link c2 2,2 -(2) 2,2
> Class(c3); // cLoop=1, *cD=2*, cLoose=3
2
> GCD(c3); // GCD of the chain multiplicities [2,2,2]
2
> Index(c3); // index in the reduction type
3
> SetDepthString(c3, "n"); // change how its depth is printed in labels
> c3; // and drawn in dual graphs of reduction types
[3] D-link c2 2,2 -(n) 2,2
> Label(R);
I2-(1)In*
> TeX(DualGraph(R));

1
Γ1

1
1

2
Γ2

1 2

··· n−1

2

21 1

2.6 Principal component types (RedPrin)

type RedPrin

The classification of special fibre of mrnc models is based on principal types. For curves of genus
≥ 2 such a type is a principal component with χ < 0, together with its open chains, loops, chains to
principal component with χ = 0 (called D-links) and a tally of link chains to other principal components
with χ < 0, called loose links. For example, the following reduction type has only principal type
(component Γ1) with one loop and one D-link:

8
Γ1

1 2 1 1

1 1

1
2

2

1 1

loop principal component Γ1

D-link

A principal type is implemented as the following Magma type.

declare type RedPrin; // (m,g,O,Lloops,LD,lloose)
declare attributes RedPrin:
m, // principal multiplicity
g, // genus
C, // chains: open, loops, D-links or loose from S
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O, // outgoing multiplicities for open chains
L, // outgoing multiplicities from all other chains
gcd, // gcd(m,O,L)
core, // core of type RedCore (divide by gcd)
chi; // Euler characteristic =chi(m,g,O,L)

2.7 Creation functions

intrinsic PrincipalType(m::RngIntElt, g::RngIntElt, O::SeqEnum, Lloops::SeqEnum,
LD::SeqEnum, Lloose::SeqEnum: index:=0) -> RedPrin

Create a new principal type from its primary invariants, and check integral self-intersection.

Example. We construct the principal type from example above. It hasm = 8, g = 0, open multiplicities
1,1,2, loop 1 − 1 of depth 3, a D-link with outgoing multiplicity 2 of depth 1, and no loose chains (so
that it is a reduction type in itself).

> S:=PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[]);

We print S in a format that can be evaluated back (S: Magma), print its label (by printing S or Label(S))
and draw its dual graph.

> S:Magma;
PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[])
> S;
8ˆ1,1,1,1,2,2_3,1D
> TeX(DualGraph(ReductionType("8ˆ1,1,1,1,2,2_3,1D")));

8
Γ1

1 1 2 1

1 1

1 2

21 1

We can generate all principal types S a given Euler characteristic Chi(S), or restrict to those with a
given core or a given sequence of gcd’s of outgoing multiplicities of all loose chains. The latter are used
to generate all reduction types in given genus through their shapes (see RedShape), where such types
placed at the vertices‘.

intrinsic PrincipalTypes(chi::RngIntElt, C::RedCore: withlgcds:=false,
sorted:=true) -> SeqEnum[RedPrin], SeqEnum[SeqEnum[RngIntElt]]

Find all possible principal types S with a given core C and Euler characteristic chi. Return a
sequence of them.
If withlgcds:=true, also return a sequence lgcds representing all possible LGCD(S).

intrinsic PrincipalTypes(chi::RngIntElt: semistable:=false, withlgcds:=false,
sorted:=true) -> SeqEnum, SeqEnum

Find all possible principal types S with a given Euler characteristic chi. Return a sequence of
them.
If withlgcds:=true, also return a sequence lgcds representing all possible LGCD(S).

intrinsic PrincipalTypes(chi::RngIntElt, lgcd::SeqEnum: semistable:=false,
withlgcds:=false, sorted:=true) -> SeqEnum

All possible principal types with a given Euler characteristic chi and GCDs of loose multiplicities.
If withlgcds:=true, also returns [lgcd] as a second parameter (like all other PrincipalTypes
instances).

Example (Generating principal types). Geneate principal types of Euler characteristic χ = −1,−2,−3,−4

> [#PrincipalTypes(-n): n in [1..4]]; // 13, 83, 75, 277, 176, 591, ...
[ 13, 83, 75, 277 ]

19



Generate those with χ = −1 and one loose chain of multiplicity 1

> assert #PrincipalTypes(-1,[1]) eq 10; // Table 1_10ˆ1 in the classification paper

Principal types with core χ = −1 and core IV

> PrincipalTypes(-2,Core(3,[1,1,1]));
IV_0, IV-{1}-{1}, [2]IV_D, [2]IV-{2}

Example (Principal type with given χ and gcds of loose links).

> S:=PrincipalType(4,0,[1,2],[],[],[1]);
> S; // Kodaira type with one loose link
III-{1}
> Chi(S); // with chi(S) = -1
-1
> LGCD(S); // and LGCD(S) = [1]
[ 1 ]
> PrincipalTypes(Chi(S),LGCD(S)); // all principal types with these parameters
[1g1-{1},I1-{1},I0*-{1},I1*-{1},IV-{1},IV*-{2},III-{1},III*-{3},II-{1},II*-{5}]

2.8 Invariants of principal types

intrinsic Multiplicity(S::RedPrin) -> RngIntElt

Principal multiplicity m of a principal type

intrinsic GeometricGenus(S::RedPrin) -> RngIntElt

Geometric genus g of a principal type S=(m,g,O,...)

intrinsic Index(S::RedPrin) -> RngIntElt

Index of the principal component in a reduction type, 0 if freestanding

intrinsic Chains(S::RedPrin: class:=0) -> SeqEnum[RedChain]

Sequence of chains of type RedChain originating in S. By default, all (loops, D-links, loose)
are returned, unless class is specified.

intrinsic OpenMultiplicities(S::RedPrin) -> SeqEnum[RngIntElt]

Sequence of open multiplicities S`O of a principal type, sorted

intrinsic LooseMultiplicities(S::RedPrin) -> SeqEnum[RngIntElt]

Sequence of loose multiplicities of a principal type, sorted

intrinsic LinkMultiplicities(S::RedPrin) -> SeqEnum[RngIntElt]

Sequence of link multiplicities S`L of a principal type, sorted as in label

intrinsic Loops(S::RedPrin) -> SeqEnum[RedChain]

Sequence of chains in S representing loops (class cLoop)

intrinsic DLinks(S::RedPrin) -> SeqEnum[RedChain]

Sequence of chains in S representing D-links (class cD)

Example (Invariants of principal types).

> S:=PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[]); // Example above
> TeX(DualGraph(ReductionType([S])));

20



8
Γ1

1 1 2 1

1 1

1 2

21 1

> Multiplicity(S); // Principal component multiplicity
8
> GeometricGenus(S); // Geometric genus of the principal component
0
> OpenMultiplicities(S); // Open chain initial multiplicities O=[1,1,2]
[ 1, 1, 2 ]
> Loops(S); // Loops (of type RedChain)
[[1] loop c1 8,1 -(3) c1 8,1]
> DLinks(S); // D-Links (of type RedChain)
[[2] D-link c1 8,2 -(1) 2,2]
> LooseMultiplicities(S); // Loose link multiplicities
[]
> LinkMultiplicities(S); // All initial link multiplicities (loops, D-links, loose)
[ 1, 1, 2 ]

intrinsic GCD(S::RedPrin) -> RngIntElt

Return GCD(m,O,L) for a principal type

intrinsic Core(S::RedPrin) -> RedCore

Core of a principal type - no genus, all non-zero link multiplicities put to O, and gcd(m,O)=1

intrinsic Chi(S::RedPrin) -> RngIntElt

Euler characteristic chi of a principal type (m,g,O,Lloops,LD,Lloose), chi = m(2-2g-|O|-|L|) +
sum_(o in O) gcd(o,m), where L consists of all the link multiplicities in Lloops (2 from each), LD
(1 from each), Lloose (1 from each)

intrinsic LGCD(S::RedPrin) -> SeqEnum[RngIntElt]

Outgoing link pattern of a principal type = multiset of GCDs of loose edges with m.

Example (GCD). Define a principal component type by its primary invariants: m = 6, g = 1, open
multiplicities O = {4}, no loops, one D-link with initial multiplicity 2 and length 1, and no loose links:

> S:=PrincipalType(6,1,[4],[],[[2,1]],[]);
> GCD(S); // its GCD(m,O,L)=GCD(4,[2],[2])=2
2
> Core(S); // divide by GCD, unlink all chains
T
> S; // these are seen as [2] and T in the name
[2]Tg1_1D

Note, however, that S is not a multiple of 2 of another principal component type because its D-link is
primitive. In other words, the special fibre has odd multiplicity components.

> TeX(DualGraph(ReductionType("[2]Tg1_1D")));

6 g1
Γ1

4

2
2

21 1
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2.9 RedPrin: Weight and comparison

intrinsic Weight(S::RedPrin) -> SeqEnum[RngIntElt]

Sequence [chi,m,-g,#loose,#Ds,#loops,#O,O,loops,Ds,loose] that determines the weight of a principal
type, and characterises it uniquely.

intrinsic PrincipalType(w::SeqEnum[RngIntElt]) -> RedPrin

Create a principal type S from its weight sequence w (=Weight(S)).

Example (Weight).

> S:=PrincipalType(8,0,[4,2],[[1,1,1]],[[2,1]],[6]); // create principal type
> w:=Weight(S); // its weight encodes chi,m,g,... and characterises it
> w;
[ -26, 8, 0, 1, 1, 1, 2, 2, 4, 1, 1, 1, 2, 1, 6 ]
> PrincipalType(w): Magma; // so that the component can be reconstructed
PrincipalType(8,0,[2,4],[[1,1,1]],[[2,1]],[6])

intrinsic 'eq'(S1::RedPrin, S2::RedPrin) -> BoolElt

Compare two principal types by their weight

intrinsic 'lt'(S1::RedPrin, S2::RedPrin) -> BoolElt

Compare two principal types by their weight

intrinsic 'le'(S1::RedPrin, S2::RedPrin) -> BoolElt

Compare two principal types by their weight

intrinsic 'gt'(S1::RedPrin, S2::RedPrin) -> BoolElt

Compare two principal types by their weight

intrinsic 'ge'(S1::RedPrin, S2::RedPrin) -> BoolElt

Compare two principal types by their weight

intrinsic Sort(S::SeqEnum[RedPrin]) -> SeqEnum[RedPrin]

Sort principal types by their weight

intrinsic Sort(˜S::SeqEnum[RedPrin])

Sort principal types by their weight

Example (Sorting principal types by Weight in increasing order).

> L := PrincipalTypes(-2,[4]) cat PrincipalTypes(-2,[2,2]);
> [Weight(S): S in L];
[[-2,4,0,1,0,0,2,1,3,4], [-2,4,0,1,1,0,1,2,2,0,4], [-2,2,0,2,0,0,2,1,1,2,2],

[-2,2,0,2,1,0,0,2,1,2,2]]
> Sort(L);
[D==, [2]_D==, 4ˆ1,3=, [2]D_D=]

2.10 Printing

intrinsic Label(S::RedPrin: tex:=false, loose:=false, wrap:=true,
returnpieces:=false) -> MonStgElt
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Ascii Label or TeX label of a principal type.
Setting tex:=true prints the tex label, in \redtype... format by default, unless wrap:=false.
Setting loose:=true prints outgoing loose edges as well (standalone principal type).

Example (Labels without and with loose link chains.). The former are used for printing reduction
types (where loose link chains form edges) and the latter are standalone, and define the type uniquely.

> [Label(S): S in PrincipalTypes(-1)];
[ 1g1, I1, 1, I0*, I1*, D, IV, T, IV*, III, III*, II, II* ]
> [Sprint(S): S in PrincipalTypes(-1)];
[ 1g1-{1}, I1-{1}, 1-{1}-{1}-{1}, I0*-{1}, I1*-{1}, D-{1}=, IV-{1}, T=, IV*-{2}, III-{1},

III*-{3}, II-{1}, II*-{5} ]

intrinsic Print(S::RedPrin, level::MonStgElt)

Print a principal type as an ascii label or as an evaluatable Magma string (when level="Magma").

intrinsic TeX(S::RedPrin: length:="35pt", label:=false, standalone:=false) ->
MonStgElt

TeX a principal type as a tikz arc with outer and inner lines, loops and Ds.
label:=true puts its label underneath
standalone:=true wraps it in \tikz

Example (TeX). We define a principal type starting from a core 81,1,2,2,4,6, keeping g = 0, and declaring
O = {2, 4} to be open multiplicities, linking 1,1 one loop of depth 1, using one 2 for a D-link of depth
1, and leaving one 6 as a loose multiplicity.

> S:=PrincipalType(8,0,[2,4],[[1,1,1]],[[2,1]],[6]);
> TeX(S: standalone); // how it appears in the tables (wrapped in \tikz{...})

8

1-1

6
2D

2 4

intrinsic TeX(T::SeqEnum[RedPrin]: width:=10, scale:=0.8, sort:=true,
label:=false, length:="35pt", yshift:="default") -> MonStgElt

TeX a list of principal types as a rectangular table in a tikz picture.
label:=true puts principal type label underneath.
sort:=true sorts the types by Weight first, in decreasing order.
yshift:="default" changes y by 2 (with label) / 1.2 (without label) after every row
width:=10 puts 10 principal types in every row
scale:=0.8 controls tikz picture global scale

Example (TeX table of principal types).

> list:=PrincipalTypes(-1); // All 13 principal types with chi=-1, sorted
> TeX(list: label, width:=7, yshift:=2.2); // (10 Kodaira + 3 'exotic')

1g1

1

1g1
1

1

1-1
1

I1
1

1

1 1 1

1 1 1 1

2

1

1 1 1

I∗0
1

2

1
2D

1

I∗1
1

2

1 2

1

D 1

3

1

1 1

IV 1

3

3

1 2

T

3

2

2 2

IV∗ 2

4

1

1 2

III 1

4

3

3 2

III∗ 3

6

1

2 3

II 1

6

5

4 3

II∗ 5

2.11 Shapes (RedShape)

type RedShape
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A reduction type a graph whose vertices are principal types (type RedPrin) and edges are link chains.
They fall naturally into ‘shapes’, where every vertex only remembers the Euler characteristic χ of the
type, and edge the gcd of the chain. Thus, the problem of finding all reduction types in a given genus
(see ReductionTypes) reduces to that of finding the possible shapes (see Shapes) and filling in shape
components with given χ and gcds of loose edges (see PrincipalTypes).

Example. Here is how this works in genus 2. The 104 families of reduction types break into five possible
shapes, with all but three types in the first two shape (46 and 55 types, respectively):

> L:=Shapes(2);
> &cat [TeX(D[1]: shapelabel:=Sprint(D[2])): D in L];

2∅
(46)

46

11

(10) 11

(10)

55

1 1

1

T T
3

1

D D
2

1

A shape is represented by a Magma type RedShape with the following invariants:

declare type RedShape;
declare attributes RedShape:
G, // Underlying undirected graph with vertices labelled by [chi]

// and edges by [lgcd1,lgcd2,...] (gcds are sorted)
V, // Vertex set of G
E, // Edge set of G
D, // Double graph: vertex for every vertex of G, and for every edge

// of G except simple edges with lgcd=[1]. Edges are unlabelled,
// and D determines the shape up to isomorphism.

label; // Label based on minimum path, determines the shape up to isomorphism.

2.12 Printing and TeX

intrinsic Print(S::RedShape, level::MonStgElt)

Print a shape as Shape(vertices,edges) so that the shape can be reconstructed. Vertices are '-chi'
of principal types, and edges are of the form [from_vertex,to_vertex,gcd1,gcd2,...] with gcd_i the
gcd's of the link chains between principal types

Example (Printing a shape).

> Shape(ReductionType("IV-IV-IV")); // 3 vertices with chi=-1,-2,-1 and 2 edges
Shape([1,2,1],[[1,2,1],[2,3,1]])
> Shape(ReductionType("1---1")); // 2 vertices with chi=-1,-1 and a triple edge
Shape([1,1],[[1,2,1,1,1]])

intrinsic TeX(S::RedShape: scale:=1.5, center:=false, shapelabel:="",
complabel:="default", boundingbox:=false) -> MonStgElt, FldReElt, FldReElt,
FldReElt, FldReElt

Tikz picture for a shape S of a reduction graph, or, if boundingbox:=true, returns S,x1,y1,x2,y2,
where the last four define the bounding box.

Example (Reduction types in a family of curves). We look at curves pnxy4 = x2(1+x)y + pxy(x4+
x2y+y2) + p2(1+x2+x4y2) for p = 7 and n ≥ 3.

> _<x,y>:=PolynomialRing(Q,2);
> p:=7;
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> f:=func<n| pˆn*x*yˆ4=xˆ2*(1+x)*y+p*x*y*(xˆ4+xˆ2*y+yˆ2)+pˆ2*(1+xˆ2+xˆ4*yˆ2) >;
> M:=func<n| Model(f(n),p) >; // Model
> R:=func<n| ReductionType(M(n)) >; // and Reduction type as a function of n

The curves are ∆v-regular and the shape of ∆v is unchanged as long as n > 3, with only the height of
one vertex being affected. For n ≤ 3 some of the faces merge:

> [DeltaTeX(M(n)): n in [2..5]];

F1

F2
F3

F5F7

2 2

1

1

1

2

2

0

1/2

3/2

0

1

1/2

2

1
F1

F2

F3
F4

F5F7

2 2

1

1

1

3

2

0

1/2

2

0

1

1/2

2

1
F1

F2

F3
F4

F5

F6F8

2 2

1

1

1

4

2

0

1/2

7/3

0

1

1/2

2

1
F1

F2

F3
F4

F5

F6F7

2 2

1

1

1

5

2

0

1/2

8/3

0

1

1/2

2

1

> [TeX(R(n)): n in [2..6]];

Dg1

1g2

D 1

D
7

5

2 1g21g1

D

D

1

D

2

10

7

1g2D

1D

D

1 IV
14

7 2

1g2D

1D

D

1 IV∗
18

7 2

1g2D

1D

D

1 1g1
23

7 2

For n > 3 the shape of the reduction type remains the same:

> TeX(Shape(R(6)));

51,1,1

(11)D

1D

D

1 21,1

(8)

2

2

2.13 Construction and isomorphism testing

intrinsic Shape(V::SeqEnum[RngIntElt], E::SeqEnum[SeqEnum[RngIntElt]]) ->
RedShape

Constructs a graph shape from the data V,E as in shapes*.txt data files:
V = sequence of -chi's for individual components
E = list of edges v_i->v_j of the form [i,j,edgegcd1,edgegcd2,...]

intrinsic IsIsomorphic(S1::RedShape, S2::RedShape) -> BoolElt

Check whether two shapes are isomorphic via their double graphs

Example (Shape isomorphism testing).

> S1:=Shape([1,2,3],[[1,2,3],[2,3,1],[1,3,2]]);
> S2:=Shape([2,3,1],[[1,2,1],[2,3,2],[1,3,3]]); // rotate the graph
> assert IsIsomorphic(S1,S2);
> S3:=Shape(VertexLabels(S1),EdgeLabels(S1)); // reconstruct S1 from labels
> assert IsIsomorphic(S1,S3);

2.14 Primary invariants
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intrinsic Graph(S::RedShape) -> GrphUnd

Labelled underlying graph G of the shape

intrinsic DoubleGraph(S::RedShape) -> GrphUnd

Vertex-labelled double graph D of the shape, used for isomorphism testing

intrinsic Vertices(S::RedShape) -> SetIndx

Vertices of the underlying graph Graph(S), as an indexed set

intrinsic Edges(S::RedShape) -> SetIndx

Edges of the underlying graph Graph(S), an an indexed set

intrinsic Chi(S::RedShape, v::GrphVert) -> RngIntElt

Euler characteristic chi(v_i)<=0 of ith vertex of the graph G in a shape S

intrinsic LGCDs(S::RedShape, v::GrphVert) -> RngIntElt

LGCDs of a vertex v that together with chi determine the vertex type (chi, lgcds)

intrinsic Chi(S::RedShape) -> RngIntElt

Total Euler characteristic of a graph shape chi<=0, sum over chi's of vertices

intrinsic VertexLabels(S::RedShape) -> SeqEnum

Sequence of -chi's for individual components of the shape S so that
S=Shape(VertexLabels(S),EdgeLabels(S))

intrinsic EdgeLabels(S::RedShape) -> SeqEnum

List of edges v_i->v_j of the form [i,j,edgegcd] so that S=Shape(VertexLabels(S),EdgeLabels(S))

Example (Graph, DoubleGraph and primary invariants for shapes). Under the hood of shapes of
reduction types are their labelled graphs and associated ‘double’ graphs. As an example, take the
following reduction type:

> R:=ReductionType("1g2--IV=IV-1g1-c1");
> TeX(R);

1g2

1g1

IV

IV

There are four principal types, and they become vertices of Shape(R) whose labels are their Euler
characteristics −5,−2,−4,−5. The edges are labelled with GCDs of the link chain between the types.
For example:

— the link chain 1g2-1g1 of gcd 1 becomes the label “1”,
— the link chain IV=IV of gcd 3 becomes “3”,
— the two chains 1g2–IV of gcd 1 become “1,1”

on the corresponding edges.

> S:=Shape(R); S;
Shape([5,2,4,5],[[1,2,1],[1,4,1,1],[2,3,1],[3,4,3]])
> TeXGraph(Graph(S): scale:=1);

-5

-2

-4

-5

1

1,1

1

3
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> Vertices(S); // Indexed set of vertices of Graph(S)
{@ 1, 2, 3, 4 @}
> Edges(S); // and edges {@ {from_vertex, to_vertex}, ... @}
{@ {1, 2}, {1, 4}, {2, 3}, {3, 4} @}
> VertexLabels(S); // [-chi] for each type
[5,2,4,5]
> EdgeLabels(S); // [ [from_vertex, to_vertex, gcd1, gcd2, ...], ...]
[[1,2,1],[1,4,1,1],[2,3,1],[3,4,3]]

Both Magma’s IsIsomorphic for graphs and MinimumWeightPaths are implemented for graphs with
labelled vertices but not edges. To use them for shapes, the underlying graphs are converted to graphs
with only labelled vertices. This is done simply by introducing a new vertex on every edge which
carries the corresponding edge label. For compactness, if the label is “1” (most common case), we don’t
introduce the vertex at all. This is called the double graph of the shape:

> blue:="circle,scale=0.7,inner sep=2pt,fill=blue!20"; // former vertices
> red:="circle,draw,scale=0.5,inner sep=2pt, fill=red!20"; // former edges
> bluered:=func<v|&+Label(v) le 0 select blue else red>;
>
> TeXGraph(DoubleGraph(S): scale:=1, vertexnodestyle:=bluered);

-5

-2 -4

-51,1

3

These are used in isomorphism testing for shapes, and to construct minimal paths.

intrinsic WeightIsSmaller(new::SeqEnum, best::SeqEnum) -> MonStgElt

Compares two sequences of integers, and returns "<", ">", "l", "s", "=":
<=smaller : new has smaller weight than best
>=greater : new has greater weight
l=longer : new and best coincide until #best, and new is longer
s=shorter : new and best coincide until #new, and new is shorter
==identical : new=best

intrinsic MinimumWeightPaths(D::GrphUnd) -> SeqEnum, SeqEnum

Minimum weight paths for a labelled undirected graph (e.g. double graph underlying shape)
returns W=bestweight [<index, v_label, jump>,...] (characterizes D up to isomorphism)

and I=list of possible vertex index sequences
For example for a rectangular loop G with all vertex chis=-1 and edges as follows

V:=[1,1,1,1]; E:=[[1,2,1],[2,3,1],[3,4,2],[1,4,1,1]]; S:=Shape(V,E);
the double graph D has 6 vertices and 6 edges in a loop, and here minimum weight W is

W = [<0,[-1],false>,<0,[-1],false>,<0,[-1],false>,<0,[1,1],false>,<0,[-1],false>,
<0,[2],false>,<1,[-1],true>]

The unique trail T[1] (generally Aut D-torsor) is D.3->D.2->D.1->...->D.3, encoded
T = [[3,2,1,6,4,5,3]]

intrinsic Label(G::GrphUnd) -> MonStgElt

Graph label based on a minimum weight path, determines G up to isomorphism

intrinsic MinimumWeightPaths(S::RedShape) -> SeqEnum, SeqEnum
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Minimum weight paths for a shape, computed through its double graph and refers
to its vertices and edges.
Returns W=bestweight [<index, v_label, jump>,...] (characterizes D up to isomorphism)

and I=list of possible vertex index sequences
For example for a rectangular loop G with all vertex chis=-1 and edges as follows

V:=[1,1,1,1]; E:=[[1,2,1],[2,3,1],[3,4,2],[1,4,1,1]]; S:=Shape(V,E);
the double graph D has 6 vertices and 6 edges in a loop, and here minimum weight W is

W = [<0,[-1],false>,<0,[-1],false>,<0,[-1],false>,<0,[1,1],false>,<0,[-1],false>,
<0,[2],false>,<1,[-1],true>]

The unique trail T[1] (generally Aut D-torsor) is D.3->D.2->D.1->...->D.3, encoded
T = [[3,2,1,6,4,5,3]]

Example (MinimumWeightPaths).

> G:=Graph<4|{{1,2},{2,3},{3,4},{4,1},{1,3}}>; // labelled graph on four vertices
> AssignLabels(Vertices(G),["C","B","C","A"]); // v1(C), v2(B), v3(C), v4(A)
> TeXGraph(G);

CB

C

A

> P,a:=MinimumWeightPaths(G);

All shortest paths start and end in a C vertex (Eulerian path), and the minimal path is C–A–C–B–1–3.
Note that C–A–C–1–B–2 is also a valid path, but it is not minimal. By our convention, vertex labels
(B) precede used vertex indices (1) in the lexicographic ordering used to define the minimal path.

> P;
[<0,"C",false>,<0,"A",false>,<0,"C",false>,<0,"B",false>,<1,"C",false>,<3,"C",true>]
> Label(G); // Graph label derived from minimal path
C-A-C-B-c1-c3

Here is another graph on five vertices, this time not Eulerian:

> G:=Graph<5|{{2,1},{2,3},{2,4},{2,5}}>;
> AssignLabels(Vertices(G),["A","B","A","A","C"]);
> TeXGraph(G);

A

B

A A C

> SetVerbose("redlib",0);
> P,a:=MinimumWeightPaths(G); // Minimal path is A-B-A&A-2-C
> P;
[<0,"A",false>,<0,"B",false>,<0,"A",true>,<0,"A",false>,<2,"B",false>,<0,"C",true>]

There are 6 ways to trace this path, and they form an Aut(G)=S3-torsor. The first one is

v1 7→ v2 7→ v3 7→ v4 7→ v2 7→ v5

> a;
[[1,2,3,4,2,5],[1,2,4,3,2,5],[3,2,1,4,2,5],[3,2,4,1,2,5],[4,2,3,1,2,5],[4,2,1,3,2,5]]
> GroupName(AutomorphismGroup(G));
S3
> Label(G); // Graph label derived from minimal path
A-B-A&A-c2-C

Example (Shapes). Here is a table of all genus 2 shapes, with numbers of reduction types for each one:

> L:=Shapes(2);
> &cat [TeX(D[1]: shapelabel:=Sprint(D[2])): D in L];
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2∅
(46)

46

11

(10) 11

(10)

55

1 1

1

T T
3

1

D D
2

1

The total is 104, the number of genus 2 reduction types families.

2.15 Reduction Types (RedType)

Now we come to reduction types, implemented through the following type RedType:

declare type RedType;
declare attributes RedType:
C, // array of principal types of type RedPrin, ordered in label order

// either one with chi=0 (for g=1) or all with chi<0.
L, // all link chains, sorted as for label, of type SeqEnum[RedLink]
weight, // weight used for comparison and sorting
shape, // shape of R of type RedShape
bestweight, // e.g. [<0,{*-1*},true>,<0,{*-2*},true>,<0,{*-1*},false>,...

// constructed with MinimumWeightPaths, used in canonical label
besttrail; // e.g. [1,2,3,4,1,3] tracing vertices with repetitions.

They can be constructed in a variety of ways:

ReductionType(m,g,O,L) Construct from a sequence of components (including all principal
ones), their multiplicities m, genera g, outgoing multiplicities
of open chains O, and link chains L beween them, e.g.
ReductionType([1],[0],[[]],[[1,1,0,0,3]]); (Type I3)

ReductionTypes(g) All reduction types in genus g. Can restrict to just semistable ones
and/or ask for their count instead of actual the types, e.g.
ReductionTypes(2); (all 104 genus 2 types)
ReductionTypes(2: countonly); (only count them)
ReductionTypes(2: semistable); (7 semistable ones)

ReductionType(label) Construct from a canonical label, e.g.
ReductionType("I3");

ReductionType(G) Construct from a dual graph, e.g.
ReductionType(DualGraph([1],[1],[])); (good elliptic curve)

ReductionTypes(S) Reduction types with a given shape, e.g.
ReductionTypes(Shape([2],[])); (46 of the genus 2 types)

Conversely, from a reduction type we can construct its dual graph (DualGraph) and a canonical label
Label), and these functions are also described in this section. Finally, there are functions to draw
reduction types and their dual graphs in TeX (TeX).

type RedType

intrinsic Print(R::RedType, level::MonStgElt)

Print a reduction type through its Label.

intrinsic ReductionType(m::SeqEnum[RngIntElt], g::SeqEnum[RngIntElt],
O::SeqEnum[SeqEnum], L::SeqEnum[SeqEnum]) -> RedType
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Construct a reduction type from a sequence of components, their invariants, and chains of P1s:
m = sequence of multiplicities of components c_1,...,c_k
g = sequence of their geometric genera
O = outgoing multiplicities of open chains, one sequence for each component
L = link chains, of the form

[[i,j,di,dj,n],...] - link chain from c_i to c_j with multiplicities m[i],di,...,dj,m[j], of
depth n
n can be omitted, and chain data [i,j,di,dj] is interpreted as having minimal possible depth.

Example (Type II*).

> m:=[6]; // multiplicities of starting components
> g:=[0]; // their geometric genera
> O:=[[3,4,5]]; // outgoing multiplicities of open chains from each of them
> L:=[]; // link chains
> R:=ReductionType(m,g,O,L);
> R, TeX(DualGraph(R));

II∗
6

Γ1

5

43

2 1

4

2

3

Example (Type I3*).

> m:=[2,2]; // multiplicities of starting components Gamma_1, Gamma_2
> g:=[0,0]; // their geometric genera
> O:=[[1,1],[1,1]]; // outgoing multiplicities of open chains from each of them
> L:=[[1,2, 2,2, 3]]; // link chains [[i,j, di,dj ,optional depth],...]
> R:=ReductionType(m,g,O,L);
> R, TeX(DualGraph(R));

I∗3

2
Γ1

1 1 2
2

21 1

intrinsic ReductionTypes(g::RngIntElt: semistable:=false, countonly:=false,
elliptic:=false) -> SeqEnum[RedType]

All reduction types in genus g<=6 or their count (if countonly:=true; faster).
semistable:=true restricts to semistable types, elliptic:=true (when g=1) to Kodaira types of
elliptic curves.

Example.

> ReductionTypes(1: elliptic); // 10 Kodaira types of elliptic curves
[1g1,I1,I0*,I1*,IV,IV*,III,III*,II,II*]
> ReductionTypes(2: countonly); // Genus 2 count
104
> ReductionTypes(3: semistable, countonly); // Genus 3 semistable count
42

intrinsic ReductionTypes(S::RedShape: countonly:=false, semistable:=false) ->
SeqEnum[RedType]

Sequence of reduction types with a given shape. If countonly=true, only count their number

Example (Reduction types with a given shape). There are 1901 reduction types in genus 3, in 35
different shapes. Here is one of the more ‘exotic’ ones, with 6 types in it. It has two vertices with
χ = −3 and χ = −1 and two edges between them, with gcd 1 and 2.
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> S:=Shape([3,1],[[1,2,1,2]]);
> TeX(S);

31,2

(6) D
2

> L:=ReductionTypes(S); L;
[
III*-{2-2}-D,
I1*-=D,
I0*-=D,
III--{2-2}D,
II*-{4-2}-D,
II--{2-2}D
]
> &cat [TeX(R: scale:=1.5, forcesups): R in L];

III∗ D

2-2

3-1
I∗1 D

1-1

2-2
I∗0 D

1-1

2-2
III D

1-1

2-2
II∗ D

4-2

5-1
II D

1-1

2-2

2.16 Arithmetic invariants

intrinsic Chi(R::RedType) -> RngIntElt

Total Euler characteristic of R

intrinsic Genus(R::RedType) -> RngIntElt

Total genus of R

Example.

> R:=ReductionType("III=(3)III-{2-2}II-{6-12}18g2ˆ6,12");
> Label(R); // Canonical label
[6]Tg2-{12-6}II-{2-2}III=(3)III
> Genus(R); // Total genus
43

intrinsic IsGood(R::RedType) -> BoolElt

true if comes from a curve wih good reduction

intrinsic IsSemistable(R::RedType) -> BoolElt

true if comes from a curve with semistable reduction (all (principal) components of an mrnc model
have multiplicity 1)

intrinsic IsSemistableTotallyToric(R::RedType) -> BoolElt

true if comes from a curve with semistable totally toric reduction (semistable with no positive
genus components)

intrinsic IsSemistableTotallyAbelian(R::RedType) -> BoolElt

true if comes from a curve with semistable totally abelian reduction (semistable with no loops in
the dual graph)

Example (Semistable reduction types).

> semi:=ReductionTypes(3: semistable); // genus 3, semistable,
> ab:=[R: R in semi | IsSemistableTotallyAbelian(R)]; // totally abelian reduction
> [TeX(R): R in ab];
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1g3 1g2 1g1 1g1 1g1 1g1

1g1

1

1g1

1g1

> tor:=[R: R in semi | IsSemistableTotallyToric(R)];
> #tor; // totally toric reduction
15
> [TeX(R): R in tor];

I1,1,1 I1,1 I1 I1 1 I1 I1 1 1 I1 1 I1 I1 I1 I1 I1 1 1

I1

1

1

1

1

1

I1

1

I1

I1 I1 1 1 I1 I11

1

1

1

1

1

1

1

1

1

1

Count semistable reduction types in genus 2,3,4,5

> [ReductionTypes(n: semistable, countonly): n in [2..5]]; // OEIS A174224
[ 7, 42, 379, 4555 ]

intrinsic TamagawaNumber(R::RedType) -> RngIntElt

Tamagawa number of the curve with a given reduction type, over an algebraically closed residue
field.

Example (Tamagawa numbers for elliptic curves).

> for R in ReductionTypes(1: elliptic) do Label(R),TamagawaNumber(R); end for;
1g1 1
I1 1
I0* 4
I1* 4
IV 3
IV* 3
III 2
III* 2
II 1
II* 1

2.17 Invariants of individual principal components and chains

intrinsic PrincipalTypes(R::RedType) -> SeqEnum[RedPrin]

Principal types (vertices) R of the reduction type R

intrinsic PrincipalType(R::RedType, i::RngIntElt) -> RedPrin

Principal type number i in the reduction type R, same as R!!i

intrinsic LinkChains(R::RedType) -> SeqEnum[RedLink]

Return all the link chains in R, including loops and D-links, as a sequence SeqEnum[RedLink], sorted
as in label

intrinsic LooseChains(R::RedType) -> SeqEnum[RedLink]

Return all the link chains in R between different principal components, as a sequence
SeqEnum[RedLink], sorted as in label
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intrinsic Multiplicities(R::RedType) -> SeqEnum

Sequence of multiplicities of principal types

intrinsic Genera(R::RedType) -> SeqEnum

Sequence of geometric genera of principal types

intrinsic GCD(R::RedType) -> RngIntElt

GCD detecting non-primitive types

intrinsic Shape(R::RedType) -> RedShape

The shape of the reduction type R. Every principal type is a vertex that only remembers its Euler
characteristic, and every edge only remembers the gcd of the corresponding link chain

Example (Principal types and chains). Take a reduction type that consists of smooth curves of genus
3, 2 and 1, connected with two chains of P1s of depth 2.

> R:=ReductionType("1g3-(2)1g2-(2)1g1");
> TeX(DualGraph(R));

1 g1
Γ3

1

1 g2
Γ2

1

1 g3
Γ1

This is how we access the three principal types, their primary invariants, and the chains. Both the
principal types and the chains are ordered as in the canonical label.

> R!!1, R!!2, R!!3; // individual principal types, same as PrincipalTypes(R)
1g3-{1}
1g2-{1}-{1}
1g1-{1}
> Genera(R); // geometric genus g of each principal type
[ 3, 2, 1 ]
> Multiplicities(R); // multiplicity m of each principal type
[ 1, 1, 1 ]
> LinkChains(R); // all chains between them (including loops and D-links)
[
[1] loose c1 1,1 -(2) c2 1,1,
[2] loose c2 1,1 -(2) c3 1,1
]

2.18 Comparison

intrinsic Weight(R::RedType) -> SeqEnum[RngIntElt]

Weight of a reduction type, used for comparison and sorting

intrinsic 'eq'(R1::RedType, R2::RedType) -> BoolElt

Compare two reduction types by their weight

intrinsic 'lt'(R1::RedType, R2::RedType) -> BoolElt

Compare two reduction types by their weight
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intrinsic 'gt'(R1::RedType, R2::RedType) -> BoolElt

Compare two reduction types by their weight

intrinsic 'le'(R1::RedType, R2::RedType) -> BoolElt

Compare two reduction types by their weight

intrinsic 'ge'(R1::RedType, R2::RedType) -> BoolElt

Compare two reduction types by their weight

intrinsic Sort(S::SeqEnum[RedType]) -> SeqEnum[RedType]

Sort reduction types by their weight

intrinsic Sort(˜S::SeqEnum[RedType])

Sort reduction types by their weight

Example (Sorted reduction types in genus 1 and 2).

> Sort(ReductionTypes(1: elliptic));
1g1, I1, I0*, I1*, IV, IV*, III, III*, II, II*
> Sort(ReductionTypes(2));
1g2, I1g1, I1,1, Dg1, [2]g1_D, 2ˆ1,1,1,1,1,1, I0*_0, D_{2-2}, I0*_D, I1*_0, [2]_1,D,

I1*_D, [2]_D,D,D, 3ˆ1,1,2,2, IV_0, IV*_-1, 4ˆ1,3,2,2, III_0, III*_-1, III_D, 4ˆ1,3_D,
III*_D, [2]I0*_D, [2]I1*_D, 5ˆ1,1,3, 5ˆ1,2,2, 5ˆ2,4,4, 5ˆ3,3,4, 6ˆ1,1,4, 6ˆ5,5,2,
6ˆ2,4,3,3, II_D, [2]IV_D, [2]T_{6}D, [2]IV*_D, II*_D, 8ˆ1,3,4, 8ˆ5,7,4, [2]III_D,
[2]III*_D, 10ˆ1,4,5, 10ˆ3,2,5, 10ˆ7,8,5, 10ˆ9,6,5, [2]II_D, [2]II*_D, 1g1-1g1, 1g1-I1,
1g1-I0*, 1g1-I1*, 1g1-IV, 1g1-IV*, 1g1-III, 1g1-III*, 1g1-II, 1g1-II*, I1-I1, I1-I0*,
I1-I1*, I1-IV, I1-IV*, I1-III, I1-III*, I1-II, I1-II*, I0*-I0*, I0*-I1*, I0*-IV,
I0*-IV*, I0*-III, I0*-III*, I0*-II, I0*-II*, I1*-I1*, I1*-IV, I1*-IV*, I1*-III,
I1*-III*, I1*-II, I1*-II*, IV-IV, IV-IV*, IV-III, IV-III*, IV-II, IV-II*, IV*-IV*,
IV*-III, IV*-III*, IV*-II, IV*-II*, III-III, III-III*, III-II, III-II*, III*-III*,
III*-II, III*-II*, II-II, II-II*, II*-II*, T=T, D-=D, 1---1

2.19 Reduction types, labels, and dual graphs

intrinsic ReductionType(G::GrphDual) -> RedType

Create a reduction type from a full dual mrnc graph or return false if G is singular

intrinsic DualGraph(R::RedType: compnames:="default") -> GrphDual

Full dual graph from a reduction type, possibly with variable length edges

intrinsic Label(R::RedType: tex:=false, html:=false, wrap:=true,
forcesubs:=false, forcesups:=false, depths:="default") -> MonStgElt

Return canonical string label of a reduction type.
tex:=true gives a TeX-friendly label (\redtype ...)
html:=true gives a HTML-friendly label (<span...>...</span>)
wrap:=false keeps the format above but removes \redtype wrapping
forcesubs:=true forces lengths of chains and loops to be always printed (usually in round
brackets)
forcesups:=true forces outgoing chain multiplicities to be always printed (in curly brackets).

intrinsic Family(R::RedType) -> MonStgElt

Reduction type with minimal chain lengths in the same family

34



intrinsic ReductionType(S::MonStgElt) -> RedType

Construct a reduction type from a string label.

Example (Plain and TeX labels for reduction types).

> R:=ReductionType("IIg1_1-(3)III-(4)IV");
> Label(R); // plain text label
IIg1_1-(3)III-(4)IV
> R2:=ReductionType(Label(R));
> assert R eq R2; // can be used to reconstruct the type
> Family(R); // family (reduction type with minimal depths)
IIg1_1-III-IV
> Label(R: tex); // print label in TeX, wrap in \redtype{...} macro

IIg1,1 3
III

4
IV

> Label(R: html); // print label in HTML, wrap in redtype span
II<sub>g1,1</sub><span class='edg'><sup>&nbsp;</sup><sub>3</sub></span>III<span

class='edg'><sup>&nbsp;</sup><sub>4</sub></span>IV
> R!!1; // first principal type as a standalone type
IIg1_1-{1}
> Label(R!!1); // first principal type: label in R
IIg1_1
> Label(R!!1: tex); // first principal type: TeX label

IIg1,1

Example (Canonical label in detail). Take a graph G on 4 vertices

> G:=Graph<4|{{1,2},{1,3},{1,4}}>;
> TeXGraph(G: labels:="none");

Place a component of multiplicity 1 at the root and II, III∗, I∗0 at the three leaves. Link each leaf to the
root with a chain of multiplicity 1. This gives a reduction type that occurs for genus 3 curves:

> R:=ReductionType("1-II&c1-III*&c1-I0*"); // First component is the root,
> TeX(R); // the other three are leaves

I∗0

1

II

III∗

> TeX(DualGraph(R)); // Here is the corresponding special fibre

1
Γ2

6
Γ3

2 3

2
3

4
Γ4

3

21

2
2

Γ1

1 1 1

How is the following canonical label chosen among all possible labels?

> R;
I0*-1-II&III*-c2

Each principal component is a principal type (as there are no loops or D-links), and its primary invariants
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are its Euler characteristic χ and a multiset lgcd of gcd’s of outgoing (loose) link chains

> [R!!i: i in [1..#R]];
[I0*-{1},1-{1}-{1}-{1},II-{1},III*-{3}]
> [Chi(R!!i): i in [1..#R]]; // add up to 2-2*genus, so genus=3
[ -1, -1, -1, -1 ]
> [LGCD(R!!i): i in [1..#R]];
[[1],[1,1,1],[1],[1]]

All four leaves have χ = −2, lgcd=[1] and the root χ = 1, lgcd=[1, 1, 1]

> PrincipalTypes(-1,[1]); // 10 such (II-, III-, IV-, ...) drawn $1ˆ1_{(10)}$
[1g1-{1},I1-{1},I0*-{1},I1*-{1},IV-{1},IV*-{2},III-{1},III*-{3},II-{1},II*-{5}]
> PrincipalTypes(-1,[1,1,1]); // unique one of this type, drawn as 1
[1-{1}-{1}-{1}]

Together they form a shape graph S as follows:

> S:=Shape(R);
> TeX(S: scale:=1);

11

(10)

1

11

(10)

11

(10)

The vertices and edges of S are assigned weights. Vertex weights are χ’s, edge weights are lgcd’s

> [Label(v): v in Vertices(S)];
[[-1],[-1],[-1],[-1]]
> [Label(e): e in Edges(S)];
[[1],[1],[1]]

Then the shortest path is found using MinimumWeightPaths. It is v-v-v&v-2 (v=new vertex with
χ = −1, -=edge, &=jump). Note that by convention actual edges are preferred to jumps, and going to
a new vertex preferred to revisiting an old one. Also vertices with smaller χ come first, if possible, as
they have smaller labels.

v-v-v&v-2 < v-v&v-2-v (jumps are larger than edge marks)
v-v-v&v-2 < v-v-v&2-v (repeated vertex indices are larger than vertex marks)

> P,T:=MinimumWeightPaths(S);
> P; // v-v-v&v-2
[<0,[-1],false>,<0,[-1],false>,<0,[-1],true>,<0,[-1],false>,<2,[-1],true>]

This path can be used to construct the graph, and determines it up to isomorphism. There are |AutS| =
6 ways to trail S in accordance with this path, and as far the shape is concerned, they are completely
identical.

> T;
[[1,2,3,4,2],[1,2,4,3,2],[3,2,1,4,2],[3,2,4,1,2],[4,2,3,1,2],[4,2,1,3,2]]

This gives six possible labels for our reduction type that all traverse the shape according to path P :

> t:=[Label(R!!i): i in [1..#R]];
> [Sprintf("%o-%o-%o&%o-c2",t[c[1]],t[c[2]],t[c[3]],t[c[4]]): c in T];
I0*-1-II&III*-c2 I0*-1-III*&II-c2 II-1-I0*&III*-c2 II-1-III*&I0*-c2 III*-1-II&I0*-c2

III*-1-I0*&II-c2

Now we assign weights to vertices and edges that characterise the actual shape components (rather than
just their χ) and link chains (rather than just their lgcd)
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> Weight(R!!1), Weight(R!!2), Weight(R!!3), Weight(R!!4);
[ -1, 2, 0, 1, 0, 0, 3, 1, 1, 1, 1 ] [ -1, 1, 0, 3, 0, 0, 0, 1, 1, 1 ] [ -1, 6, 0, 1, 0,
0, 2, 2, 3, 1 ] [ -1, 4, 0, 1, 0, 0, 2, 3, 2, 3 ]

> EdgesWeight(R,2,1); // weight of the 1-II link chain
[ 1, 1, 0 ]
> EdgesWeight(R,2,3); // weight of the 1-I0* link chain
[ 1, 1, 0 ]
> EdgesWeight(R,2,4); // weight of the 1-III* link chain
[ 1, 3, 0 ]

The component weight Weight(R!!i) starts with (χ,−m,−g, ...) so when all components have the same
χ like in this example, the ones with large multiplicity m have smaller weight. Because m(II)=6,
m(III*)=4, m(I0*)=2, the trails T [1] and T [2] are preferred to the other four. They both start with a
component II, then an edge II-1 and a component 1. After that they differ in that T [1] traverses an edge
1-I0* and T [2] an edge 1-III*. Because the edge weight is smaller for T [1], this is the minimal path, and
it determines the label for R:

> R;
I0*-1-II&III*-c2

Example (Labels of individual principal types).

> R:=ReductionType("II-III-IV");
> [Label(R!!i): i in [1..#R]];
[ IV, III, II ]

intrinsic LabelRegex(R::RedType: magma:=true) -> MonStgElt

Returns a regular expression that recognises reduction types in the same family as R and captures
the corresponding edge depths. For example,

LabelRegex(ReductionType("Dg1_1"));
returns ˆDg1_([0-9]+)$, which is a regular expression that matches Dg1_n for any n>=0 and returns n
in the captured group. Flag magma:=true makes the returned regex compatible with Magma's Regexp
function (which is old V8) but may have brackets around the returned integers. Setting magma:=false
makes it compatible with all recent regex implementations, and only returns pure integers in
captured groups.

Example.

> R:=ReductionType("III-II");
> re:=LabelRegex(R); re;
ˆIII-([(][0-9]+[)])?II$

This regex matches III-II or III-(2)II which are in the correct format, but not II-2III which is not

> ok,_,B:=Regexp(re,"III-II"); ok, B; // Yes
true []
> ok,_,B:=Regexp(re,"III-(2)II"); ok, B; // Yes
true [ (2) ]
> Regexp(re,"III-2II"); // No
false

B contains the captured lengths, possibly in brackets (as above), and [eval b: b in B] gives them as
integers. The reason for the brackets is that Magma uses old (V8) regex format that does not support
non-capturing groups. Calling

> LabelRegex(R: magma:=false);
ˆIII-(?:[(]([0-9]+)[)])?II$

returns a newer regex format (supported in python, javascript etc.) that has the same behaviour but
just captures integer lengths.
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intrinsic TeX(R::RedType: forcesups:=false, forcesubs:=false, scale:=0.8,
xscale:=1, yscale:=1, oneline:=false) -> MonStgElt

TikZ representation of a reduction type, as a graph with PrincipalTypes (principal components with
chi>0) as vertices, and edges for link chains.
oneline:=true removes line breaks.
forcesups:=true and/or forcesubs:=true shows edge decorations (outgoing multiplicities and/or chain
depths) even when they are default.

Example (TeX for reduction types).

> R:=ReductionType("1g1--I1-I1");
> TeX(R), TeX(R: forcesups, forcesubs, scale:=1.5);

1g1 I1 I1 1g1 I1 I1
1-1

1

1-1

1

1-1

1

Example (Degenerations of two elliptic curves meeting at a point).

> S:=Shape(ReductionType("1g1-1g1")); // Two elliptic curves meeting at a point (genus 2)

The corresponding shape is a graph v-v with two vertices with χ = −1 and one edge of gcd 1

> TeX(S);

11

(10) 11

(10)

> PrincipalTypes(-1,[1]); // There are 10 possibilities for such a vertex,
[1g1-{1},I1-{1},I0*-{1},I1*-{1},IV-{1},IV*-{2},III-{1},III*-{3},II-{1},II*-{5}]
> // one for each Kodaira type
> ReductionTypes(S: countonly); // and Binomial(10,2) such types in total
55
> ReductionTypes(S)[[1..10]]; // first 10 of these
[I1*-III*,I1*-II,III-II,III*-II,I1-II*,1g1-II*,1g1-I1,I1*-II*,IV-II*,III-III*]

2.20 Variable depths in Label and DualGraph

Reduction types belong to the same family if they are the same apart except that the depths of chains
of P1s may differ. This section describes functions to print labels and draw dual graphs of families of
reduction types with variable depths.

intrinsic SetDepths(˜R::RedType, depth::UserProgram)

Set depths for DualGraph and Label to be determined by depth function.
depth has to be of the form
function depth(e::RedLink) -> integer/string

to show how the depth in the edge is to be printed
For example,

f(e) = e`depth [ original as in SetDepths(R,true) ]
f(e) = MinimalLinkDepth(e`mi,e`di,e`mj,e`dj) [ minimal as in SetDepths(R,false) ]
f(e) = Sprintf("n_%o",e`index) [ "n_1","n_2",...]

intrinsic SetDepths(˜R::RedType, S::SeqEnum)

Set depths for DualGraph and Label to a sequence, e.g. S=["m","n","2"]

intrinsic SetVariableDepths(˜R::RedType)

Set depths for DualGraph and Label to i->"n_i"

intrinsic SetOriginalDepths(˜R::RedType)

Remove depths set by SetDepths, so that original ones are printed by Label and other functions
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intrinsic SetMinimalDepths(˜R::RedType)

Set depths to minimal ones in the family (MinimalLinkDepth = -1,0 or 1) for every edge

intrinsic GetDepths(R::RedType) -> SeqEnum

Return depths (string sequence) set by SetDepths or originals if not changed from defaults

Example (Setting variable depths for drawing families).

> R:=ReductionType("I3-(2)I5");
> Label(R: tex);

I3 2
I5

> TeX(DualGraph(R));

1
Γ2

1

1 1

1 1

1
Γ1

11

> SetDepths(˜R,["a","b","5"]); // Make two of the three chains variable depth
> Label(R: tex);

Ia
b
I5

> TeX(DualGraph(R));

1
Γ2

1

1 1

1 1

··· b−1

1

1
Γ1

1
··
a
·

1

> SetOriginalDepths(˜R);
> R;
I3-(2)I5

Example (I∗1000). This can also be used to draw types with large depths:

> R:=ReductionType("I1*");
> SetDepths(˜R,["1000"]);
> TeX(DualGraph(R));

2
Γ1

1 1 2

··· 1000−1

2

21 1

2.21 Namikawa-Ueno conversion in genus 2

intrinsic NamikawaUeno(R::RedType: pottype:="all", depths:="original",
warnings:=true) -> MonStgElt, RngIntElt

returns Namikawa-Ueno reduction type pair nutype, page if unique,
or false, [<pottype,guess,page>,...] if there are several depending
on the potential semistable type (I,II,III,...,VII)

Example.

> R:=ReductionType("5ˆ1,1,3");
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> NamikawaUeno(R);
IX-2 157
> R:=ReductionType("[2]_1,D"); // several possible types
> NamikawaUeno(R);
false [ <"VII", "2I$_{1}$-1", 181>, <"IV", "II$ˆ*_{1-1}$", 184> ]
> NamikawaUeno(R: pottype:="VII"); // specify Liu's potential semistable type
2I$_{1}$-1 181

3 General discrete valuation rings (dvr.m)

The file provides basic support for fields with a valuation and DVRs. Type RngDVR incorporates a
base field K, residue field k, valuation v : K → Z, uniformizer π, reduction map Ov → k and its section
(lifting map) k → Ov.

type RngDVR

There is a variety of creation functions of the form DVR(field) and DVR(field, prime) to get DVRs from
the rational, number fields, p-adics, function fields etc., as well as the function BaseDVR that gives an
underlying DVR for an object over a field.

Basic invariants Field, Valuation, ResidueField, Characteristic, ResidueCharacteristic, Uniformizer can
be accessed separately, or at once with an Eltseq function.

There is basic functionality for valuations of roots, Newton polygons and residual polynomials for a
polynomial over a DVR.

3.1 Basic type functions: IsCoercible, in, Print

intrinsic Print(D::RngDVR, level::MonStgElt)

Print a RngDVR.

3.2 Creation functions

intrinsic DVR(K::FldRat, p::RngIntElt) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for K=Q, p=prime number

intrinsic DVR(Z::RngInt, p::RngIntElt) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for O=Z, p=prime number

intrinsic DVR(K::FldNum, p::RngOrdIdl) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for K=number field, p=prime ideal

intrinsic DVR(K::FldNum, p::PlcNumElt) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for K=number field, p=place

intrinsic DVR(O::RngOrd, p::RngOrdIdl) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for O=integer ring of a number field, p=prime
ideal

intrinsic DVR(K::FldPad) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for K=p-adic field
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intrinsic DVR(O::RngPad) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for O=integers in a p-adic field

intrinsic DVR(K::FldFunRat, p::FldFunRatUElt) -> RngDVR

Construct a DVR of type RngDVR(K,k,v,red,lift,pi) for a rational function field in one variable and
element p

intrinsic Extend(D::RngDVR, n::RngIntElt) -> RngDVR

Make an unramified degree n extension of a DVR of type RngDVR. This assumes that
the residue field k is finite, and the base field K is p-adic or a number field

Example (3-adic valuation on Q).

> D:=DVR(Integers(),3);
> D;
DVR K=Rational Field p=3
> Field(D);
Rational Field

intrinsic BaseDVR(X::Any, P::Any) -> RngDVR

Guess an underlying DVR from an object X over some field K at a place p:
the object could be a curve, polynomial, polynomial equation lhs=rhs, for example

intrinsic BaseDVR(X::Any) -> RngDVR

Guess an underlying DVR from an object X over some field K that has a canonical valuation:
the object could be a curve, polynomial, polynomial equation lhs=rhs, for example

3.3 Basic invariants

intrinsic Eltseq(D::RngDVR) -> .,.,.,.,.,.

return 6 basic invariants K,k,v,red,lift,pi of a RngDVR

intrinsic Field(D::RngDVR) -> Fld

Base field of fractions K for a DVR

intrinsic Valuation(D::RngDVR) -> Map

Underlying discrete valuation v for a DVR

intrinsic ResidueField(D::RngDVR) -> Fld, Map, Map

Residue field k for a DVR, reduction map and the lifting map

intrinsic Characteristic(D::RngDVR) -> RngIntElt

Characteristic of the field of fractions K for a DVR

intrinsic ResidueCharacteristic(D::RngDVR) -> RngIntElt

Characteristic of the residue field k for a DVR

intrinsic Uniformizer(D::RngDVR) -> RngElt

Uniformizer pi for a DVR

intrinsic UniformizingElement(D::RngDVR) -> RngElt

Uniformizer pi for a DVR

Example.
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> D:=DVR(Rationals(),2); // 2-adic valuation on Q
> D;
DVR K=Rational Field p=2
> K:=Field(D);
> v:=Valuation(D);
> pi:=Uniformizer(D);
> k,red,lift:=ResidueField(D);
> piˆv(K!100); // Compute v_2(100)
4
> lift(k!100); // Lift 100 from GF(2) to Q
0

3.4 Newton polygons

intrinsic ValuationsOfRoots(f::RngUPolElt, D::RngDVR) -> SeqEnum

Valuations of roots of f defined over a RngDVR or its field of fractions

Example.

> Q:=Rationals();
> R<x>:=PolynomialRing(Q);
> ValuationsOfRoots(xˆ5+x,DVR(Q,2));
[ <Infinity, 1>, <0, 4> ]

intrinsic NewtonPolygon(f::RngUPolElt, D::RngDVR) -> NwtnPgon

Newton polygon of f with respect to a RngDVR

intrinsic ResidualPolynomials(f::RngUPolElt, D::RngDVR) -> SeqEnum, SeqEnum,
SeqEnum, SeqEnum

Residual polynomials, Vertices of the (lower) Newton polygon N, slopes(N), lengths(N)

Example.

> Q:=Rationals();
> R<x>:=PolynomialRing(Q);
> D:=DVR(Q,2);
> f:=(xˆ2-2)*(xˆ3-2)*x; // 3 segments
> N:=NewtonPolygon(f,D);
> N;
Newton Polygon of xˆ6 + 2*xˆ4 + 2*xˆ3 + 4*x over Rational Field at 2
> Slopes(N);
[ -1/2, -1/3 ]
> respoly,vert,slopes,lengths:=ResidualPolynomials(f,D);
> slopes; // slopes of 3 segments
[* Infinity, 1/2, 1/3 *]
> lengths; // number of roots in each
[ 1, 2, 3 ]
> respoly; // reduced residual polynomials for each
[x,x + 1,x + 1]
> vert; // vertices of the newton polygon
[ <0, 2>, <1, 2>, <3, 1>, <6, 0> ]
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4 MacLane valuations over a DVR (maclane.m)

The file provides MacLane valuations on K[x], where K is a field with a discrete valuation. This is
implemented as a type MacV. As in MacLane’s paper, such a valuation v is constructed inductively
from the Gauss valuation v0 on K[x] with repeated assignments v(gi) = λi for some key polynomials gi
and rationals λi.

See S. MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40
(1936), no. 3, 363–395.

type MacV

4.1 Basic type functions

intrinsic Print(v::MacV, level::MonStgElt)

Print a MacLane valuation v

4.2 Creation functions

intrinsic MacLaneValuation(D::RngDVR, g::SeqEnum, lambda::SeqEnum) -> MacV

Create a MacLane valuation from its primary invariants: key polynomials g_i and rationals lambda_i,
so that v(g_i)=lambda_i

intrinsic GaussValuation(D::RngDVR) -> MacV

Gauss valuation on K[x] for K a field with a valuation specified with D of type RngDVR

intrinsic MacLaneValuation(D::RngDVR, t::SeqEnum[Tup]) -> MacV

Create a MacLane valuation from its primary invariants: key polynomials g_i and rationals lambda_i,
so that v(g_i)=lambda_i. The invariants a given as a sequence t of tuples [<g_i,lambda_i>]

Example.

> R<x>:=PolynomialRing(Q);
> D:=DVR(Q,3);
> v:=MacLaneValuation(D,[<x,1/2>,<xˆ2-3,1>]);
> v;
[x->1/2,xˆ2 - 3->1]
> TeX(v);

v(x2−3)≥1

4.3 Basic invariants

intrinsic Length(v::MacV) -> RngIntElt

Length n of the MacLane valuation (number of the defining key polynomials g_1,...,g_n)

intrinsic Center(v::MacV) -> RngUPolElt

Center of the MacLane valuation (last g_n in the list g_1,...,g_n of key polynomials)

intrinsic Degree(v::MacV) -> RngIntElt

Degree of the MacLane valuation (degree of the last defining polynomial g_n=Center(v))
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intrinsic Radius(v::MacV) -> FldRatElt

Radius of the MacLane valuation (last lambda in the list of key polynomial assignments
v(g_i)=lambda_i)

intrinsic IsGauss(v::MacV) -> BoolElt

True if v is the Gauss valuation

intrinsic Extends(v2::MacV, v1::MacV) -> BoolElt

True if v2 extends v1 as a MacLane valuation

intrinsic Truncate(v::MacV, n::RngIntElt) -> MacV

Truncate a MacLane valuation to a smaller n <= Length(v)

intrinsic Truncate(v::MacV) -> MacV

Truncate a MacLane valuation to n-1 where n is Length(v)

intrinsic ChangeSlope(v::MacV, s::FldRatElt) -> MacV

Copy valuation with the last slope lambda_n changed to s

intrinsic RamificationDegree(v::MacV) -> RngIntElt

Ramification degree of a MacLane valuation over the Gauss valuation

intrinsic Monomial(v::MacV, s::FldRatElt) -> RngUPolElt

Canonical monomial in the key polynomials of v of a given rational valuation s, constructed
inductively

intrinsic MacData(v::MacV) -> SeqEnum

List of tuples [<g_i,lambda_i>] that define a given MacLane valuation

Example.

> R<x>:=PolynomialRing(Q);
> D:=DVR(Q,3);
> v:=MacLaneValuation(D,[<x,1/2>,<xˆ2-3,1>]);
> RamificationDegree(v);
2
> Extends(v,GaussValuation(D));
true
> MacData(v);
[<x, 1/2>,<xˆ2 - 3, 1>]
> Monomial(v,3/2);
3*x

4.4 Newton polygons

intrinsic Expand(f::RngUPolElt, g::RngUPolElt) -> SeqEnum

Expand f in powers of g and return the sequence of coefficients, which are polynomials of degree <
deg g

Example.

> R<x>:=PolynomialRing(Q);
> Expand((xˆ2-2)ˆ3+(xˆ2-2)+x,xˆ2-2);
[x,1,0,1]
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intrinsic Valuation(f::RngUPolElt, v::MacV: n:="Full") -> Tup

Valuation of a polynomial f with respect to a MacLane valuation v, computed inductively
using the expansion of f in key polynomials of v

intrinsic Valuation(f::FldFunRatUElt, v::MacV: n:="Full") -> Tup

Valuation of a rational function f with respect to a MacLane valuation v

intrinsic NewtonPolygon(f::RngUPolElt, v::MacV) -> SeqEnum

Compute the slopes of the Newton polygon of a polynomial f with respect to a MacLane valuation v
and relevant monomials (not reduced to the residue field). Returns a list of tuples

[* <valuation, ramification degree, unreduced coefficients>, ... *]
valuation may be Infinity()

Example.

> R<x>:=PolynomialRing(Q);
> D:=DVR(Q,3);
> v:=MacLaneValuation(D,[<x,1/2>,<xˆ2-3,1>]);
> Valuation(x*(xˆ2-3),v);
3/2 2
> NewtonPolygon(x*(xˆ2-3),v);
[*
<Infinity, 1, [
x
]>
*]

intrinsic Distance(v,w::MacV) -> FldRatElt

Valuation distance between v and w. The valuations are viewed as defining discoids.
This function is symmetric, and d(v,v)=lambda_n/deg g_n

Example.

> R<x>:=PolynomialRing(Q);
> D:=DVR(Q,3);
> v2:=MacLaneValuation(D,[<x,1/2>,<xˆ2-3,1>]);
> v1:=Truncate(v2);
> v0:=GaussValuation(D);
> Distance(v0,v2);
0
> Distance(v1,v2);
1/2
> Distance(v2,v2);
1/2

4.5 Printing in TeX

intrinsic TeX(v::MacV) -> MonStgElt

Print a MacLane valuation in TeX in diskoid form, as v(Center)>=radius. This is used for cluster
names
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5 Muselli-MacLane rational clusters (mclusters.m)

The file provides MacLane valuations on K[x], where K is a field with a discrete valuation. This is
implemented as a type MacV. As in MacLane’s paper, such a valuation v is constructed inductively
from the Gauss valuation v0 on K[x] with repeated assignments v(gi) = λi for some key polynomials gi
and rationals λi.

See S. Muselli, Regular models of hyperelliptic curves, Indag. Math. (2023).

In the examples below we set

Q:=Rationals();
R<x>:=PolynomialRing(Q);

The package defines two types: rational MacLane-Muselli clusters (ClM) and the associated cluster
pictures:

type ClM

type ClPicM

5.1 Basic type functions for clusters (ClM)

intrinsic Print(s::ClM, level::MonStgElt)

Print a MM cluster

5.2 Basic cluster invariants (ClM)

intrinsic Degree(s::ClM) -> RngIntElt

Degree of a MM cluster = degree of the defining valuation Valuation(s)

intrinsic Valuation(s::ClM) -> RngIntElt

Valuation that cuts out the cluster

intrinsic ClusterPicture(s::ClM) -> ClPicM

Cluster picture in which the cluster s lives

intrinsic Index(s::ClM) -> RngIntElt

Index of the cluster in the cluster picture

5.3 Equality and children

intrinsic 'eq'(s1::ClM, s2::ClM) -> BoolElt

Equality testing for MM clusters in the same cluster picture

intrinsic IsProperSubset(s::ClM, p::ClM) -> BoolElt

True if s is properly contained in p for MM clusters

intrinsic Children(s::ClM) -> SeqEnum

Proper children of a MM cluster

intrinsic ParentCluster(s::ClM) -> ClM
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Parent of a MM cluster

intrinsic RootClusters(s::ClM) -> SeqEnum

List of root cluster valuations contained in s

5.4 Basic type functions for cluster pictures (ClPicM)

intrinsic Print(Sigma::ClPicM, level::MonStgElt)

Print a MM cluster picture

5.5 Basic invariants for cluster pictures (ClPicM)

intrinsic Genus(Sigma::ClPicM) -> RngIntElt

Genus of a MM cluster picture

intrinsic BaseField(Sigma::ClPicM) -> Fld

Original base field K for a MM cluster picture

intrinsic ResidueField(Sigma::ClPicM) -> Fld

Residue field k of the base field K over which a MM cluster picture is defined

intrinsic FieldOfDefinition(Sigma::ClPicM) -> Fld

Unramified extension F of the base field K of a MM cluster picture over which the centers are
defined

intrinsic Clusters(Sigma::ClPicM) -> SeqEnum[ClM]

List of all clusters (of type ClM) that form the cluster picture

intrinsic RootClusters(˜D::RngDVR, ˜f::RngUPolElt, ˜S)

Sequence of root (improper) clusters; they correspond to factors of f over the completion of K
(unramified closure).
May need to extend D and base change f along the way, if unramfied extension is necessary.

Example.

> f:=xˆ6+9; // hyperelliptic curve C/Q3: yˆ2=f(x)
> Qp:=pAdicField(3,20); // here f(x)=xˆ6+9=(xˆ3+3i)(xˆ3-3i)
> D:=DVR(Qp); // and RootClusters extends Q3 to Q3(i)
> RootClusters(˜D,˜f,˜S);
> D;
DVR K=Unramified extension defined by the polynomial xˆ2 + 2*x + 2 over 3-adic field mod

3ˆ20
> S;
[
[x->1/3,xˆ3+(-2*r1-2)*3->2],
[x->1/3,xˆ3+(-r1-1)*3->20]
]

5.6 Creation functions for cluster pictures

intrinsic ClusterPicture(f::RngUPolElt, D::RngDVR) -> ClPicM
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MM cluster picture for a hyperelliptic curve yˆ2=f(x) over a RngDVR (res char<>2)

Example.

> D:=DVR(Q,3);
> TeX(ClusterPicture(xˆ3+3,D)); // One cluster of size 3

s v |s| dv bv ev νv nv mv tv pv sv γv p0v s0v γ0
v uv g

s1 v(x)≥1/3 3 1 3 3 1 1 6 3 1 1/6 1 2 −1/6 2 2 0

> TeX(ClusterPicture((xˆ3+3)*(x-1)*(x-2),D)); // Two nested clusters

s v |s| dv bv ev νv nv mv tv pv sv γv p0v s0v γ0
v uv g

s1 v(x)≥1/3 3 1 3 3 1 1 6 3 1 1/6 1 2 −1/6 2 2 0
s2 v(x)≥0 5 1 1 1 0 2 1 5 1 0 1 2 0 1 3 1

> TeX(ClusterPicture((xˆ2-3)ˆ3+xˆ7,D)); // Non-rational cluster

s v |s| dv bv ev νv nv mv tv pv sv γv p0v s0v γ0
v uv g

s1 v(x2−3)≥7/6 6 2 3 6 7/2 1 12 3 1 7/12 1 2 −7/12 2 2 0
s2 v(x)≥1/2 6 1 2 2 3 2 2 6 2 1/2 1 2 −1 2 2 0
s3 v(x)≥0 7 1 1 1 0 2 1 7 1 0 1 2 0 1 1 0

5.7 Dual graph from a cluster picture and associated model (Muselli’s
theorem)

intrinsic DualGraph(Sigma::ClPicM: check:=true, contract:=true,
texsettings:="default") -> GrphDual

Dual graph of a cluster picture (Muselli's Theorem);
check: test multiplicities;
contract: contract components to get minimal r.n.c. model;

Example.

> D:=DVR(Q,3);
> Sigma:=ClusterPicture(xˆ3+3,D); // One cluster of size 3
> TeX(DualGraph(Sigma));

6
3: v(x)≥1/3

1 2 3

> Sigma:=ClusterPicture((xˆ3+3)*(x-1)*(x-2),D); // Two nested clusters
> TeX(DualGraph(Sigma));

6
3: v(x)≥1/3

2 3

1 g1
5: v(x)≥0

> Sigma:=ClusterPicture((xˆ2-3)ˆ3+xˆ7,D); // Non-rational cluster
> TeX(DualGraph(Sigma));

2
6: v(x)≥1/2

1
12

6: v(x2−3)≥7/6

4 6

intrinsic TeX(Sigma::ClPicM) -> MonStgElt

list of clusters as an TeX array

intrinsic MuselliModel(f::RngUPolElt, D::RngDVR: Style:=[]) -> CrvModel

Maclane-Muselli model of a hyperelliptic curve
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Example.

> D:=DVR(Q,3);
> M:=MuselliModel(xˆ3+3,D); // One cluster of size 3
> ReductionType(M);
II
> M:=MuselliModel((xˆ3+3)*(x-1)*(x-2),D); // Two nested clusters
> ReductionType(M);
1g1-II
> M:=MuselliModel((xˆ2-3)ˆ3+xˆ7,D); // Non-rational cluster
> ReductionType(M);
D_0-[2]II

6 Model wrapping functions (model.m)

type CrvModel

6.1 Basic type functions

intrinsic Print(C::CrvModel, level::MonStgElt)

Print a curve model

6.2 Invariants

intrinsic DualGraph(C::CrvModel) -> GrphDual

Dual graph of a curve model

intrinsic ReductionType(C::CrvModel) -> RedType

Reduction graph of a curve model, or false if singular

intrinsic IsSingular(C::CrvModel) -> RedType

true if failed to find a regular model (neither hyperelliptic nor Delta_v-regular)

intrinsic Genus(C::CrvModel) -> RngIntElt

Genus of the generic fibre of a model

intrinsic IsGood(C::CrvModel) -> BoolElt

true if comes from a curve wih good reduction

intrinsic IsSemistable(C::CrvModel) -> BoolElt

true if comes from a curve with semistable reduction

intrinsic IsSemistableTotallyToric(C::CrvModel) -> BoolElt

true if comes from a curve with semistable totally toric reduction

intrinsic IsSemistableTotallyAbelian(C::CrvModel) -> BoolElt

true if comes from a curve with semistable totally abelian reduction

Example (Totally toric hyperelliptic curves in any residue characteristic (IsSemistableTotallyToric):).

> U<p>:=RationalFunctionField(GF(2)); // work over F_2(t) at t=0
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> R<x,y>:=PolynomialRing(U,2);
> style:=[["ContractFaces","false"],["FaceNames","false"]]; // less clutter
> f:=pˆ2*yˆ2+pˆ2+y*(x+p)*(x+1)*(p*x+1)*(pˆ2*x+1); // break a Newton polygon into length 1
> M:=Model(f,p: Style:=style); // pieces to get totally toric reduction
> DeltaTeX(M), TeX(ReductionType(M)), "Genus", Genus(M);

2

1

2

0 0 1 3 1

1

1

1
8

16
4

4

Genus 3

> f:=pˆ2*yˆ2+pˆ2+y*(x+p)*(x+1)*(p*x+1)*(pˆ2*x+1)*(pˆ3*x+1)*(pˆ4*x+1); // same in genus 5
> M:=Model(f,p: Style:=style);
> DeltaTeX(M), TeX(ReductionType(M)), "Genus", Genus(M);

2

1

2

0 0 1 3 6 10

1 1

111

1 1

1

4 422 34 14 8 Genus 5

> IsGood(M); // no, not 1g5
false
> IsSemistable(M); // yes, all components have multiplicity 1
true
> IsSemistableTotallyToric(M); // yes, semistable with no positive genus components
true

intrinsic TeX(M::CrvModel: Charts:=false, Equation:=false, Delta:=false,
RedType:=false, texsettings:=[]) -> MonStgElt

Full TeX description of a model of a curve

6.3 Model and ReductionType wrappers

intrinsic Model(X::Any, P::Any: model:="default", Style:=[]) -> CrvModel

Minimal regular with normal crossings model of a curve X at P.
Parameter model controls the default algorithm, and can be "default",
"delta" (use Delta-regular machinery) or "clusters" (use Muselli-Maclane clusters
for hyperelliptic curves in odd residue characteristic)
A univariate polynomial is interpreted as defining a hyperelliptic curve

intrinsic Model(X::Any: model:="default", Style:=[]) -> CrvModel

Minimal regular with normal crossings model of a curve X at P.
Parameter model controls the default algorithm, and can be "default",
"delta" (use Delta-regular machinery) or "clusters" (use Muselli-Maclane clusters
for hyperelliptic curves in odd residue characteristic)
A univariate polynomial is interpreted as defining a hyperelliptic curve

intrinsic ReductionType(X::Any, P::Any) -> RedType

Reduction type of X at P

intrinsic ReductionType(X::Any) -> RedType

Reduction type of X at the default valuation of its base field

Example (See [Do1, Table 1 (v),(viii),(ix)]).

> R<x,y>:=PolynomialRing(Q,2);
> eqn:=(y-1)ˆ2=(x-1)*(x-2)*(x-3)ˆ2*(x-4)+5ˆ4; // Example (v)
> M:=Model(eqn,5: model:="delta");
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> TeX(M: Delta);

F1

0

0

0

0

0

0

0

0 0 0

1 g1
F1

··
?
·

> eqn:=yˆ2=(x-1)*(x-2)*(x-3)ˆ2*(x-4)+5ˆ4; // Example (viii)
> M:=Model(eqn,5: model:="delta");
> TeX(M: Delta);

F1

0

0

0

0

0

0

0

0 0 0a

1 g1
F1

•

> M:=Model(eqn,5); // Actual model for those two, computed with Muselli
> Label(ReductionType(M): tex),TeX(M);

I4,g1 1 g1
5: v(x−4)≥0

1

1

1

> eqn:=xˆ4*yˆ2=x*(y-x)ˆ2+5ˆ3; // Example (ix)
> M:=Model(eqn,5: model:="delta");
> TeX(M: Delta);

F1

F2

3 2

1

0

1

0

0

0

0

0 0

a

1
F2

a

1
F1

> M:=Model(eqn,5); // Actual model, computed with Muselli
> Label(ReductionType(M): tex),TeX(M);

41,1,2,2,2 4
7: v(x)≥1/2

1 1 2 2 2

7 ∆v-regular models (delta.m)

7.1 Main function

intrinsic DeltaRegularModel(f::RngMPolElt, D::RngDVR: Style:=[]) -> CrvModel

Delta-regular model for a curve C given by f=0 (main function)

7.2 TeX for ∆v

intrinsic DeltaTeX(C::CrvModel: xscale:=0.8, yscale:=0.7) -> MonStgElt

Newton polytope and v-faces in TikZ

Example.

> R<x,y>:=PolynomialRing(Q,2); // 2 exceptional shapes that give deficient genus 1 curves
> p:=37;
> f:=p*yˆ2+xˆ4+p*xˆ2+pˆ2; // 2g1
> C:=DeltaRegularModel(f,DVR(Q,p));
> DeltaTeX(C);
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F1

2

3/2

1

3/2

1

1

1/2

1/2 0

> f:=p*yˆ3 + pˆ2*xˆ3 + 1; // 3g1
> C:=DeltaRegularModel(f,DVR(Q,p));
> DeltaTeX(C);

F1

0

1/3

2/3

1

2/3

1

4/3

4/3

5/3

2

intrinsic EquationTeX(C::CrvModel) -> MonStgElt

Original defining equation in TeX

Example (Taken from [Do1, Ex 3.18]).

> R<x,y>:=PolynomialRing(Q,2); // Example from Poonen-Silverberg-Stoll paper at p=2
> f:=-2*xˆ3*y-2*xˆ3+6*xˆ2*y+3*x*yˆ3-9*x*yˆ2+3*x*y-x+3*yˆ3-y;
> C:=Model(f,2);
> EquationTeX(C);

(3x+ 3)y3 − 9xy2 + (−2x3 + 6x2 + 3x− 1)y − 2x3 − x

> TeX(C);

3

FL
4

2
F a
2

• 2
F b
1

2
F a
1

1 1
F b
2

> f2:=Evaluate(f,[x+1,x*y+1]); // Better model
> C2:=Model(f2,2);
> TeX(C2: Equation, Delta); // All in one call

f = (3x4+6x3)y3+9x2y2+(−2x4+6x)y−4x3−6x2−4x at p = 2 F a
1 , F

b
1

F4

2

1

1

1/2

0

2

3/4

1/4

1

1

1/2

0

4
F b
1

1 3

21

? 4

4
F a
1

2
2

2
F4

1 1

7.3 Charts and transformation matrices

intrinsic ChartsTeX(C::CrvModel) -> MonStgElt

Charts for components in TeX for a curve model

Example (TeX, DeltaTeX, ChartsTeX for ∆v-regular model).

> R<x,y>:=PolynomialRing(Q,2);
> p:=5;

52



> f:=xˆ10+yˆ4+pˆ2*xˆ7+pˆ5*xˆ5+pˆ15;
> M:=Model(f,p); // ChartsTeX also shows the root of
> DeltaTeX(M),TeX(M); // the singular point on the leftmost edge

F1 F2

F3

15

45/4

15/2

15/4

0

13

37/4

11/2

7/4

11

29/4

7/2

1/3

9

21/4

7/4

7

27/8

2/3

5

15/8

0

7/2

1

2

1/3

4/3 2/3 0a
4

F3
•

3

8
F1

6

42

7

65
4

3 g1
F2

1 1

> ChartsTeX(M); // alternatively TeX(M: Delta, Charts) does the same

F1 x = XY 10Z12 X = x−7y4p−2 Y +X3 +X2 = 0
y = X2Y 21Z25 Y = x−16y8p−1 Z8 = 0
p = Y 7Z8 Z = x14y−7p

F2 x = X−1Z2 X = x−5y2 X3Y 2 +X2 + 1 = 0
y = X−2Z5 Y = x6y−3p Z3 = 0
p = Y Z3 Z = x−2y

F3 x = X6Y Z8 X = y−4p15 XY 5 +X + 1 = 0
y = X11Z15 Y = xp−2 Z4 = 0
p = X3Z4 Z = y3p−11

a L = 1 r = [4]5

> f2:=Evaluate(f,[x+4*pˆ2,y]); // Shift it along the singular edge
> M2:=Model(f2,p); // to try to resolve singularity
> texsettings:=[["dualgraph.root","3"],["dualgraph.scale","0.9"]]; // put F3 at the bottom
> TeX(M2: Delta, texsettings:=texsettings);

F1F2

F3

16

12

8

4

0

69/5

49/5

29/5

9/5

58/5

38/5

18/5

1/3

47/5

27/5

7/4

36/5

27/8

2/3

5

15/8

0

7/2

1

2

1/3

4/3 2/3 0
5

F3

4
32
1

4
32
1

4
32
1

4
32
1

4
3

8
F2

6
42

7

65
4

3 g1
F1

1 1

8 Drawing planar graphs (planar.m)

8.1 Main functions

intrinsic StandardGraphCoordinates(G::GrphUnd: attempts:=10) -> SeqEnum,
SeqEnum, SeqEnum

Tries to embed a graph in the plane with the least number of edge self-intersections. For planar
graphs on at most 7 vertices and a few others, use a built-in database. Returns
x=[x1,x2,...], y=[y1,y1,...] - x,y-coordinates for every vertex in VertexSet(G), and suggested
vertex labels

intrinsic TeXGraph(G::GrphUnd: x:="default", y:="default", labels:="default",
scale:=0.8, xscale:=1, yscale:=1, vertexlabel:="default",
edgelabel:="default", vertexnodestyle:="default", edgenodestyle:="default",
edgestyle:="default") -> MonStgElt

Simple function to draw a small planar graph in tikz. Labels can be a sequence
of strings (or "none", or "default" -> 1,2,3,... unless G is labelled) to draw vertices.
This function is not used in the core of the package, and is just here to illustrate
StandardGraphCoordinates used for drawing shapes and reduction types
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Example (Drawing planar graphs).

> D:=PlanarGraphDatabase(7); // assuming database is installed
> G1:=Graph(D,#D-2); // draw three most complex planar graphs
> G2:=Graph(D,#D-1); // on 7 vertices
> G3:=Graph(D,#D);
> TeXGraph(G1),TeXGraph(G2),TeXGraph(G3);

2

3

6

7

14

5

2

71

3

456
3

7
2

1

4

5

6

> shapes:=[S[1]: S in Shapes(4) | #S[1] eq 6][[4,20,28,30]];
> &cat [TeX(S): S in shapes]; // This is used when drawing shapes

111

(10)

11

(10)

1

1 1

1

1

D

1

1

D

2 1

D D

D D

1

2 2
1 1

11

1

1

> IsPlanar(Graph(shapes[4]));
false

9 Special fibres or mrnc models (dualgraph.m)

type GrphDualVert

type GrphDual

A dual graph is a combinatorial representation of the special fibre of a model with normal crossings. It
is a multigraph whose vertices are components Γi, and an edge corresponds to an intersection point of
two components. Every component Γ has multiplicity m = mΓ and geometric genus g = gΓ. Here are
three examples of dual graphs, and their associated reduction types; we always indicate the multiplicity
of a component (as an integer), and only indicate the genus when it is positive (as g followed by an
integer).

1
1

1

1 3
Γ2

2

1

2

1 1
Γ1

2
4
Γ2

2 1

6 g1
Γ1

1

2 3

Type I4 (genus 1) Type I1 IV∗ (genus 2) Type IIg1 III (genus 8).

A component is principal if it meets the rest of the special fibre in at least 3 points (with loops on a
component counting twice), or has g > 0. The first example has no principal components, and the other
two have two each, Γ1 and Γ2.

This module dualgraph.m provides a data type (GrphDual) for representing dual graphs and their
manupulation and invariants. Sometimes, when working with models, it is desirable to store and draw
incomplete or singular dual graphs, such as these (see [Do1, Ex 3.18]):
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2
F a
1

1

1
F b
2

3
FL
4

2
F a
2

•a 2
F b
1

2
F4

1 1

4
F b
1

4
F a
12

2
? 4

3

2
1

1

Such dual graphs are supported as well.

type GrphDual:
V, // associative array: name -> vertex of type GrphDualVert

// one for each component, not necessarily principal
G, // underlying abstract multigraph of all components

// vertex labels come from v`name
P, // principal components (sequence of names)
C, // chains of P1s - one for includetexname=false one for =true

// [<"1","1",[2,3,2]>,<"1","2",[]>,...] initialised by ChainsOfP1s
specialchains, // singular and other special chains, and those of variable length

// in the format <c1, c2, singular, linestyle, endlinestyle,
// labelstyle, margins, P1length, multiplicities>

texsettings; // [["name","setting"],...] settings overwriting defaults in settings.m

9.1 Default construction

intrinsic DualGraph(m::SeqEnum[RngIntElt], g::SeqEnum[RngIntElt],
E::SeqEnum[SeqEnum]: comptexnames:="%o", texsettings:=[]) -> GrphDual

Construct a dual graph from a sequence of n multiplicities of components, sequence of n genera of
components and sequences of edges. Each edge is either

[i,j] - intersection point between component #i and component #j (1<=i,j<=n)
[i,0,d1,d2,...] - open chain from component #i (1<=i<=n)
[i,j,d1,d2,...] - link chain from component #i to component #j (1<=i,j<=n)

This can be used to reconstruct a dual graph printed with Sprint(G,"Magma").
comptexnames determines the names of principal components in TeX (v`texname), and each component for
which texname<>""
is considered principal when drawing dual graphs. The options are

comptexnames::MonStgElt - string such as "c%o" which assigns names for principal components (and
only those)

among those specified by m_i, g_i
comptexnames::SeqEnum - sequence of strings for all components specified by m_i, g_i
comptexnames::UserFunction - function i->string that defines such a sequence.

Example (Constructing a dual graph).

> m := [3,1,1,1,3]; // All components and intersection points
> g := [0,0,0,0,0];
> E := [[1,2],[1,3],[1,4],[2,5],[3,5],[4,5]];
> G1:= DualGraph(m,g,E);
> m := [3,3]; // Principal components and chains (same graph)
> g := [0,0];
> E := [[1,2,1],[1,2,1],[1,2,1]];
> G2:= DualGraph(m,g,E);
> m := [3,3];
> g := [0,0]; // Principal components, different chains
> E := [[1,2,1],[1,2,1,1],[1,2,1,1,1,1]];
> G3:= DualGraph(m,g,E);
> TeX(G1), TeX(G2), TeX(G3);

55



3
5

1 1 1

3
1

3
2

1 1 1

3
1

3
2

1
1

1

1

11
1

3
1

Example (Printing dual graph as a string and reconstructing it).

> R:=ReductionType("1g1-1g2-1g3-c1");
> G:=DualGraph(R); // Triangular dual graph on 3 vertices and 3 edges
> TeX(G);

1 g1
Γ3

1 g3
Γ1

1 g2
Γ2

> Sprint(G,"Magma"); // Printed as DualGraph(m,g,E)
DualGraph([1,1,1], [3,2,1], [[1,2],[1,3],[2,3]])
> G2:=eval Sprint(G,"Magma"); // and reconstructed back
> Sprint(G2,"Magma");
DualGraph([1,1,1], [3,2,1], [[1,2],[1,3],[2,3]])

9.2 Step by step construction

intrinsic DualGraph(: texsettings:=[]) -> GrphDual

Create an empty dual graph. Assumes components and chains will be added later.

intrinsic AddComponent(˜G::GrphDual, c::MonStgElt, genus::RngIntElt,
mult::RngIntElt: texname:=c, singular:=false)

Add a vertex to a dual graph corresponding to a component with a given name c, genus, multiplicity
and optional texname.
If singular:=true, the whole graph is marked as singular (no associated reduction type) and the
component is drawn in red.

intrinsic AddComponent(˜G::GrphDual, ˜c::MonStgElt, genus::RngIntElt,
mult::RngIntElt: texname:=c, singular:=false)

Add a vertex to a dual graph corresponding to a component, with given genus and multiplicity.
If singular:=true, the whole graph is marked as singular (no associated reduction type) and the
component is drawn in red.
Sets and returns component name in c if c="".

intrinsic AddComponent(˜G::GrphDual, genus::RngIntElt, mult::RngIntElt)

Add a no-named vertex to a dual graph corresponding to a component with a genus and multiplicity

intrinsic AddChain(˜G::GrphDual, c1::MonStgElt, c2::MonStgElt,
mults::SeqEnum[RngIntElt])

Add a chain of P1s with multiplicities (possibly empty) between components c1 and c2

intrinsic AddMinimalLinkChain(˜G::GrphDual, c1::MonStgElt, c2::MonStgElt,
d::RngIntElt, a::FldRatElt, b::FldRatElt: family:=false)

Add a chain of P1s between c1 and c2 (open-ended if c2="") with multiplicities d times denominators
of minimal continued fractions from a to b.
family:=true or family:="$n$" shows multiplicity d components as variable chains of a given length
(none or $n$).
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intrinsic AddMinimalOpenChain(˜G::GrphDual, c::MonStgElt, d::RngIntElt,
a::FldRatElt)

Add an open-ended chain of P1s from c with multiplicities d times denominator
of minimal continued fractions from a to an integer Floor(d*a-1)/d.

Example (Hand-crafted dual graphs with variable length chains).

> G:=DualGraph();
> AddComponent(˜G,"A",0,7);
> AddMinimalOpenChain(˜G,"A",1,6/7); // open
> AddMinimalLinkChain(˜G,"A","A",1,5/7,3/7); // link
> assert IsConnected(G) and not IsSingular(G);
> AddMinimalLinkChain(˜G,"A","A",1,5/7,3/7: family:="$n$");
> AddMinimalLinkChain(˜G,"A","A",1,5/7,3/7: family);
> TeX(G);

7
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2 1 ···
n 1

2
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2 1 ···
1

2 6
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intrinsic AddSingularPoint(˜G::GrphDual, c::MonStgElt, point::MonStgElt)

Add a standard singular point point = "redbullet" or "bluenode" on a component c of a dual graph

intrinsic AddSingularChain(˜G::GrphDual, c1::MonStgElt, c2::MonStgElt:
singular:=true, mults:=[""], linestyle:="default", endlinestyle:="default",
labelstyle:="default", linemargins:="default", P1linelength:="default")

Add a singular chain in given tikz style with multiplicities mults (sequence of integers or strings)
between c1 and c2; use c2="0" for an open chain; default style="red"

intrinsic AddVariableChain(˜G::GrphDual, c1::MonStgElt, c2::MonStgElt,
mults::List)

Add a chain where some parts have variable length, e.g. [* 1,2,<3,"$n$">,<4,"$m$">,3,2,1 *]

Example (Hand-crafted dual graphs with all possible decorations).

> G:=DualGraph();
> AddComponent(˜G,"1",0,1: texname:="$c_1$"); // name,genus,multiplicity [+ component

name]
> AddComponent(˜G,"2",1,1: texname:="$c_2$", singular); // singular component (red)
> AddSingularPoint(˜G,"2","bluenode"); // singular points (standard)
> AddSingularPoint(˜G,"2","bluenode"); // node of unknown length
> AddSingularPoint(˜G,"2","redbullet"); // red bullet singular point
> AddSpecialPoint(˜G,"1","blue,inner sep=0pt,above=-1pt","$\\circ$"); // singular pt
> AddSpecialPoint(˜G,"1","above,scale=0.5","$\\infty$": singular:=false); // non-sing pt
> AddChain(˜G,"1","1",[]); // self-chain of length 0 (node)
> AddChain(˜G,"1","2",[]); // chain of length 0 (dashed)
> AddChain(˜G,"1","0",[1]); // open chain
> AddSingularChain(˜G,"1","2"); // singular chain (red line)
> AddSingularChain(˜G,"2","0": mults:=["X"]); // singular open chain

Add a “zigzag” style chain of unknown length and multiplicity 4

> AddSingularChain(˜G,"1","2": mults:=["$\\hspace{-11pt}?\\ \\ 4$"],
linestyle:="snake=zigzag,segment length=2,segment amplitude=1,blue!70!black");
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Add a custom purple chain with multiplicties 1,2,3

> AddSingularChain(˜G,"1","2": mults:=[1,2,3], linestyle:="shorten <=-3pt,shorten >=-3pt,
very thick, purple");

> AddVariableChain(˜G,"1","2",[* 1,<2,"$n$">,3*]); // variable length
> AddVariableChain(˜G,"1","1",[* 1,2,<3,"$m$">,2,1 *]); // self-chain of variable length
> TeX(G);
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Example (K4). TeX for dual graphs is limited to small planar graphs, and K4 is more or less the most
complex one that it can draw. Here is a reduction type like that:

> R:=ReductionType("1-(3)IV-(3)IV*-(2)I0*-(3)c1-(2)c3&c2-(4)c4");
> TeX(R: scale:=1.5);

I∗0

IV

IV∗

12

3

3

3

4

2

> TeX(DualGraph(R));
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9.3 Arithmetic invariants of dual graphs

intrinsic IsSingular(G::GrphDual) -> BoolElt

Check if G has any singular components or points, or special chains. If yes, no self-intersections
will be checked components contracted (so MakeMRNC does nothing).

intrinsic IsConnected(G::GrphDual) -> BoolElt

True if underlying graph is connected.

intrinsic HasIntegralSelfIntersections(G::GrphDual) -> BoolElt

Are all component self-intersections integers

intrinsic AbelianDimension(G::GrphDual) -> RngIntElt

Sum of genera of components)

intrinsic ToricDimension(G::GrphDual) -> RngIntElt
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Number of loops in the dual graph

intrinsic IntersectionMatrix(G::GrphDual) -> AlgMatElt

Intersection matrix for a dual graph, whose entries are pairwise intersection numbers of the
components.

Example. Here is the dual graph of the reduction type 1g3 1g2 1g1 c1, consisting of three components
genus 1,2,3, all of multiplicity 1, connected in a triangle.

> G := DualGraph([1,1,1],[1,2,3],[[1,2],[2,3],[3,1]]);
> assert not IsSingular(G); // Has no singular points or components
> assert IsConnected(G); // Check the dual graph is connected
> assert HasIntegralSelfIntersections(G); // and every component c has c.c in Z
> AbelianDimension(G); // genera 1+2+3 => 6
6
> ToricDimension(G); // 1 loop => 1
1
> TeX(ReductionType(G));

1g3

1g2

1g1

> IntersectionMatrix(G); // Intersection(G,v,w) for v,w components
[-2 1 1]
[ 1 -2 1]
[ 1 1 -2]

9.4 Contracting components to get a mrnc model

intrinsic AddEdge(˜G::GrphDual, c1::MonStgElt, c2::MonStgElt)

Add an edge between two components in a dual graph

intrinsic ContractComponent(˜G::GrphDual, c::MonStgElt: checks:=true)

Contract a component in the dual graph, assuming it meets one or two components, and has genus 0

intrinsic MakeMRNC(˜G::GrphDual)

Contract all genus 0 components of self-intersection -1, resulting in a minimal model with normal
crossings

Example (Contracting components).

> G := DualGraph([1,1],[1,0],[[1,2,1,1,1]]); // Not a minimal rnc model
> TeX(G);

1 g1
1

1

11

1

> Components(G);
[ 1, 2, c3, c4, c5 ]
> ContractComponent(˜G,"2"); // Remove the last component
> ContractComponent(˜G,"c5"); // and then the one before that
> TeX(G);
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1 g1
1

1

1

> Components(G);
[ 1, c3, c4 ]
> MakeMRNC(˜G); // Contract the rest of the chain
> TeX(G);

1 g1
1

9.5 Invariants of individual vertices (components)

intrinsic Components(G: GrphDual) -> SeqEnum[MonStgElt]

Names of all components of G, e.g. "1","2","c3","c4","c5"

intrinsic HasComponent(G::GrphDual, c::MonStgElt) -> BoolElt, MonStgElt

True if the dual graph has a component with a given c, in which case also return its index

intrinsic AddAlias(˜G::GrphDual, c::MonStgElt, alias:MonStgElt)

Add alias to a component c, e.g "2+" for "2"

intrinsic Genus(G::GrphDual, c::MonStgElt) -> RngIntElt

Genus of a component in a dual graph

intrinsic Multiplicity(G::GrphDual, c::MonStgElt) -> RngIntElt

Multiplicity of a component in a dual graph

intrinsic Intersection(G::GrphDual, c1::MonStgElt, c2::MonStgElt) -> FldRatElt

Compute intersection of two components in a dual graph, or self-intersection if c1=c2

Example (Cycle of 5 components).

> G:=DualGraph([1],[1],[[1,1,1,1,1,1]]);
> TeX(G);

1 g1
1

1

1 1

1

> C:=Components(G); C;
[ 1, c2, c3, c4, c5 ]
> assert HasComponent(G,"1");
> AddAlias(˜G,"1","main");
> assert HasComponent(G,"main");
> Multiplicity(G,"main");
1
> Genus(G,"main");
1
> Matrix([[Intersection(G,v,w): v in C]: w in C]);
[-2 1 0 0 1]
[ 1 -2 1 0 0]
[ 0 1 -2 1 0]
[ 0 0 1 -2 1]
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[ 1 0 0 1 -2]

9.6 Principal components and chains of P1s

intrinsic Neighbours(G::GrphDual, c::MonStgElt) -> SeqEnum[MonStgElt]

Neighbour vertices of a component, one for every edge (and two for every loop)

intrinsic PrincipalComponents(G::GrphDual) -> SeqEnum

Return a list of indices of principal components.
A vertex is a principal component if either its genus is greater than 0
or it has 3 or more incident edges (counting loops twice).
In the exceptional case [d]I_n one component is declared principal.

intrinsic ChainsOfP1s(G::GrphDual) -> SeqEnum

Sequence of tuples [<v0,v1,[chain multiplicities]>]
for chains of P1s between principal components

Example (Cycle of 5 components). We take the same cycle graph as above, on 5 components.

> G:=DualGraph([1],[1],[[1,1,1,1,1,1]]);
> Components(G); // Names of all components
[ 1, c2, c3, c4, c5 ]
> Neighbours(G,"c2"); // Neighbouring components, one for every edge out of c2
[ c3, 1 ]
> ChainsOfP1s(G); // Chains of P1s between principal components
[
<"1", "1", [ 1, 1, 1, 1 ]>
]

Example (Exceptional case [d]In). In the exceptional case In (genus 1) and its multiples, one (arbitrary)
component is declared principal, so that such a reduction type falls into the general framework.

> G:=DualGraph(ReductionType("I4"));
> TeX(G);

11

1

1

> Components(G);
[ 1, 2, 3, 4 ]
> PrincipalComponents(G); // One component pretends to be principal
[ 3 ]
> ChainsOfP1s(G); // and has a chain to itself
[
<"3", "3", [ 1, 1, 1 ]>
]

10 Reduction types in python (redtype.py)

The library redtype.py implements the combinatorics of reduction types, in particular

� Arithmetic of open and link sequences that controls the shapes of chains of P1s in special fibres of
minimal regular normal crossing models,

� Methods for reduction types (RedType), their cores (RedCore), link chains (RedChain) and shapes
(RedShape),
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� Canonical labels for reduction types,

� Reduction types and their labels in TeX,

� Conversion between dual graphs, reduction type, and their labels:

{dual graphs} {reduction types} {labels}.

Example (Reduction types, labels and dual graphs).

> R = ReductionType("I2*-1g1-IV")
> print(R.Label()) # Canonical plain label
I2*-1g1-IV
> print(R.Label(tex=True)) # TeX label

I∗2 1g1 IV

> print(R.TeX()) # Reduction type as a graph
I∗2 1g1 IV

> print(R.DualGraph()) # Associated dual graph
DualGraph([2,1,3,1,1,1,2,1,1,2], [0,1,0,0,0,0,0,0,0,0],
[[1,10],[1,2],[1,4],[2,3],[3,5],[3,6],[7,10],[7,8],[7,9]])

This is a dual graph on 10 components, of multiplicity 1, 2 and 3, and genus 0 and 1, and here is the
picture of the corresponding special fibre. Principal components are thick horizontal lines marked with
Γ1, Γ2, Γ3, all other components are P1s, and dashed line indicate principal components meeting at a
point.

> print(TeXDualGraph(R))

2
Γ1

1

1 g1
Γ2

3
Γ3

1 1

2

21 1

Taking the associated reduction type gives back R:

> G = DualGraph([3,1,2,1,1,1,2,1,1,2], [0,1,0,0,0,0,0,0,0,0],
[[1,2],[1,4],[1,5],[2,3],[3,6],[3,10],[7,8],[7,9],[7,10]])

> print(G.ReductionType())
I2*-1g1-IV

def DeterminantBareiss(M)

Bareiss' algorithm to compute Det(M) in a stable way

10.1 Open and link chains

A reduction type is a graph that has principal types as vertices (like IV, 1g1, I∗2 above) and link chains
as edges. Principal types encode principal components together with open chains, loops and D-links.
The three functions that control multiplicities of open and link chains, and their depths are as follows:

def OpenSequence(m: int, d: int, includem=True) -> List[int]
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Unique open sequence of type (m,d) for integers m>=1 and 1<d<m. It is of the form
[m,d,...,gcd(m,d)]

with every three consecutive terms d_(i-1), d_i, d_(i+1) satisfying
d_(i-1) + d_(i+1) = d_i * (integer > 1).

If includem=False, exclude the starting point m from the sequence.}

Example (OpenSequence).

> print(OpenSequence(6, 5))
[6, 5, 4, 3, 2, 1]
> print(OpenSequence(13, 8))
[13, 8, 3, 1]

def LinkSequence(m1: int, d1: int, m2: int, dk: int, n: int, includem=True) ->
List[int]

Unique link sequence of type m1(d1-dk-n)m2, that is of the form [m1,d1,...,dk,m2] with n+1 terms
equal to gcd(m1,d1)=gcd(m2,dk) and satisfying the chain condition: for every three consecutive terms

d_(i-1), d_i, d_(i+1)
we have

d_(i-1) + d_(i+1) = d_i * (integer > 1).
If includem=False, exclude the endpoints m1,m2 from the sequence.

Example (LinkSequence).

> print(LinkSequence(3, 2, 3, 2, -1))
[3, 2, 3]
> print(LinkSequence(3, 2, 3, 2, 0))
[3, 2, 1, 2, 3]
> print(LinkSequence(3, 2, 3, 2, 1))
[3, 2, 1, 1, 2, 3]

def MinimalLinkDepth(m1: int, d1: int, m2: int, dk: int) -> int

Minimal depth of a link sequence between principal components of multiplicities m1 and m2 with
initial links d1 and dk.
Minimal depth of a chain d1,d2,...,dk of P1s between principal component of multiplicity m1, m2 and
initial link multiplicities d1,dk. The depth is defined as -1 + number of times GCD(d1,...,dk)
appears in the sequence.
For example, 5,4,3,2,1 is a valid link sequence, and MinimalLinkDepth(5,4,1,2) = -1 + 1 = 0.

Example. Example for MinimalLinkDepth from the description of the function:

> print(MinimalLinkDepth(5,4,1,2))
0

For another example, the minimal n in the Kodaira type I∗n is 1. Here the chain links two components
of multiplicity 2, and the initial multiplicities are 2 on both sides as well:

> print(MinimalLinkDepth(2,2,2,2))
1

Here is an example of a reduction type with a link chain between two components of multiplicity 3 and
outgoing multiplicities 2 on both sides:

> R = ReductionType("IV*-(2)IV*")

Here is what its dual graph looks like:

> print(TeXDualGraph(R))
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The link chain has gcd=GCD(3,2)=1 and

depth = −1 + #1’s(=gcd) in the sequence 3, 2, 1, 1, 1, 2, 3 = 2

This is the depth specified in round brackets in IV*-(2)IV*

> print(MinimalLinkDepth(3,2,3,2)) # Minimal possible depth for such a chain = -1
-1
> R1 = ReductionType("IV*-IV*") # used by default when no expicit depth is specified
> R2 = ReductionType("IV*-(-1)IV*")
> assert R1==R2

Here is what its dual graph looks like:

> print(TeXDualGraph(R1))
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The next two functions are used in Label to determine the ordering of chains (including loops and
D-links), and default multiplicities which are not printed in labels.

def SortLinks(m, O)

Sort a sequence of multiplicities O by gcd with m, then by o. This is how open and loose
multiplicities are sorted in reduction types.

Example (Ordering open multiplicities in reduction types).

> m = 6 # principal component multiplicity
> O = [1,2,3,3,4,5] # initial multiplicities for outgoing open chains
> SortLinks(6, O) # sort them first by gcd(o,m), then by o mod m
> print(O)
[1, 5, 2, 4, 3, 3]

def DefaultMultiplicities(m1, o1, m2, o2, loop)

Default edge multiplicities for a component with given multiplicities and outgoing options.
Default edge multiplicities d1, d2 for a component with multiplicity m1, available outgoing
multiplicities o1, and one with m2, o2.
loop: boolean specifies whether it is a loop or a link between two different principal components.

Example (DefaultMultiplicities). Let us illustrate what happens when we take a principal component
91,1,1,3,3 and add five default loops of depth 2,2,1,2,3, to get a reduction type 91,1,1,3,32,2,1,2,3. How do default
loops decide which initial multiplicities to take?

We start with a component of multiplicity m = 9 and open multiplicities O = {1, 1, 1, 3, 3}.
> R = ReductionType("9ˆ1,1,1,3,3")
> print(TeXDualGraph(R))

9
Γ1

1 1 1 3 3

We can add a loop to it linking two 1’s of depth 2 by
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> R = ReductionType("9ˆ1,1,1,3,3_{1-1}2")
> print(TeXDualGraph(R))

9
Γ1

1 3 3 1

1

1

In this case, {1-1} does not need to be specified because this is the minimal pair of possible multiplicities
in O, as sorted by SortLinks:

> print(DefaultMultiplicities(9,[1,1,1,3,3],9,[1,1,1,3,3],True))
(1, 1)
> assert R == ReductionType("9ˆ1,1,1,3,3_2")

After adding the loop, {1, 3, 3} are left as potential outgoing multiplicities, so the next default loop links
3 and 3. Note that 1, 3 is not a valid pair because gcd(1, 9) ̸= gcd(3, 9).

> print(DefaultMultiplicities(9,[1,3,3],9,[1,3,3],True))
(3, 3)
> R2 = ReductionType("9ˆ1,1,1,3,3_2,2") # 2 loops, use 1-1 and 3-3
> print(TeXDualGraph(R2))

9
Γ1

1 1

1

1 3

3

3

There are no pairs left, so the next three loops use (m,m) = (9, 9)

> print(DefaultMultiplicities(9,[1],9,[1],True))
(9, 9)
> R3 = ReductionType("9ˆ1,1,1,3,3_2,2,1,2,3")
> assert R3 == ReductionType("9ˆ1,1,1,3,3_{1-1}2,{3-3}2,{9-9}1,{9-9}2,{9-9}3")

This is what its dual graph looks like:

> print(TeXDualGraph(R3))
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10.2 Principal component core (RedCore)

A core is a pair (m,O) with ‘principal multiplicity’ m ≥ 1 and ‘outgoing multiplicities’ O = {o1, o2, ...}
that add up to a multiple of m, and such that gcd(m,O) = 1. It is implemented as the following type:

def Core(m: int, O: list[int]) -> 'RedCore'

Core of a principal component defined by multiplicity m and list O.

Example (Create and print a principal component core (m,O)).

> print(Core(8,[1,3,4])) # Typical core - multiplicities add up to a multiple of m
8ˆ1,3,4
> print(Core(8,[9,3,4])) # Same core, as they are in Z/mZ
8ˆ1,3,4

This is how cores are printed, with the exception of 7 cores of χ = 0 (see below) that come from Kodaira
types and two additional special ones D and T:

> print(Core(6,[1,2,3])) # from a Kodaira type
II
> print([Core(2,[1,1]),Core(3,[1,2])]) # two special ones
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[D, T]

10.3 Basic invariants and printing

class RedCore

def definition(self)

Returns a string representation of a core in the form 'Core(m,O)'.

def Multiplicity(self)

Returns the principal multiplicity m of the principal component.

def Multiplicities(self)

Returns the list of outgoing chain multiplicities O, sorted with SortLinks.

def Chi(self)

Euler characteristic of a reduction type core (m,O), chi = m(2-|O|) + sum_(o in O) gcd(o,m)

def Label(self, tex=False)

Label of a reduction type core, for printing (or TeX if tex=True)

def TeX(self)

Returns the core label in TeX, same as Label with TeX=True.

Example (Core labels and invariants).

> C=Core(2,[1,1,1,1])
> print(C.Label()) # Plain label
I0*
> print(C.TeX()) # TeX label

I∗0
> print(C.definition()) # How it can be defined
Core(2,[1,1,1,1])
> print(C.Multiplicity()) # Principal multiplicity m
2
> print(C.Multiplicities()) # Outgoing multiplicities O
[1, 1, 1, 1]
> print(C.Chi()) # Euler characteristic
0

def Cores(chi, mbound="all", sort=True)

Returns all cores (m,O) with given Euler characteristic chi<=2. When chi=2 there are infinitely
many, so a bound on m must be given.

Example (Cores).

> print(Cores(2, mbound=4)) # Chi=2 (infinitely many), with bound for m
[1, D, T, 4ˆ1,3]
> print(Cores(0)) # 7 cores I0* ,IV, IV*, III, III*, II, II*
[I0*, IV, IV*, III, III*, II, II*]
> print([len(Cores(i)) for i in (0,-2,-4,-6,-8)]) # 7, 16, 43, 65, 64, ...
[7, 16, 43, 65, 64]
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10.4 Link chains (RedChain)

Link chains between principal components fall into three classes: loops on a principal type, D-link on
a principal type, and chains between principal types that link two of their loose edge endpoints. All of
these are implemented in the class RedChain that carries class=cLoop, cD or cLoose, and keeps track
of all the invariants.

def Link(Class, mi, di, mj=False, dj=False, depth=False, Si=False, Sj=False,
index=False) -> 'RedChain'

Define a RedChain from its invariants

Example (Some link chains, with no principal types specified).

> print(Link(cLoop,2,1,2,1)) # loop
loop 2,1 -(0) 2,1
> print(Link(cD,2,2)) # D-link
D-link 2,2 -(1) 2,2
> print(Link(cLoose,2,2)) # to another (yet unspecified) principal type
loose 2,2 -(False) False,False

10.5 Invariants and depth

class RedChain

def GCD(self)

GCD of all elements in the chain (=GCD(mi,di)=GCD(mj,di)).

def Index(self)

Index of the RedChain, used for distinguishing between chains.

def SetDepth(self, n)

Set the depth and depth string of the RedChain.

def SetMinimalDepth(self)

Set the depth of the RedChain to the minimal possible value.

def DepthString(self)

Return the string representation of the RedChain's depth.

def SetDepthString(self, depth)

Set how the depth is printed (e.g., "1" or "n").

Example (Invariants of link chains). Take a genus 2 reduction type I2 1
I∗2 whose special fibre consists

of Kodaira types I2 (loop of P1s) and I∗2 linked by a chain of P1s of multiplicity 1.

> R = ReductionType("I2-(1)I2*");

This is what its special fibre looks like:

> print(TeXDualGraph(R))

2
Γ2

1 1

1
Γ1

1

2

21 1

There are two principal types R[1]=I2 and R[2]=I∗2, with a loop on R[1] (class cLoop=1), a link chain
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between them (class cLoose=3), and a D-link on R[2] (class cD=2) This is the order in which they are
printed in the label.

> print([R[1],R[2]]) # two principal types R[1] and R[2]
[I2-{1}, I2*-{1}]
> c1,c2,c3 = R.LinkChains()
> print(c1)
[1] loop c1 1,1 -(2) c1 1,1
> print(c2)
[2] loose c1 1,1 -(1) c2 2,1
> print(c3)
[3] D-link c2 2,2 -(2) 2,2
> print(c3.Class) # cLoop=1, *cD=2*, cLoose=3
2
> print(c3.GCD()) # GCD of the chain multiplicities [2,2,2]
2
> print(c3.Index()) # index in the reduction type
3
> c3.SetDepthString("n") # change how its depth is printed in labels
> print(c3) # and drawn in dual graphs of reduction types
[3] D-link c2 2,2 -(n) 2,2
> print(R.Label())
I2-(1)In*

This is what its dual graph looks like:

1
Γ1

1
··
n
·

1

2

2
Γ21

1
2

1 1

10.6 Principal components (RedPrin)

The classification of special fibre of mrnc models is based on principal types. For curves of genus
≥ 2 such a type is a principal component with χ < 0, together with its open chains, loops, chains to
principal component with χ = 0 (called D-links) and a tally of link chains to other principal components
with χ < 0, called loose links. For example, the following reduction type has only principal type
(component Γ1) with one loop and one D-link:

8
Γ1

1 2 1 1

1 1

1
2

2

1 1

loop principal component Γ1

D-link

A principal type is implemented as the following python class.

def PrincipalType(m, g, O, Lloops, LD, Lloose, index=0)

Create a new principal type from its primary invariants:
m multiplicity of the principal component, e.g. 8
g geometric genus of the principal component, e.g. 0
O outgoing multiplicities for open chains, e.g. 1,1,2
Lloops list of loops [[di,dj,depth],...], e.g. [[1,1,3]]
LD list of D-links [[di,depth],...], e.g. [[2,1]] (m and all d_i must be even)
Lloose list of loose multiplicities, e.g. [8]
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Example (Construction). We construct the principal type from example above. It has m = 8, g = 0,
open multiplicities 1,1,2, loop 1− 1 of depth 3, a D-link with outgoing multiplicity 2 of depth 1, and no
loose chains (so that it is a reduction type in itself).

> S = PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[])

class RedPrin

def Multiplicity(self)

Principal multiplicity m of a principal type

def GeometricGenus(self)

Geometric genus g of a principal type S=(m,g,O,...)

def Index(self)

Index of the principal component in a reduction type, 0 if freestanding

def Chains(self, Class=0)

Sequence of chains of type RedChain originating in S. By default, all (loops, D-links, loose) are
returned, unless class is specified.

def OpenMultiplicities(self)

Sequence of open multiplicities S`O of a principal type, sorted

def LinkMultiplicities(self)

Sequence of link multiplicities S`L of a principal type, sorted as in label

def Loops(self)

Sequence of chains in S representing loops (class cLoop)

def DLinks(self)

Sequence of chains in S representing D-links (class cD)

def LooseChains(self)

Sequence of loose chains of a principal type, sorted

def LooseMultiplicities(self)

Sequence of loose multiplicities of a principal type, sorted

def definition(self) -> str

Returns a string representation of a principal type in the form of the PrincipalType constructor.

Example (Invariants). We continue with the principal type above. It has m = 8, g = 0, open
multiplicities 1,1,2, loop 1− 1 of depth 3, a D-link with outgoing multiplicity 2 of depth 1, and no loose
chains (so that it is a reduction type in itself).

> S = PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[])
> print(S)
8ˆ1,1,1,1,2,2_3,1D
> print(S.TeX(standalone=True)) # How it appears in the tables

8

1-1 2D

1 1 2
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> print(S.Multiplicity()) # Principal component multiplicity
8
> print(S.GeometricGenus()) # Geometric genus of the principal component
0
> print(S.OpenMultiplicities()) # Open chain initial multiplicities O=[1,1,2]
[1, 1, 2]
> print(S.Loops()) # Loops (of type RedChain)
[loop c0 8,1 -(3) c0 8,1]
> print(S.DLinks()) # D-Links (of type RedChain)
[D-link c0 8,2 -(1) 2,2]
> print(S.LooseMultiplicities()) # Loose link multiplicities
[]
> print(S.LinkMultiplicities()) # All initial link multiplicities (loops, D-links, loose)
[1, 1, 2]
> print(S.definition()) # evaluatable string to reconstruct S
PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[])

def GCD(self)

Return GCD(m,O,L) for a principal type

def Core(self)

Core of a principal type - no genus, all non-zero link multiplicities put to O, and gcd(m,O)=1

def Chi(self)

Euler characteristic chi of a principal type (m,g,O,Lloops,LD,Lloose), chi = m(2-2g-|O|-|L|) +
sum_(o in O) gcd(o,m), where L consists of all the link multiplicities in Lloops (2 from each), LD
(1 from each), Lloose (1 from each)

def LGCD(self)

Outgoing link pattern of a principal type = multiset of GCDs of loose edges with m.

Example (GCD). Define a principal type by its primary invariants: m = 4, g = 1, open multiplicities
O = [2], no loops, one D-link with initial multiplicity 2 and length 1, and no loose links

> S = PrincipalType(4, 1, [2], [], [[2, 1]], [])
> print(S.GCD()) # its GCD(m,O,L)=GCD(4,[2],[2])=2
2
> print(S) # which is seen as [2] in its name
[2]Dg1_1D

Note, however, it is not a multiple of 2 of another principal component type because its D-link is
primitive. The special fibre is not a multiple of 2.

> print(ReductionType("[2]Dg1_1D").DualGraph().Multiplicities())
[4, 2, 2, 1, 1, 2]

This is what the special fibre looks like:

21 1

4 g1
Γ12

2

def Weight(self) -> list[int]

Sequence [chi,m,-g,#loose,#Ds,#loops,#O,O,loops,Ds,loose] that determines the weight of a principal
type, and characterises it uniquely.

def __eq__(self, other)
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Compare two principal types by their weight.

def __lt__(self, other)

Compare two principal types by their weight.

def __le__(self, other)

Compare two principal types by their weight.

def __gt__(self, other)

Compare two principal types by their weight.

def __ge__(self, other)

Compare two principal types by their weight.

Example (Sorting principal types by Weight in increasing order).

> L = PrincipalTypes(-2,[4]) + PrincipalTypes(-2,[2,2])
> print([S.Weight() for S in L]);
[[-2, 4, 0, 1, 0, 0, 2, 1, 3, 4], [-2, 4, 0, 1, 1, 0, 1, 2, 2, 0, 4], [-2, 2, 0, 2, 0, 0,

2, 1, 1, 2, 2], [-2, 2, 0, 2, 1, 0, 0, 2, 1, 2, 2]]
> print(sorted(L,key=lambda S: S.Weight()))
[D==, [2]_D==, 4ˆ1,3=, [2]D_D=]

def Label(self, tex=False, loose=False, wrap=False, returnpieces=False) -> str

Ascii Label or TeX label of a principal type.
Setting tex=True prints the tex label, in \redtype{...} format by default, unless wrap=False
Setting loose=True prints outgoing loose edges as well (standalone principal type).

def TeX(self, length="35pt", label=False, standalone=False)

TeX a principal type as a TikZ arc with outer and inner lines, loops, and Ds.
label=True puts its label underneath.
standalone=True wraps it in \tikz.

def PrincipalTypes(chi: int, arg=None, semistable=False, withlgcds=False,
sort=True) -> Tuple[List[RedPrin], List[List[int]]]

Principal types with a given Euler characteristic chi, and optional restrictions.
Returns list of types, or (list of types, discovered GCDs of loose chains) if withlgcds=True.
Can be used as either:

PrincipalTypes(chi) - all
PrincipalTypes(chi,C) - with a given core C
PrincipalTypes(chi,LGCDs) - with a given sequence of loose chain lgcds

In all three cases can restrict to semistable types, setting semistable=True

Example.

> comps, lgcds = PrincipalTypes(-1, withlgcds = True)
> print(len(comps)) # all principal types with chi=-1
13
> print(lgcds) # their possible edge gcds (see RedShape)
[[1, 1, 1], [1], [1, 2], [3]]
> print(PrincipalTypes(-1,[1,2])) # select those with edge gcds = [1,2]
[D-{1}=]
> print([len(PrincipalTypes(-n)) for n in range(1,8+1)]) # all with chi=-1,...
[13, 83, 75, 277, 176, 591, 352, 1068]

def PrincipalTypeFromWeight(w: list[int]) -> RedPrin

Create a principal type S from its weight sequence w (=Weight(S)).
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Example.

> S = PrincipalType(8,0,[4,2],[[1,1,1]],[[2,1]],[6]) # Create a principal type
> w = S.Weight() # weight encodes chi, m, g etc.
> print(w) # and characterizes S
[-26, 8, 0, 1, 1, 1, 2, 2, 4, 1, 1, 1, 2, 1, 6]
> print(PrincipalTypeFromWeight(w).definition()) # Reconstruct S from the weight
PrincipalType(8,0,[2,4],[[1,1,1]],[[2,1]],[6])

def PrincipalTypesTeX(T, width=10, scale=0.8, sort=True, label=False,
length="35pt", yshift="default")

TeX a list of principal types as a rectangular table in a TikZ picture.
label=True puts the principal type label underneath.
sort=True sorts the types by Weight first, in increasing order.
yshift controls the y-axis shift after every row, based on label presence.
width controls the number of principal types per row.
scale controls the TikZ picture global scale.

Example (TeX for principal types). Here are the 13 principal types with chi=-1 (10 Kodaira + 3
’exotic’)

> L = PrincipalTypes(-1)
> print(PrincipalTypesTeX(L, label=True, width=7, yshift=2.2))

1g1

1

1g1
1

1

1-1
1

I1
1

1

1 1 1

1 1 1 1

2

1

1 1 1

I∗0
1

2

1
2D

1

I∗1
1

2

1 2

1

D 1

3

1

1 1

IV 1

3

3

1 2

T

3

2

2 2

IV∗ 2

4

1

1 2

III 1

4

3

3 2

III∗ 3

6

1

2 3

II 1

6

5

4 3

II∗ 5

10.7 RedShape

A reduction type a graph whose vertices are principal types (type RedPrin) and edges are link chains.
They fall naturally into ‘shapes’, where every vertex only remembers the Euler characteristic χ of the
type, and edge the gcd of the chain. Thus, the problem of finding all reduction types in a given genus
(see ReductionTypes) reduces to that of finding the possible shapes (see Shapes) and filling in shape
components with given χ and gcds of loose edges (see PrincipalTypes).

Example (Table of all genus 2 shapes, with numbers of principal type combinations.). Here is how this
works in genus 2. The 104 families of reduction types break into five possible shapes, with all but three
types in the first two shape (46 and 55 types, respectively):

> L = Shapes(2)
> print("\\qquad ".join([D[0].TeX(shapelabel=D[1]) for D in L]))

2∅
(46)

46

11

(10) 11

(10)

55

1 1

1

T T
3

1

D D
2

1

class RedShape
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def TeX(self, scale=1.5, center=False, shapelabel="", complabel="default",
boundingbox=False)

Tikz a shape of a reduction graph, and, if required the bounding box x1, y1, x2, y2.

def Graph(self)

Returns the underlying undirected graph G of the shape.

def __len__(self)

Returns the number of vertices in the graph G underlying the shape.

def Vertices(self)

Returns the vertex set of G as a graph.

def Edges(self)

Returns the edge set of G as a graph.

def DoubleGraph(self)

Returns the vertex-labelled double graph D of the shape.

def Chi(self, v=None)

Returns the Euler characteristic chi(v) <= 0 of the vertex v, or total Euler characteristic if
v=None

def LGCDs(self, v)

Returns the LGCDs of a vertex v that together with chi determine the vertex type (chi, lgcds).

def VertexLabels(self)

Returns a sequence of -chi's for individual components of the shape S.

def EdgeLabels(self)

Returns a list of edges v_i -> v_j of the form [i, j, edgegcd].

def Shape(V: list[int], E: list[list[int]]) -> RedShape

Constructs a graph shape from the vertex data V and list of edges with multiplicities E.
The format is as in shapes*.txt data files:
V = sequence of -chi's for individual components
E = list of edges v_i->v_j of the form [i,j,edgegcd1,edgegcd2,...]

Example (Printing a shape).

> print(ReductionType("IV-IV-IV").Shape()) # 3 vertices with chi=-1,-2,-1 and 2 edges
Shape([1,2,1],[[1,2,1],[2,3,1]])
> print(ReductionType("1---1").Shape()) # 2 vertices with chi=-1,-1 and a triple edge
Shape([1,1],[[1,2,1,1,1]])

def IsIsomorphic(S1: RedShape, S2: RedShape) -> bool

Check whether two shapes are isomorphic via their double graphs

Example (Shape isomorphism testing).

> S1 = Shape([1, 2, 3], [[1, 2, 3], [2, 3, 1], [1, 3, 2]])
> S2 = Shape([2, 3, 1], [[1, 2, 1], [2, 3, 2], [1, 3, 3]]) # rotate the graph
> assert IsIsomorphic(S1, S2)
> S3 = Shape(S1.VertexLabels(),S1.EdgeLabels()) # reconstruct S1
> assert IsIsomorphic(S1, S3)
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def Shapes(genus, filemask="data/shapes{}.txt")

Returns all shapes in a given genus, assuming they were downloaded in data/

Example (Graph, DoubleGraph and primary invariants for shapes). Under the hood of shapes of
reduction types are their labelled graphs and associated ‘double’ graphs. As an example, take the
following reduction type:

> R=ReductionType("1g2--IV=IV-1g1-c1")
> print(R.TeX())

1g2

1g1

IV

IV

There are four principal types, and they become vertices of R.Shape() whose labels are their Euler
characteristics −5,−2,−4,−5. The edges are labelled with GCDs of the link chain between the types.
For example:

— the link chain 1g2-1g1 of gcd 1 becomes the label “1”,
— the link chain IV=IV of gcd 3 becomes “3”,
— the two chains 1g2–IV of gcd 1 become “1,1”

on the corresponding edges.

> S=R.Shape()
> print(S)
Shape([5,2,4,5],[[1,2,1],[1,4,1,1],[2,3,1],[3,4,3]])
> print(TeXGraph(S.Graph()))

-5

-2

-4

-5

1

1,1

1

3

> print(S.Vertices()) # Indexed set of vertices of S.Graph(), numbered from 1
[1, 2, 3, 4]
> print(S.Edges()) # and edges [ (from_vertex, to_vertex), ... ]
[(1, 2), (1, 4), (2, 3), (3, 4)]
> print(S.VertexLabels()) # [-chi] for each type
[5, 2, 4, 5]
> print(S.EdgeLabels()) # [ [from_vertex, to_vertex, gcd1, gcd2, ...], ...]
[[1, 2, 1], [1, 4, 1, 1], [2, 3, 1], [3, 4, 3]]

MinimumWeightPaths is implemented in python for graphs with labelled vertices but not edges. To
use them for shapes, the underlying graphs are converted to graphs with only labelled vertices. This is
done simply by introducing a new vertex on every edge which carries the corresponding edge label. For
compactness, if the label is “1” (most common case), we don’t introduce the vertex at all. This is called
the double graph of the shape:

> blue = "circle,scale=0.7,inner sep=2pt,fill=blue!20" # former vertices
> red = "circle,draw,scale=0.5,inner sep=2pt, fill=red!20" # former edges
> D = S.DoubleGraph()
> bluered = lambda v: blue if sum(GetLabel(D,v)) <= 0 else red
> print(TeXGraph(D, scale:=1, vertexnodestyle=bluered))
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-5

-2 -4

-51,1

3

These are used in isomorphism testing for shapes, and to construct minimal paths.

10.8 Labelled graphs and minimum paths

def Graph(vertices, edges=[])

Construct a graph from vertices (or their number) and edges, numbered from 1
For example Graph(3,[[1,2],[2,3]]) or Graph([3,4,5],[[3,4],[4,5]])

def IsLabelled(G, v)

Determines if vertex v in graph G has an associated label.

def IsLabelled(G)

Checks if all vertices in graph G have an assigned label.

def GetLabel(G, x)

Retrieves the label of a vertex or edge x from graph G.

def GetLabels(G)

Returns a list of labels assigned to the vertices of graph G.

def AssignLabel(G, v, label)

Assign a label to the vertex v in graph G.

def AssignLabels(G, labels)

Assigns labels to the vertices of graph G based on the provided list of labels.

def DeleteLabels(G)

Deletes the labels from all vertices in the graph G if they exist.

def MinimumWeightPaths(D)

Determines minimum weight paths in a connected labelled undirected graph, returning weights and
possible vertex index sequences.
Minimum weight paths for a labelled undirected graph (e.g. double graph underlying shape)
returns W=bestweight [<index, v_label, jump>,...] (characterizes D up to isomorphism)

and I=list of possible vertex index sequences
For example for a rectangular loop G with all vertex chis=1 and edges as follows

V:=[1,1,1,1]; E:=[[1,2,1],[2,3,1],[3,4,2],[1,4,1,1]]; S:=Shape(V,E);
the double graph D has 6 vertices and 6 edges in a loop, and here minimum weight W is

W = [<0,[-1],False>,<0,[-1],False>,<0,[-1],False>,<0,[1,1],False>,<0,[-1],False>,
<0,[2],False>,<1,[-1],True>]

The unique trail T[1] (generally Aut D-torsor) is D.3->D.2->D.1->...->D.3, encoded
T = [[3,2,1,6,4,5,3]]

Example (Minimum weight paths).

> G = Graph(4,[(1,2),(2,3),(3,4),(4,1),(1,3)])
> AssignLabels(G, ["C", "B", "C", "A"])
> print(TeXGraph(G))

CB

C

A

Now we calculate minimum weight paths:
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> P, a = MinimumWeightPaths(G)

Print the minimal path and the trails, both from one odd degree vertex to the other one:

> print("P:", P)
P: [(0, 'C', False), (0, 'A', False), (0, 'C', False), (0, 'B', False), (1, 'C', False),
(3, 'C', True)]

> print("a:", a)
a: [[1, 4, 3, 2, 1, 3], [3, 4, 1, 2, 3, 1]]

Here is another graph on five vertices, this time not Eulerian

> G = Graph(5,[(2,1),(2,3),(2,4),(2,5)])
> AssignLabels(G, ["A", "B", "A", "A", "C"])
> print(TeXGraph(G))

A

B

A A C

Calculate minimum weight path, which is A-B-A, A-2-C (where 2 is ‘second vertex on the path’)

> P, a = MinimumWeightPaths(G)

Print the minimal path

> print("P:", P)
P: [(0, 'A', False), (0, 'B', False), (0, 'A', True), (0, 'A', False), (2, 'B', False),
(0, 'C', True)]

There are 6 ways to trace this path, and they form an Aut(G)=S3-torsor. The first one is

> print(f"One trail out of {len(a)} is {a[0]}")
One trail out of 6 is [1, 2, 3, 4, 2, 5]

def GraphLabel(G, full=False, usevertexlabels=True)

Generate a graph label based on a minimum weight path, determines G up to isomorphism.
The label is constructed by iterating through the minimum weight path and formatting
the vertices and edges with labels, if present.
If full=True, returns also P, T from MinimumWeightPaths(G) for vertex recoding

def StandardGraphCoordinates(G)

Vertex coordinate lists x,y for planar drawing

def TeXGraph(G, x="default", y="default", labels="default", scale=0.8, xscale=1,
yscale=1, vertexlabel="default", edgelabel="default",
vertexnodestyle="default", edgenodestyle="default", edgestyle="default")

Generate TikZ code for drawing a small planar graph.
Parameters:
- G: An connected undirected networkx graph.
- x, y: Coordinates of vertices.
- labels: Vertex labels ("none", "default", or a list of strings).
- scale: Overall scaling factor for the graph.
- xscale, yscale: Scaling factors for x and y dimensions.
- vertexlabel, edgelabel: Functions or strings for labeling vertices/edges.
- vertexnodestyle, edgenodestyle, edgestyle: Functions or strings defining styles for nodes/edges.

Returns:
- TikZ code as a string.

def GraphFromEdgesString(edgesString)

Construct a graph from a string encoding edges such as "1-2-3-4, A-B, C-D", assigning the vertex
labels to the corresponding strings.

Example.
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> G = GraphFromEdgesString("1-2-3-4-1, 2-A, 3-B")
> print(GraphLabel(G))
[2]-[1]-[4]-[3]-[B]&[A]-1-4
> print(TeXGraph(G))

12

3 4

A

B

10.9 Dual graphs (GrphDual)

A dual graph is a combinatorial representation of the special fibre of a model with normal crossings. It
is a multigraph whose vertices are components Γi, and an edge corresponds to an intersection point of
two components. Every component Γ has multiplicity m = mΓ and geometric genus g = gΓ. Here are
three examples of dual graphs, and their associated reduction types; we always indicate the multiplicity
of a component (as an integer), and only indicate the genus when it is positive (as g followed by an
integer).

1
1

1

1 3
Γ2

2

1

2

1 1
Γ1

2
4
Γ2

2 1

6 g1
Γ1

1

2 3

Type I4 (genus 1) Type I1 IV∗ (genus 2) Type IIg1 III (genus 8).

A component is principal if it meets the rest of the special fibre in at least 3 points (with loops on a
component counting twice), or has g > 0. The first example has no principal components, and the other
two have two each, Γ1 and Γ2.

This section provides a class (GrphDual) for representing dual graphs and their manupulation and
invariants.

10.10 Default construction

def DualGraph(m: List[int], g: List[int], edges: List[List[int]], comptexnames =
"default") -> 'GrphDual'

Construct a dual graph (GrphDual) from multiplicities and genera of vertices, and edges of the
underlying graph.
Parameters:
m: List of multiplicities for each provided component
g: List of genera for each provided component
edges: List of edges in the form

[i,j] - intersection point between component #i and component #j (1<=i,j<=n)
[i,0,d1,d2,...] - open chain from component #i (1<=i<=n)
[i,j,d1,d2,...] - link chain from component #i to component #j (1<=i,j<=n)

comptexnames (optional): 'default', function to name components, or a list of names for components.

Example (Constructing a dual graph).

> m = [3,1,1,1,3] # multiplicities of c1,c2,c3,c4,c5
> g = [0,0,0,0,0] # genera of c1,c2,c3,c4,c5
> E = [[1,2],[1,3],[1,4],[2,5],[3,5],[4,5]] # edges c1-c2,... as 2-tuples or lists
> G1 = DualGraph(m,g,E)
> print(G1)
DualGraph([3,1,1,1,3], [0,0,0,0,0], [[1,2],[1,3],[1,4],[2,5],[3,5],[4,5]])
> m = [3,3] # Principal components and chains (same graph)
> g = [0,0]
> E = [[1,2,1],[1,2,1],[1,2,1]]
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> G2 = DualGraph(m,g,E)
> print(G2)
DualGraph([3,3,1,1,1], [0,0,0,0,0], [[1,3],[1,4],[1,5],[2,3],[2,4],[2,5]])
> m = [3,3]
> g = [0,0] # Principal components, different chains
> E = [[1,2,1],[1,2,1,1],[1,2,1,1,1,1]]
> G3 = DualGraph(m,g,E)
> print(G3)
DualGraph([3,3,1,1,1,1,1,1,1], [0,0,0,0,0,0,0,0,0],
[[1,3],[1,4],[1,6],[2,3],[2,5],[2,9],[4,5],[6,7],[7,8],[8,9]])

This is what the three special fibres look like (with component names in blue):

3
5

3
11 1 1 3

2

3
11 1 1 3

2

3
1

1

1

1
1

1

1

1

Example (Printing dual graph as a string and reconstructing it).

> R = ReductionType("1g1-1g2-1g3-c1")
> G = R.DualGraph(); # Triangular dual graph on 3 vertices and 3 edges
> print(G)
DualGraph([1,1,1], [3,2,1], [[1,2],[1,3],[2,3]])
> G2 = eval(str(G)) # and reconstructed back
> print(G2)
DualGraph([1,1,1], [3,2,1], [[1,2],[1,3],[2,3]])

10.11 Step by step construction

class GrphDual

def __init__(self)

Initialize an empty dual graph

def AddComponent(self, name: str, genus: int, multiplicity: int, texname=None)

Adds a component (vertex) to the graph with attributes m, g, and optional texname.
Returns name of the added component (which is given by name if <>None, <>"")

def AddEdge(self, node1, node2)

Adds an edge between two components (vertices) in the graph.

def AddChain(self, c1: str, c2: Union[str, None], mults: List[int])

Adds a chain of P1s with multiplicities between c1 and c2. Adds as many vertices as
there are multiplicities in 'mults', and links them in a chain starting at c1 and
ending at c2 (if c2 is provided, else it's an open chain).

Example (Type II∗ reduction). This is how we can construct the dual graph of the type II∗ elliptic
curve, creating some components and edges by hand, and adding the rest as open chains.

6
A

5

4
3

2
1

3 4

2

> G = GrphDual()
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> c1 = G.AddComponent("A", genus=0, multiplicity=6) # Called 'A', multiplicity 6
> c2 = G.AddComponent("", genus=0, multiplicity=3) # default name ('c2')
> G.AddEdge(c1,c2) # Link the two (shortest chain)
> G.AddChain(c1,None,[4,2]) # The other two chains
> G.AddChain(c1,None,[5,4,3,2,1])
> print(G.Components())
['A', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9']
> print(G.ReductionType())
II*

10.12 Global methods and arithmetic invariants

def Graph(self) -> nx.Graph

Returns the underlying graph.

def Components(self) -> list

Returns the list of components (vertices) of the dual graph.

def IsConnected(self)

True if underlying graph is connected

def HasIntegralSelfIntersections(self)

Are all component self-intersections integers

def AbelianDimension(self)

Sum of genera of components

def ToricDimension(self)

Number of loops in the dual graph

def IntersectionMatrix(self)

Intersection matrix for a dual graph, whose entries are pairwise intersection numbers of the
components.

Example. Here is the dual graph of the reduction type 1g3 1g2 1g1 c1, consisting of three components
genus 1,2,3, all of multiplicity 1, connected in a triangle.

> G = DualGraph([1,1,1],[1,2,3],[[1,2],[2,3],[3,1]])
> assert G.IsConnected() # Check the dual graph is connected
> assert G.HasIntegralSelfIntersections() # and every component c has c.c in Z
> print(G.AbelianDimension()) # genera 1+2+3 => 6
6
> print(G.ToricDimension()) # 1 loop => 1
1
> print(G.ReductionType().TeX())

1g3

1g2

1g1

> print(G.IntersectionMatrix()) # Intersection(G,v,w) for v,w components
[[-2, 1, 1], [1, -2, 1], [1, 1, -2]]
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def PrincipalComponents(self)

Return a list of indices of principal components.
A vertex is a principal component if either its genus is greater than 0
or it has 3 or more incident edges (counting loops twice).
In the exceptional case [d]I_n one component is declared principal.

def ChainsOfP1s(self)

Returns a sequence of tuples [(v1,v2,[chain multiplicities]),...] for chains of P1s between
principal components, and v2=None for open chains

def ReductionType(self)

Reduction type corresponding to the dual graph

10.13 Contracting components to get a mrnc model

def ContractComponent(self, c, checks=True)

Contract a component in the dual graph, assuming it meets one or two components, and has genus 0.

def MakeMRNC(self)

Repeatedly contract all genus 0 components of self-intersection -1, resulting in a minimal model
with normal crossings.

def Check(self)

Check that the graph is connected and self-intersections are integers.

Example (Contracting components).

> G = DualGraph([1,1],[1,0],[[1,2,1,1,1]]) # Not a minimal rnc model
> print(G.Components(),[G.Intersection(v,v) for v in G.Components()])
['1', '2', 'c3', 'c4', 'c5'] [-1, -1, -2, -2, -2]
> G.ContractComponent("2") # Remove the last component
> G.ContractComponent("c5") # and then the one before that
> print(G.Components())
['1', 'c3', 'c4']
> print(G)
DualGraph([1,1,1], [1,0,0], [[1,2],[2,3]])
> G.MakeMRNC() # Contract the rest of the chain
> print(G.Components())
['1']
> print(G)
DualGraph([1], [1], [])
> print(G.ReductionType()) # Associated reduction type
1g1

10.14 Invariants of individual vertices

def HasComponent(self, c)

Test whether the graph has a component named c

def Multiplicity(self, c)

Returns the multiplicity m of vertex c from the graph.
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def Multiplicities(self) -> list

Returns the list of multiplicities of components.

def Genus(self, c)

Returns the geometric genus g of vertex c from the graph.

def Genera(self) -> list

Returns the list of geometric genera of components.

def Neighbours(self, c)

List of incident vertices, with each loop contributing the vertex itself twice

def Intersection(self, c1, c2)

Compute the intersection number between components c1 and c2 (or self-intersection if c1=c2).

Example (Cycle of 5 components).

> G = DualGraph([1], [1], [[1,1,1,1,1,1]])
> C = G.Components()
> print(C)
['1', 'c2', 'c3', 'c4', 'c5']
> assert G.HasComponent("c2")
> print(G.Multiplicity("c2"))
1
> print(G.Genus("c2"))
0
> print([[G.Intersection(v, w) for v in C] for w in C]) # = G.IntersectionMatrix()
-2 1 0 0 1
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
1 0 0 1 -2

10.15 Reduction Types (RedType)

Now we come to reduction types, implemented through the class RedType. They can be constructed in
a variety of ways:
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ReductionType(m,g,O,L) Construct from a sequence of components (including all principal
ones), their multiplicities m, genera g, outgoing multiplicities
of open chains O, and link chains L beween them, e.g.
ReductionType([1],[0],[[]],[[1,1,0,0,3]]) (Type I3)

ReductionTypes(g) All reduction types in genus g. Can restrict to just semistable ones
and/or ask for their count instead of actual the types, e.g.
ReductionTypes(2) (all 104 genus 2 types)
ReductionTypes(2, countonly=True) (only count them)
ReductionTypes(2, semistable=True) (7 semistable ones)

ReductionType(label) Construct from a canonical label, e.g.
ReductionType("I3")

ReductionType(G) Construct from a dual graph, e.g.
ReductionType(DualGraph([1],[1],[])) (good elliptic curve)

ReductionTypes(S) Reduction types with a given shape, e.g.
ReductionTypes(Shape([2],[])) (46 of the genus 2 types)

Conversely, from a reduction type we can construct its dual graph (R.DualGraph()) and a canonical
label R.Label()), and these functions are also described in this section. Finally, there are functions to
draw reduction types in TeX (R.TeX()).

def ReductionType(*args) -> 'RedType'

Reduction type from either:
ReductionType(label: Str) reduction type from a label, e.g. "I3"
ReductionType(G: GrphDual) reduction type from a dual graph
ReductionType(m, g, O, L) reduction type from sequence of components, their invariants, and chains
of P1s:

m = sequence of multiplicities of components c_1,...,c_k
g = sequence of their geometric genera
O = outgoing multiplicities of open chains, one sequence for each component
L = link chains, of the form

[[i,j,di,dj,n],...] - link chain from c_i to c_j with multiplicities m[i],di,...,dj,m[j], of
depth n
n can be omitted, and chain data [i,j,di,dj] is interpreted as having minimal possible depth.

Example (II∗). We construct Kodaira type II∗ as a reduction type

6
Γ1

5

4
3

2
1

3 4

2

> m = [6] # multiplicity of one starting component Gamma_1
> g = [0] # their geometric genera
> O = [[3, 4, 5]] # outgoing multiplicities of open chains from each of them
> L = [] # link chains
> R = ReductionType(m, g, O, L)
> print(R.Label())
II*
> assert R == ReductionType("II*") # same type from label

Example (I∗3). Similarly, we construct Kodaira type I∗3 as a reduction type

2
Γ1

1 1

2

2

2

1 1

> m = [2, 2] # multiplicities of starting components Gamma_1, Gamma_2
> g = [0, 0] # their geometric genera
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> O = [[1, 1], [1, 1]] # outgoing multiplicities of open chains from each of them
> L = [[1, 2, 2, 2, 3]] # link chains [[i,j, di,dj ,optional depth],...]
> R = ReductionType(m, g, O, L)
> print(R.Label())
I3*
> assert R == ReductionType("I3*") # same type from label

def ReductionTypes(arg, *args, **kwargs)

ReductionTypes(g: int, [countonly=False, semistable=False, elliptic=False])
All reduction types in genus g<=6 or their count (if countonly=True; faster).
semistable=True restricts to semistable types, elliptic=True (when g=1) to Kodaira types of
elliptic curves.

ReductionTypes(S: RedShape, [countonly=False, semistable=False])
Sequence of reduction types with a given shape S, again semistable if necessary, and/or their
count
If countonly=True, only return the number of types (faster).

returns a sequence of RedType's or an integer if countonly=True

Example (Reduction types in a given genus). Here are all reduction types for elliptic curves (10 Kodaira
types), the count for genus 2 (104 Namikawa-Ueno types) and the count for semistable types in genus 3.

> print(ReductionTypes(1, elliptic=True))
[1g1, I1, I0*, I1*, IV, IV*, III, III*, II, II*]
> print(ReductionTypes(2, countonly=True))
104
> print(ReductionTypes(3, semistable=True, countonly=True))
42

Example (Reduction types with a given shape). There are 1901 reduction types in genus 3, in 35
different shapes. Here is one of the more ‘exotic’ ones, with 6 types in it. It has two vertices with
χ = −3 and χ = −1 and two edges between them, with gcd 1 and 2.

> S = Shape([3, 1], [[1, 2, 1, 2]])
> print(S.TeX())

31,2

(6) D
2

> L = ReductionTypes(S)
> print(L)
[I0*-=D, I1*-=D, III--{2-2}D, III*-{2-2}-D, II--{2-2}D, II*-{4-2}-D]
> print("\\qquad".join(R.TeX(scale=1.5, forcesups=True) for R in L))

I∗0 D

1-1

2-2
I∗1 D

1-1

2-2
III D

1-1

2-2
III∗ D

2-2

3-1
II D

1-1

2-2
II∗ D

4-2

5-1

class RedType

def Chi(self)

Total Euler characteristic of R

def Genus(self)

Total genus of R

Example.

> R = ReductionType("III=(3)III-{2-2}II-{6-12}18g2ˆ6,12")
> print(R.Label()) # Canonical label
[6]Tg2-{12-6}II-{2-2}III=(3)III
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> print(R.Genus()) # Total genus
43

def IsGood(self)

True if comes from a curve with good reduction

def IsSemistable(self)

True if comes from a curve with semistable reduction (all (principal) components of an mrnc model
have multiplicity 1)

def IsSemistableTotallyToric(self)

True if comes from a curve with semistable totally toric reduction (semistable with no positive
genus components)

def IsSemistableTotallyAbelian(self)

True if comes from a curve with semistable totally abelian reduction (semistable with no loops in
the dual graph)

Example (Semistable reduction types).

> semi = ReductionTypes(3, semistable=True) # genus 3, semistable,
> ab = [R for R in semi if R.IsSemistableTotallyAbelian()] # totally abelian reduction
> print([R.TeX() for R in ab])

1g3 1g2 1g1 1g1 1g1 1g1

1g1

1

1g1

1g1

> tor = [R for R in semi if R.IsSemistableTotallyToric()]
> print([R.TeX() for R in tor])

I1,1,1 I1,1 I1 I1 1 I1 I1 1 1 I1 1 I1 I1 I1 I1 I1 1 1

I1

1

1

1

1

1

I1

1

I1

I1 I1 1 1 I1 I11

1

1

1

1

1

1

1

1 1

1

Count semistable reduction types in genus 2,3,4,5 (OEIS A174224)

> print([ReductionTypes(n, semistable=True, countonly=True) for n in [2,3,4,5]])
[7, 42, 379, 4555]

def TamagawaNumber(self)

Tamagawa number of the curve with a given reduction type, over an algebraically closed residue field

Example (Tamagawa numbers for reduction types of elliptic curves).

> for R in ReductionTypes(1, elliptic=True): print(R, R.TamagawaNumber())
1g1 1
I1 1
I0* 4
I1* 4
IV 3
IV* 3
III 2
III* 2
II 1

84



II* 1

10.16 Invariants of individual principal components and chains

def PrincipalTypes(self)

Principal types (vertices) of the reduction type

def __len__(self)

Number of principal types in reduction type

def __getitem__(self, i)

Principal type number i in the reduction type, accessed as R[i] (numbered from i=1)

def LinkChains(self)

Return all the link chains in the reduction type

def LooseChains(self) -> list

Return all the link chains in R between different principal components, sorted as in label.

def Multiplicities(self)

Sequence of multiplicities of principal types

def Genera(self)

Sequence of geometric genera of principal types

def GCD(self)

GCD detecting non-primitive types

def Shape(self)

The shape of the reduction type.

Example (Principal types and chains). Take a reduction type that consists of smooth curves of genus
3, 2 and 1, connected with two chains of P1s of depth 2.

> R = ReductionType("1g3-(2)1g2-(2)1g1")
> print(R.TeX())
1g3 1g2 1g12 2

This is how we access the three principal types, their primary invariants, and the chains.

> print(R[1], R[2], R[3]) # individual principal types, same as R.PrincipalTypes()
1g3-{1} 1g2-{1}-{1} 1g1-{1}
> print(R.Genera()) # geometric genus g of each principal type
[3, 2, 1]
> print(R.Multiplicities()) # multiplicity m of each principal type
[1, 1, 1]
> print(R.LinkChains()) # all chains between them (including loops and D-links)
[[1] loose c1 1,1 -(2) c2 1,1, [2] loose c2 1,1 -(2) c3 1,1]

10.17 Comparison

def Weight(self) -> list[int]

Weight of a reduction type, used for comparison and sorting
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Example.

> R1 = ReductionType("I1g1")
> print(R1.Weight())
[1, 0, -2, 1, -1, 0, 0, 1, 0, 1, 1, 1, 4, 73, 49, 103, 49]
> R2 = ReductionType("Dg1")
> print(R2.Weight())
[1, 0, -2, 2, -1, 0, 0, 0, 2, 1, 1, 3, 68, 103, 49]
> print(R1<R2) # I1g1<Dg1 so it precedes it in tables
True

def __eq__(self, other)

Determines if two principal types are equal based on their weight.

def __lt__(self, other)

Compares two reduction types by their weight.

def __gt__(self, other)

Compares two reduction types by their weight.

def __le__(self, other)

Compares two reduction types by their weight.

def __ge__(self, other)

Compares two reduction types by their weight.

def Sort(seq)

Sorts a sequence of reduction types in ascending order based on their weight.

Example (Sorted reduction types in genus 1 and 2).

> L = ReductionTypes(1, elliptic=True)
> RedType.Sort(L)
> print(L)
[1g1, I1, I0*, I1*, IV, IV*, III, III*, II, II*]
> L = ReductionTypes(2)
> RedType.Sort(L)
> print(L)
[1g2, I1g1, I1,1, Dg1, [2]g1_D, 2ˆ1,1,1,1,1,1, I0*_0, D_{2-2}, I0*_D, I1*_0, [2]_1,D,

I1*_D, [2]_D,D,D, 3ˆ1,1,2,2, IV_0, IV*_-1, 4ˆ1,3,2,2, III_0, III*_-1, III_D, 4ˆ1,3_D,
III*_D, [2]I0*_D, [2]I1*_D, 5ˆ1,1,3, 5ˆ1,2,2, 5ˆ2,4,4, 5ˆ3,3,4, 6ˆ1,1,4, 6ˆ5,5,2,
6ˆ2,4,3,3, II_D, [2]IV_D, [2]T_{6}D, [2]IV*_D, II*_D, 8ˆ1,3,4, 8ˆ5,7,4, [2]III_D,
[2]III*_D, 10ˆ1,4,5, 10ˆ3,2,5, 10ˆ7,8,5, 10ˆ9,6,5, [2]II_D, [2]II*_D, 1g1-1g1, 1g1-I1,
1g1-I0*, 1g1-I1*, 1g1-IV, 1g1-IV*, 1g1-III, 1g1-III*, 1g1-II, 1g1-II*, I1-I1, I1-I0*,
I1-I1*, I1-IV, I1-IV*, I1-III, I1-III*, I1-II, I1-II*, I0*-I0*, I0*-I1*, I0*-IV,
I0*-IV*, I0*-III, I0*-III*, I0*-II, I0*-II*, I1*-I1*, I1*-IV, I1*-IV*, I1*-III,
I1*-III*, I1*-II, I1*-II*, IV-IV, IV-IV*, IV-III, IV-III*, IV-II, IV-II*, IV*-IV*,
IV*-III, IV*-III*, IV*-II, IV*-II*, III-III, III-III*, III-II, III-II*, III*-III*,
III*-II, III*-II*, II-II, II-II*, II*-II*, T=T, D-=D, 1---1]

10.18 Reduction types, labels, and dual graphs
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def DualGraph(self, compnames="default")

Full dual graph from a reduction type, possibly with variable length edges, and optional names of
components.
Returns: GrphDual The constructed dual graph.

def TeXLabel(self, forcesubs=False, forcesups=False, wrap=True)

TeX label of a reduction type used with the \redtype macro

def Label(self, tex=False, html=False, wrap=True, forcesubs=False,
forcesups=False, depths="default")

Return canonical string label of a reduction type.
tex=True gives a TeX-friendly label (\redtype{...})
html=True gives a HTML-friendly label (<span class='redtype'>...</span>)
wrap=False keeps the format above but removes \redtype / <span> wrapping
forcesubs=True forces depths of chains & loops to be always printed (usually in round brackets)
forcesups=True forces outgoing chain multiplicities to be always printed (in curly brackets).

depths can be "default", "original", "minimal", or a custom sequence.

def Family(self) -> str

Returns the reduction type label with minimal chain lengths in the same family.

Example (Plain and TeX labels for reduction types).

> R = ReductionType("IIg1_1-(3)III-(4)IV")
> print(R.Label()) # plain text label
IIg1_1-(3)III-(4)IV
> R2 = ReductionType(R.Label())
> assert R == R2 # can be used to reconstruct the type
> print(R.Family()) # family (reduction type with minimal depths)
IIg1_1-III-IV
> print(R.Label(tex=True)) # label in TeX, wrapped in \redtype{...} macro

IIg1,1 3
III

4
IV

> print(R[1]) # first principal type as a standalone type
IIg1_1-{1}
> print(R.TeX()) # reduction type as a graph in TeX
IIg1,1 III IV

3 4

Example (Canonical label in detail). Take a graph G on 4 vertices

> G = Graph(4,[[1,2],[1,3],[1,4]])
> print(TeXGraph(G, labels="none"))

Place a component of multiplicity 1 at the root and II, III∗, I∗0 at the three leaves. Link each leaf to the
root with a chain of multiplicity 1. This gives a reduction type that occurs for genus 3 curves:

> R = ReductionType("1-II&c1-III*&c1-I0*") # First component is the root,
> print(R.TeX()) # the other three are leaves

I∗0

1

II

III∗

Here is the corresponding special fibre
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> print(TeXDualGraph(R))

1
Γ2

2
Γ1

1 1 1 6
Γ3

2 3

2
3

4
Γ4

3

21

2

How is the following canonical label chosen among all possible labels?

> print(R)
I0*-1-II&III*-c_2

Each principal component is a principal type (as there are no loops or D-links), and its primary invariants
are its Euler characteristic χ and a multiset lgcd of gcd’s of outgoing (loose) link chains

> print([S for S in R])
[I0*-{1}, 1-{1}-{1}-{1}, II-{1}, III*-{3}]
> print([S.Chi() for S in R]) # add up to 2-2*genus, so genus=3
[-1, -1, -1, -1]
> print([S.LGCD() for S in R])
[[1], [1, 1, 1], [1], [1]]

All four leaves have χ = −2, lgcd=[1] and the root χ = 1, lgcd=[1, 1, 1]

> print(PrincipalTypes(-1,[1])) # 10 such (II-, III-, IV-, ...) drawn $1ˆ1_{(10)}$
[1g1-{1}, I1-{1}, I0*-{1}, I1*-{1}, IV-{1}, IV*-{2}, III-{1}, III*-{3}, II-{1}, II*-{5}]
> print(PrincipalTypes(-1,[1,1,1])) # unique one of this type, drawn as 1
[1-{1}-{1}-{1}]

Together they form a shape graph S as follows:

> S = R.Shape()
> print(S.TeX(scale = 1))

11

(10)

1

11

(10)

11

(10)

The vertices and edges of S are assigned weights. Vertex weights are χ’s, edge weights are lgcd’s

> print([GetLabel(S.Graph(),v) for v in S.Vertices()])
[[-1], [-1], [-1], [-1]]
> print([GetLabel(S.Graph(),e) for e in S.Edges()])
[[1], [1], [1]]

Then the shortest path is found using MinimumWeightPaths. It is v-v-v&v-2 (v=new vertex with
χ = −1, -=edge, &=jump). Note that by convention actual edges are preferred to jumps, and going to
a new vertex preferred to revisiting an old one. Also vertices with smaller χ come first, if possible, as
they have smaller labels.

v-v-v&v-2 < v-v&v-2-v (jumps are larger than edge marks)
v-v-v&v-2 < v-v-v&2-v (repeated vertex indices are larger than vertex marks)

> P,T = MinimumWeightPaths(S)
> print(P) # v-v-v&v-2
[(0, [-1], False), (0, [-1], False), (0, [-1], True), (0, [-1], False), (2, [-1], True)]

This path can be used to construct the graph, and determines it up to isomorphism. There are |AutS| =
6 ways to trail S in accordance with this path, and as far the shape is concerned, they are completely
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identical.

> print(T)
[[1, 2, 3, 4, 2], [1, 2, 4, 3, 2], [3, 2, 4, 1, 2], [3, 2, 1, 4, 2], [4, 2, 3, 1, 2], [4,
2, 1, 3, 2]]

This gives six possible labels for our reduction type that all traverse the shape according to path P :

> l = lambda i: R[i].Label()
> print([f"{l(c[0])}-{l(c[1])}-{l(c[2])}&{l(c[3])}-c2" for c in T])
['I0*-1-II&III*-c2', 'I0*-1-III*&II-c2', 'II-1-III*&I0*-c2', 'II-1-I0*&III*-c2',
'III*-1-II&I0*-c2', 'III*-1-I0*&II-c2']

Now we assign weights to vertices and edges that characterise the actual shape components (rather than
just their χ) and link chains (rather than just their lgcd)

> print([S.Weight() for S in R])
[[-1, 2, 0, 1, 0, 0, 3, 1, 1, 1, 1], [-1, 1, 0, 3, 0, 0, 0, 1, 1, 1], [-1, 6, 0, 1, 0, 0,
2, 2, 3, 1], [-1, 4, 0, 1, 0, 0, 2, 3, 2, 3]]

> print(R.EdgesWeight(2,1)) # weight of the 1-II link chain
[1, 1, 0]
> print(R.EdgesWeight(2,3)) # weight of the 1-I0* link chain
[1, 1, 0]
> print(R.EdgesWeight(2,4)) # weight of the 1-III* link chain
[1, 3, 0]

The component weight R[i].Weight() starts with (χ,−m,−g, ...) so when all components have the same
χ like in this example, the ones with large multiplicity m have smaller weight. Because m(II)=6,
m(III*)=4, m(I0*)=2, the trails T [1] and T [2] are preferred to the other four. They both start with a
component II, then an edge II-1 and a component 1. After that they differ in that T [1] traverses an edge
1-I0* and T [2] an edge 1-III*. Because the edge weight is smaller for T [1], this is the minimal path, and
it determines the label for R:

> print(R)
I0*-1-II&III*-c_2

Example (Labels of individual principal types).

> R = ReductionType("II-III-IV")
> print([S.Label() for S in R]) # As part of R
['IV', 'III', 'II']
> print([S.Label(loose=True) for S in R]) # As standalone principal types
['IV-{1}', 'III-{1}-{1}', 'II-{1}']

def TeX(self, forcesups=False, forcesubs=False, scale=0.8, xscale=1, yscale=1,
oneline=False)

TikZ representation of a reduction type, as a graph with PrincipalTypes (principal components with
chi>0) as vertices, and edges for link chains.
oneline:=true removes line breaks.
forcesups:=true and/or forcesubs:=true shows edge decorations (outgoing multiplicities and/or chain
depths) even when they are default.

Example (TeX for reduction types).

> R = ReductionType("1g1--I1-I1")
> print(R.TeX(),R.TeX(forcesups=True, forcesubs=True, scale=1.5))

1g1 I1 I1 1g1 I1 I1

1-1

1

1-1

1

1-1

1
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Example (Degenerations of two elliptic curves meeting at a point).

> S=ReductionType("1g1-1g1").Shape() # Two elliptic curves meeting at a point (genus 2)

The corresponding shape is a graph v-v with two vertices with χ = −1 and one edge of gcd 1

> print(S.TeX())

11

(10) 11

(10)

> print(PrincipalTypes(-1,[1])) # There are 10 possibilities for such
[1g1-{1}, I1-{1}, I0*-{1}, I1*-{1}, IV-{1}, IV*-{2}, III-{1}, III*-{3}, II-{1}, II*-{5}]
> # a vertex, one for each Kodaira type
> print(ReductionTypes(S, countonly=True)) # and Binomial(10,2) such types in total
55
> print(ReductionTypes(S)[:10]) # first 10 of these
[1g1-1g1, 1g1-I1, 1g1-I0*, 1g1-I1*, 1g1-IV, 1g1-IV*, 1g1-III, 1g1-III*, 1g1-II, 1g1-II*]

10.19 Variable depths in Label

def SetDepths(self, depth)

Set depths for DualGraph and Label based on either a function or a sequence.
If `depth` is a function, it should be of the form:
depth(e: RedChain) -> int/str

For example:
lambda e: e.depth # Original depths
lambda e: MinimalLinkDepth(e.mi, e.di, e.mj, e.dj) # Minimal depths
lambda e: f"n_{e.index}" # Custom string-based depth

If `depth` is a sequence, its length must match the number of link chains in the reduction type.

Raises:
ValueError: If `depth` is neither a function nor a sequence or if the sequence length doesn't
match.

def SetVariableDepths(self)

Set depths for DualGraph and Label to a variable depth format like 'n_i'.

def SetOriginalDepths(self)

Remove custom depths and reset to original depths for printing in Label and other functions.

def SetMinimalDepths(self)

Set depths to minimal ones in the family for each edge.

def GetDepths(self)

Return the current depths (string sequence) set by SetDepths or the original ones if not changed.
Returns:

list: A list of depth strings for each link chain.

Example (Setting variable depths for drawing families).

> R = ReductionType("I3-(2)I5")
> print(R.Label(tex=True))

I3 2
I5

> R.SetDepths(["a", "b", "5"]) # Make two of the three chains variable depth
> print(R.Label(tex=True))

Ia
b
I5
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> R.SetOriginalDepths()
> print(R.Label(tex=True))

I3 2
I5

11 Reduction types in JavaScript (redtype.js)

The library redtype.js implements the combinatorics of reduction types, in particular

� Arithmetic of open and link sequences that controls the shapes of chains of P1s in special fibres of
minimal regular normal crossing models,

� Methods for reduction types (RedType), their cores (RedCore), link chains (RedChain) and shapes
(RedShape),

� Canonical labels for reduction types,

� Reduction types and their labels in TeX,

� Conversion between dual graphs, reduction type, and their labels:

{dual graphs} {reduction types} {labels}.

Example (Reduction types, labels and dual graphs).

> var R = ReductionType("I2*-1g1-IV");
> console.log(R.Label()); // Canonical plain label
I2*-1g1-IV
> console.log(R.Label({tex: true})); // TeX label

I ∗2 .1g1.IV
> console.log(R.TeX()); // Reduction type as a graph
I∗2 1g1 IV

> console.log(R.DualGraph()) // Associated dual graph
DualGraph([2,1,3,1,1,1,2,1,1,2], [0,1,0,0,0,0,0,0,0,0],
[[1,2],[1,4],[1,10],[2,3],[3,5],[3,6],[7,8],[7,9],[7,10]])

This is a dual graph on 10 components, of multiplicity 1, 2 and 3, and genus 0 and 1:

21 1

3
Γ1

1 g1
Γ2

2
Γ3

2

1

1 1

Taking the associated reduction type gives back R:

> var G = DualGraph([3,1,2,1,1,1,2,1,1,2], [0,1,0,0,0,0,0,0,0,0],
[[1,2],[1,4],[1,5],[2,3],[3,6],[3,10],[7,8],[7,9],[7,10]]);

> console.log(G.ReductionType().Label());
I2*-1g1-IV
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11.1 Open and link chains

A reduction type is a graph that has principal types as vertices (like IV, 1g1, I∗2 above) and link chains
as edges. Principal types encode principal components together with open chains, loops and D-links.
The three functions that control multiplicities of open and link chains, and their depths are as follows:

function OpenSequence(m, d, includem = true)

Example (OpenSequence).

> console.log(OpenSequence(6, 5));
[ 6, 5, 4, 3, 2, 1 ]
> console.log(OpenSequence(13, 8));
[ 13, 8, 3, 1 ]

function LinkSequence(m1, d1, m2, dk, n, includem = true)

Unique link sequence of type m1(d1-dk-n)m2, that is of the form [m1,d1,...,dk,m2] with n+1 terms
equal to gcd(m1,d1)=gcd(m2,dk) and satisfying the chain condition: for every three consecutive terms

d_(i-1), d_i, d_(i+1)
we have

d_(i-1) + d_(i+1) = d_i * (integer > 1).
If includem = false, exclude the endpoints m1,m2 from the sequence.

Example (LinkSequence).

> console.log(LinkSequence(3, 2, 3, 2, -1));
[ 3, 2, 3 ]
> console.log(LinkSequence(3, 2, 3, 2, 0));
[ 3, 2, 1, 2, 3 ]
> console.log(LinkSequence(3, 2, 3, 2, 1));
[ 3, 2, 1, 1, 2, 3 ]

function MinimalLinkDepth(m1, d1, m2, dk)

Minimal depth of a link sequence between principal components of multiplicities m1 and m2 with
initial links d1 and dk.
Minimal depth of a chain d1,d2,...,dk of P1s between principal component of multiplicity m1, m2 and
initial link multiplicities d1,dk. The depth is defined as -1 + number of times GCD(d1,...,dk)
appears in the sequence.
For example, 5,4,3,2,1 is a valid link sequence, and MinimalLinkDepth(5,4,1,2) = -1 + 1 = 0.

Example. Example for MinimalLinkDepth from the description of the function:

> console.log(MinimalLinkDepth(5,4,1,2))
0

For another example, the minimal n in the Kodaira type I∗n is 1. Here the chain links two components
of multiplicity 2, and the initial multiplicities are 2 on both sides as well:

> console.log(MinimalLinkDepth(2,2,2,2))
1

Here is an example of a reduction type with a link chain between two components of multiplicity 3 and
outgoing multiplicities 2 on both sides:

> var R = ReductionType("IV*-(2)IV*")

Here is what its dual graph looks like:
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3
Γ1

2

1

2

1

3
Γ2

2

1
1

1
2

2

1

2

1

The link chain has gcd=GCD(3,2)=1 and

depth = −1 + #1’s(=gcd) in the sequence 3, 2, 1, 1, 1, 2, 3 = 2

This is the depth specified in round brackets in IV*-(2)IV*

> console.log(MinimalLinkDepth(3,2,3,2)) // Minimal possible depth for such a chain = -1
-1
> var R1 = ReductionType("IV*-IV*") // used by default when no expicit depth is specified
> var R2 = ReductionType("IV*-(-1)IV*")
> console.assert(R1.equals(R2))
Assertion failed

Here is what its dual graph looks like:

3
Γ2

2

1

2

1 3
Γ12

2

1

2

1

The next two functions are used in Label to determine the ordering of chains (including loops and
D-links), and default multiplicities which are not printed in labels.

function SortLinks(m, O)

Sort a multiset of multiplicities O by GCD with m, then by O. This is how open and free
multiplicities are sorted in reduction types.

Example (Ordering open multiplicities in reduction types).

> var m = 6 // principal component multiplicity
> var O = [1,2,3,3,4,5] // initial multiplicities for outgoing open chains
> SortLinks(6, O) // sort them first by gcd(o,m), then by o mod m
> console.log(O)
[ 1, 5, 2, 4, 3, 3 ]

function DefaultMultiplicities(m1, o1, m2, o2, loop)

Intrinsic
function DefaultMultiplicities(m1, o1, m2, o2, loop)
Default edge multiplicities d1, d2 for a component with multiplicity m1, available outgoing
multiplicities o1, and one with m2, o2.
loop: boolean specifies whether it is a loop or a link between two different principal components.

Example (DefaultMultiplicities). Let us illustrate what happens when we take a principal component
91,1,1,3,3 and add five default loops of depth 2,2,1,2,3, to get a reduction type 91,1,1,3,32,2,1,2,3. How do default
loops decide which initial multiplicities to take?

We start with a component of multiplicity m = 9 and open multiplicities O = {1, 1, 1, 3, 3}.
> var R = ReductionType("9ˆ1,1,1,3,3");

This is what its dual graph looks like:

9
Γ1

1 3 3 1 1

We can add a loop to it linking two 1’s of depth 2 by

> R = ReductionType("9ˆ1,1,1,3,3_{1-1}2");
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This is what its dual graph looks like:

9
Γ1

1 3 3 1

1

1

In this case, {1-1} does not need to be specified because this is the minimal pair of possible multiplicities
in O, as sorted by SortLinks:

> console.log(DefaultMultiplicities(9,[1,1,1,3,3],9,[1,1,1,3,3],true));
[ 1, 1 ]
> console.assert(R.equals(ReductionType("9ˆ1,1,1,3,3_2")));
Assertion failed

After adding the loop, {1, 3, 3} are left as potential outgoing multiplicities, so the next default loop links
3 and 3. Note that 1, 3 is not a valid pair because gcd(1, 9) ̸= gcd(3, 9).

> console.log(DefaultMultiplicities(9,[1,3,3],9,[1,3,3],true));
[ 3, 3 ]
> var R2 = ReductionType("9ˆ1,1,1,3,3_2,2"); // 2 loops, use 1-1 and 3-3

This is what its dual graph looks like:

9
Γ1

1 3

3

3 1

1

1

There are no pairs left, so the next three loops use (m,m) = (9, 9)

> console.log(DefaultMultiplicities(9,[1],9,[1],true));
[ 9, 9 ]
> var R3 = ReductionType("9ˆ1,1,1,3,3_2,2,1,2,3");
> var R4 = ReductionType("9ˆ1,1,1,3,3_{1-1}2,{3-3}2,{9-9}1,{9-9}2,{9-9}3");
> console.assert(R3.equals(R4));
Assertion failed

This is what its dual graph looks like:

9
Γ1

1
9

3

3

3 99 1

1

1

11.2 Principal component core (RedCore)

A core is a pair (m,O) with ‘principal multiplicity’ m ≥ 1 and ‘outgoing multiplicities’ O = {o1, o2, ...}
that add up to a multiple of m, and such that gcd(m,O) = 1. It is implemented as the following type:

function Core(m,O)

Core of a principal component defined by multiplicity m and list O.

Example (Create and print a principal component core (m,O)).

> console.log(Core(8,[1,3,4]).toString()); // Typical core; note 1+3+4=0 mod m=8
8ˆ1,3,4
> console.log(Core(8,[9,3,4]).toString()); // Same core, as they are in Z/mZ
8ˆ1,3,4

This is how cores are printed, with the exception of 7 cores of χ = 0 (see below) that come from Kodaira
types and two additional special ones D and T:

> console.log(Core(6,[1,2,3]).toString()); // from a Kodaira type
II
> console.log([Core(2,[1,1]),Core(3,[1,2])].join(', ')); // two special ones
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D, T

11.3 Basic invariants and printing

class RedCore

RedCore.definition()

Returns a string representation of a core in the form 'Core(m,O)'.

RedCore.Multiplicity()

Returns the principal multiplicity m of the principal component.

RedCore.Multiplicities()

Returns the list of outgoing chain multiplicities O, sorted with SortLinks.

RedCore.Chi()

Euler characteristic of a reduction type core (m,O), chi = m(2-|O|) + sum_(o in O) gcd(o,m)

RedCore.Label(tex = false)

Label of a reduction type core, for printing (or TeX if tex=True)

RedCore.TeX()

Returns the core label in TeX, same as Label with TeX=true.

Example (Core labels and invariants).

> let C=Core(2,[1,1,1,1])
> console.log(C.Label()); // Plain label
I0*
> console.log(C.TeX()); // TeX label

I∗0
> console.log(C.definition()); // How it can be defined
Core(2,1,1,1,1)
> console.log(C.Multiplicity()); // Principal multiplicity m
2
> console.log(C.Multiplicities()); // Outgoing multiplicities O
[ 1, 1, 1, 1 ]
> console.log(C.Chi()); // Euler characteristic
0

function Cores(chi, {mbound="all", sort=true} = {})

Returns all cores (m,O) with given Euler characteristic chi<=2. When chi=2 there are infinitely
many, so a bound on m must be given.

Example (Cores).

> let C = Cores(-2, {mbound: 4})
> console.log(C.join(', '))
2ˆ1,1,1,1,1,1, 3ˆ1,1,2,2, 4ˆ1,3,2,2
> C = Cores(0)
> console.log(C.join(', '))
I0*, IV, IV*, III, III*, II, II*
> console.log([0,-2,-4,-6,-8].map(i=>Cores(i).length)); // [7, 16, 43, 65, 64, ...]
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[ 7, 16, 43, 65, 64 ]

11.4 Link chains (RedChain)

Link chains between principal components fall into three classes: loops on a principal type, D-link on
a principal type, and chains between principal types that link two of their loose edge endpoints. All of
these are implemented in the class RedChain that carries class=cLoop, cD or cLoose, and keeps track
of all the invariants.

Example (Link chains, with no principal types specified).

> console.log(Link(cLoop, 2, 1, 2, 1).toString()); // Loop
loop 2,1 -(0) 2,1
> console.log(Link(cD, 2, 2).toString()); // D-Link
D-link 2,2 -(1) 2,2
> console.log(Link(cLoose, 2, 2).toString()); // to another principal type
loose 2,2 -(false) false,false

11.5 Invariants and depth

class RedChain

RedChain.GCD()

GCD of all elements in the chain (=GCD(mi,di)=GCD(mj,di))

RedChain.Index()

Index of the RedChain, used for distinguishing between chains

RedChain.DepthString()

Return the string representation of the RedChain's depth

RedChain.SetDepthString(depth)

Set how the depth is printed (e.g., "1" or "n")

Example (Invariants of link chains). Take a genus 2 reduction type I2 1
I∗2 whose special fibre consists

of Kodaira types I2 (loop of P1s) and I∗2 linked by a chain of P1s of multiplicity 1.

> var R = new ReductionType("I2-(1)I2*");

This is what its dual graph looks like:

21 1

1
Γ1

2
Γ22

1
1

1

There are two principal types R[1]=I2 and R[2]=I∗2, with a loop on I[1] (class cLoop=1), a link chain
between them (class cLoose=3), and a D-link on I[2] (class cD=2) This is the order in which they are
printed in the label.

> console.log([R[1],R[2]].join(' ')); // two principal types R[1] and R[2]
I2-{1} I2*-{1}
> var [c1,c2,c3] = R.LinkChains();
> console.log(c1.toString());
[1] loop c1 1,1 -(2) c1 1,1
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> console.log(c2.toString());
[2] loose c1 1,1 -(1) c2 2,1
> console.log(c3.toString());
[3] D-link c2 2,2 -(2) 2,2
> console.log(c3.Class); // cLoop=1, *cD=2*, cLoose=3
2
> console.log(c3.GCD()); // GCD of the chain multiplicities [2,2,2]
2
> console.log(c3.Index()); // index in the reduction type
3
> c3.SetDepthString("n"); // change how its depth is printed in labels
> console.log(c3.toString()); // and drawn in dual graphs of reduction types
[3] D-link c2 2,2 -(n) 2,2
> console.log(R.Label());
I2-(1)In*

This is what its dual graph looks like:

1
Γ1

1
··
n
·

1

2

2
Γ21

1
2

1 1

11.6 Principal components (RedPrin)

The classification of special fibre of mrnc models is based on principal types. For curves of genus
≥ 2 such a type is a principal component with χ < 0, together with its open chains, loops, chains to
principal component with χ = 0 (called D-links) and a tally of link chains to other principal components
with χ < 0, called loose links. For example, the following reduction type has only principal type
(component Γ1) with one loop and one D-link:

8
Γ1

1 2 1 1

1 1

1
2

2

1 1

loop principal component Γ1

D-link

A principal type is implemented as the following javascript class.

function PrincipalType(m, g, O, Lloops, LD, Lloose, index = 0)

Create a new principal type from its primary invariants:
m multiplicity of the principal component, e.g. 8
g geometric genus of the principal component, e.g. 0
O outgoing multiplicities for open chains, e.g. 1,1,2
Lloops list of loops [[di,dj,depth],...], e.g. [[1,1,3]]
LD list of D-links [[di,depth],...], e.g. [[2,1]] (m and all d_i must be even)
Lloose list of loose multiplicities, e.g. [8]

Example (Construction). We construct the principal type from example above. It has m = 8, g = 0,
open multiplicities 1,1,2, loop 1− 1 of depth 3, a D-link with outgoing multiplicity 2 of depth 1, and no
loose chains (so that it is a reduction type in itself).

> const S = PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[]);

class RedPrin

RedPrin.function order(e)
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RedPrin.Multiplicity()

Principal multiplicity m of a principal type

RedPrin.GeometricGenus()

Geometric genus g of a principal type S = (m, g, O, ...)

RedPrin.Index()

Index of the principal component in a reduction type, 0 if freestanding

RedPrin.Chains(Class = 0)

Sequence of chains of type RedChain originating in S. By default, all (loops, D-links, loose) are
returned,
unless a specific chain class is specified.

RedPrin.OpenMultiplicities()

Sequence of open multiplicities S.O of a principal type, sorted

RedPrin.LinkMultiplicities()

Sequence of link multiplicities S.L of a principal type, sorted as in label

RedPrin.Loops()

Sequence of chains in S representing loops (class cLoop)

RedPrin.DLinks()

Sequence of chains in S representing D-links (class cD)

RedPrin.LooseChains()

Sequence of loose chains of a principal type, sorted

RedPrin.LooseMultiplicities()

Sequence of loose multiplicities of a principal type, sorted

RedPrin.definition()

Returns a string representation of the principal type object in the form of the PrincipalType
constructor.

Example (Invariants). We continue with the principal type above. It has m = 8, g = 0, open
multiplicities 1,1,2, loop 1− 1 of depth 3, a D-link with outgoing multiplicity 2 of depth 1, and no loose
chains (so that it is a reduction type in itself).

> const S = PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[]);
> console.log(S.toString());
8ˆ1,1,1,1,2,2_3,1D
> console.log(S.TeX({standalone: true})); // How it appears in the tables

8

1-1 2D

1 1 2

> console.log(S.Multiplicity()); // Principal component multiplicity
8
> console.log(S.GeometricGenus()); // Geometric genus of the principal component
0
> console.log(S.OpenMultiplicities()); // Open chain initial multiplicities O=[1,1,2]
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[ 1, 1, 2 ]
> console.log(S.Loops().toString()); // Loops (of type RedChain)
loop c0 8,1 -(3) c0 8,1
> console.log(S.DLinks().toString()); // D-Links (of type RedChain)
D-link c0 8,2 -(1) 2,2
> console.log(S.LooseMultiplicities()); // Loose link multiplicities
[]
> console.log(S.LinkMultiplicities()); // All initial link multiplicities
[ 1, 1, 2 ]
> console.log(S.definition()); // evaluatable string to reconstruct S
PrincipalType(8,0,[1,1,2],[[1,1,3]],[[2,1]],[])

RedPrin.GCD()

Return GCD(m, O, L) for a principal type

RedPrin.Core()

Core of a principal type - no genus, all non-zero link multiplicities put to O, and gcd(m, O) = 1

RedPrin.Chi()

Euler characteristic chi of a principal type (m, g, O, Lloops, LD, Lloose).
chi = m(2-2g-|O|-|L|) + sum_(o in O) gcd(o, m), where L consists of all the link multiplicities in
Lloops (2 from each), LD (1 from each), Lloose (1 from each).

RedPrin.LGCD()

Outgoing link pattern of a principal type = multiset of GCDs of loose edges with m.

RedPrin.Copy(index = false)

Make a copy of a principal type.

Example (GCD). Define a principal type by its primary invariants: m = 4, g = 1, open multiplicities
O = [2], no loops, one D-link with initial multiplicity 2 and length 1, and no loose links

> const S = PrincipalType(4, 1, [2], [], [[2, 1]], []);
> console.log(S.GCD()); // its GCD(m,O,L)=GCD(4,[2],[2])=2
2
> console.log(S.toString()); // which is seen as [2] in its name
[2]Dg1_1D

Note, however, it is not a multiple of 2 of another principal component type because its D-link is
primitive. The special fibre is not a multiple of 2. This is what the special fibre looks like:

21 1

4 g1
Γ12

2

RedPrin.Weight()

Sequence [chi,m,-g,#loose,#Ds,#loops,#O,O,loops,Ds,loose] that determines the weight of a principal
type, and characterises it uniquely.

RedPrin.equals(other)

Compare two principal types by their weight.

RedPrin.lessThan(other)

Compare two principal types by their weight.

RedPrin.lessThanOrEqual(other)
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Compare two principal types by their weight.

RedPrin.greaterThan(other)

Compare two principal types by their weight.

RedPrin.greaterThanOrEqual(other)

Compare two principal types by their weight.

Example (TeX for principal components). Here are the 13 principal types with chi=-1 (10 Kodaira +
3 ’exotic’)

> const L = PrincipalTypes(-1);
> console.log(PrincipalTypesTeX(L, { label: true, width: 7, yshift: 2.2 }));

1g1

1

1g1.1

1

1-1
1

I1.1

1

1 1 1

1.1.1.1

2

1

1 1 1

I ∗0 .1

2

1
2D

1

I ∗1 .1

2

1 2

1

D.1 :

3

1

1 1

IV.1

3

3

1 2

T :

3

2

2 2

IV ∗ .2

4

1

1 2

III.1

4

3

3 2

III ∗ .3

6

1

2 3

II.1

6

5

4 3

II ∗ .5

Label(options={})

Ascii Label or TeX label of a principal type.
Setting tex:=true prints the tex label, in \redtype{...} format by default, unless plain:=true.
Setting loose:=true prints outgoing loose edges as well (standalone principal type).

TeX(options = {})

TeX a principal type as a TikZ arc with outer and inner lines, loops, and Ds, with options:
length [="35pt"] determines arc length
label [=false] if true puts its label underneath.
standalone [=false] if true wraps it in \tikz.

function PrincipalTypeFromWeight(w)

Create a principal type S from its weight sequence w (=Weight(S)).

Example.

> S = new PrincipalType(8,0,[4,2],[[1,1,1]],[[2,1]],[6]); // Create a principal type
> var w = S.Weight(); // weight encodes chi, m, g etc.
> console.log(w); // and characterizes S
[ -26, 8, -0, 1, 1, 1, 2, 2, 4, 1, 1, 1, 2, 1, 6 ]
> console.log(PrincipalTypeFromWeight(w).definition()); // Reconstruct S from the weight
PrincipalType(8,0,[2,4],[[1,1,1]],[[2,1]],[6])

function PrincipalTypes(chi, arg, {semistable=false, sort=true, withlgcds=false}
= {})

Principal types with a given Euler characteristic chi, and optional restrictions.
Returns (list of types, discovered GCDs of loose chains). Can be used as either:

PrincipalTypes(chi) - all
PrincipalTypes(chi,C) - with a given core C
PrincipalTypes(chi,LGCDs) - with a given sequence of loose chain lgcds

In all three cases can restrict to semistable types, setting semistable=True

Example (Printing principal types).

> let comps = PrincipalTypes(-1,[1]);
> console.log(comps.join(", "));
1g1-{1}, I1-{1}, I0*-{1}, I1*-{1}, IV-{1}, IV*-{2}, III-{1}, III*-{3}, II-{1}, II*-{5}
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> comps = PrincipalTypes(-2,[1,1]);
> console.log(comps.join(", "));
1g1-{1}-{1}, I1-{1}-{1}, I0*-{1}-{1}, I1*-{1}-{1}, IV-{1}-{1}, IV*-{2}-{2}, III-{1}-{1},
III*-{3}-{3}

> comps = PrincipalTypes(-2,[2]);
> console.log(comps.join(", "));
[2]g1=, I0*=, D_0=, [2]_1=, I1*=, [2]_D,D=, III-{2}, III*-{2}, [2]I0*-{2}, [2]I1*-{2},
II-{2}, [2]IV-{2}, [2]IV*-{4}, II*-{4}, [2]III-{2}, [2]III*-{6}, [2]II-{2}, [2]II*-{10}

function PrincipalTypesTeX(T, options = {})

TeX a list of principal types T as a rectangular table in a TikZ picture, with options:
label [=false] puts the principal type label underneath.
sort [=true] sorts the types by Weight first, in increasing order.
yshift [="default"] controls the y-axis shift after every row, based on label presence.
width [=10] controls the number of principal types per row.
length [="35pt"] controls the length of each arc.
scale [=0.8] controls the TikZ picture global scale.

Example (TeX for principal components). Take all 13 principal types with chi=-1 (10 Kodaira + 3
’exotic’), and draw them as a TeX table of width 7

> let L = PrincipalTypes(-1)
> console.log(PrincipalTypesTeX(L, {label: true, width: 7, yshift: 2.2}))
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11.7 Basic labelled undirected graphs (Graph)

This section provides a basic implementation of labelled undirected graphs, offering core functionality
for graph manipulation in javascript. It allows the user to construct graphs using a set of vertices and
edges, and supports key operations such as adding and removing vertices and edges, checking for the
existence of specific vertices or edges, and retrieving or modifying vertex labels.

Graph traversal and connectivity are handled through BFS (breadth-first search), ConnectedComponents,
which is used later for connectivity testing, and MinimumWeightPaths. The latter is used to generate a
canonical label for a vertex-labelled graph that can be used for isomorphism testing (IsIsomorphic).

The library also supports generating subgraphs from a subset of edges (EdgeSubgraph), and copying the
entire graph (Copy).

Finally, we have visualization functions TeXGraph and SVGGraph to draw graphs in TikZ and HTML.

class Graph

Graph.constructor(vertexSet = [], edgeSet = [])

Initialize the graph with a set of vertices and edges. vertexSet can be an integer (number of
vertices) -> [1,2,3,...]
EdgesSet should be a list of edges e.g. [[1,2],[2,3],[3,4]] with vertices from vertexSet

Graph.AddVertex(vertex, label = undefined)

Add a vertex with an optional label. If the vertex already exists, update its label.
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Graph.AddEdge(vertex1, vertex2)

Add an edge between two vertices (both vertices must exist).

Graph.RemoveVertex(v)

Remove a vertex v from the graph, together with its incident edges

Graph.HasVertex(vertex)

Check if a vertex exists in the graph.

Graph.GetLabel(vertex)

Get the label of a vertex. Returns undefined if the vertex doesn't exist.

Graph.SetLabel(vertex, label)

Set the label for a specific vertex. Raises an error if the vertex doesn't exist.

Graph.GetLabels()

Get all labels in the graph.

Graph.SetLabels(labels)

Set labels for all vertices. Raises an error if the number of labels doesn't match the number of
vertices.

Graph.RemoveLabels()

Remove labels from graph vertices

Graph.HasEdge(vertex1, vertex2)

Check if an edge exists between two vertices. No loops are allowed.

Graph.Vertices()

Return the set of vertices as an array.

Graph.Edges(v = undefined)

If v is undefined, return all edges as an array of arrays of length 2.
If v is defined, check it is a vertex, and return all edges where v is one of the vertices.

Graph.Neighbours(vertex)

Get all neighbours of a given vertex. This returns an array of adjacent vertices, and loops
contribute twice.

Graph.BFS(startVertex)

Perform BFS starting from the given vertex and return the connected component as an array.

Graph.ConnectedComponents()

Find all connected components in the graph using BFS. Return as an array of arrays of vertices.

Graph.RemoveEdge(vertex1, vertex2)

Remove an edge from the graph

Graph.EdgeSubgraph(edgeSet)

Returns a new Graph object containing only the specified edges

Graph.Degree(vertex)

Returns the degree of a vertex (number of indident edges)
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Graph.Copy()

Copy a graph

Graph.Label(options = {})

Generate a graph label based on a minimum weight path, determines G up to isomorphism.
The label is constructed by iterating through the minimum weight path and formatting
the vertices and edges with labels, if present.

Graph.IsIsomorphic(other)

Test whether are two graphs are isomorphic, through their labels

Example (Graph usage).

> const graph = new Graph();
> graph.AddVertex(1, "A");
> graph.AddVertex(4, "B");
> graph.AddVertex(6, "C");
> graph.AddEdge(1, 4);
> graph.AddEdge(4, 6);
> console.log(graph.HasVertex(1)); // true
true
> console.log(graph.GetLabel(4)); // "B"
B
> console.log(graph.HasEdge(1, 4)); // true
true
> console.log(graph.HasEdge(1, 6)); // false
false

Example (Graph usage).

> const graph = new Graph();
> graph.AddVertex(1, "A");
> graph.AddVertex(4, "B");
> graph.AddVertex(6, "C");
>
> graph.AddEdge(1, 4);
> graph.AddEdge(4, 6);
>
> console.log(graph.Vertices()); // [1, 4, 6]
[ 1, 4, 6 ]
> console.log(graph.Edges()); // [[1, 4], [4, 6]]
[ [ 1, 4 ], [ 4, 6 ] ]
> console.log(graph.HasEdge(4, 1)); // true (order doesn't matter)
true
>
> const graph2 = new Graph([1,2,3],[[1,2],[2,3]]); // Same graph defined differently
> graph2.SetLabels(["C","B","A"]);
>
> console.log(graph.IsIsomorphic(graph2));
true

Example (Connected components).
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> const graph = new Graph([1, 2, 3, 4, 5], [[1, 2], [2, 3], [4, 5]]);
> const components = graph.ConnectedComponents();
> console.log(components); // Example output: [[1, 2, 3], [4, 5]]
[ [ 1, 2, 3 ], [ 4, 5 ] ]

function MinimumWeightPaths(D)

Determines minimum weight paths in a connected labelled undirected graph, returning weights and
possible vertex index sequences.
Minimum weight paths for a labelled undirected graph (e.g. double graph underlying shape)
returns W=bestweight [<index, v_label, jump>,...] (characterizes D up to isomorphism)

and I=list of possible vertex index sequences
For example for a rectangular loop G with all vertex chis=1 and edges as follows

V:=[1,1,1,1]; E:=[[1,2,1],[2,3,1],[3,4,2],[1,4,1,1]]; S:=Shape(V,E);
the double graph D has 6 vertices and 6 edges in a loop, and here minimum weight W is

W = [<0,[-1],false>,<0,[-1],false>,<0,[-1],false>,<0,[1,1],false>,<0,[-1],false>,
<0,[2],false>,<1,[-1],true>]

The unique trail T[1] (generally Aut D-torsor) is D.3->D.2->D.1->...->D.3, encoded
T = [[3,2,1,6,4,5,3]]

Example (A-B-C-c1).

> const G = new Graph();
> G.AddVertex(1);
> G.AddVertex(2);
> G.AddVertex(3);
> G.AddEdge(1, 2);
> G.AddEdge(2, 3);
> G.AddEdge(3, 1);
> G.SetLabels(["A", "A", "A"]);
> const [P, a] = MinimumWeightPaths(G, false);
> console.log("P:", P);
P: [ [ 0, "A", false ], [ 0, "A", false ], [ 0, "A", false ], [ 1, "A", true ] ]
> console.log("a:", a);
a: [ [ 1, 2, 3, 1 ], [ 1, 3, 2, 1 ], [ 2, 1, 3, 2 ], [ 2, 3, 1, 2 ], [ 3, 2, 1, 3 ], [ 3,

1, 2, 3 ] ]

Example (MinimumWeightPaths).

> const G = new Graph();
> G.AddVertex(1, "C");
> G.AddVertex(2, "B");
> G.AddVertex(3, "C");
> G.AddVertex(4, "A");
> G.AddEdge(1, 2);
> G.AddEdge(2, 3);
> G.AddEdge(3, 4);
> G.AddEdge(4, 1);
> G.AddEdge(1, 3);

Calculate minimum weight paths

> const [P, a] = MinimumWeightPaths(G, false);

Print the minimal path

> console.log("P:", P);
P: [ [ 0, "C", false ], [ 0, "A", false ], [ 0, "C", false ], [ 0, "B", false ], [ 1, "C",

false ], [ 3, "C", true ] ]
> console.log("a:", a);
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a: [ [ 1, 4, 3, 2, 1, 3 ], [ 3, 4, 1, 2, 3, 1 ] ]
> console.log("G = ", G.Label());
G = C-A-C-B-c1-c3

Example 2: Another graph on five vertices, not Eulerian

> const G2 = new Graph();
> G2.AddVertex(1, "A");
> G2.AddVertex(2, "B");
> G2.AddVertex(3, "A");
> G2.AddVertex(4, "A");
> G2.AddVertex(5, "C");
> G2.AddEdge(2, 1);
> G2.AddEdge(2, 3);
> G2.AddEdge(2, 4);
> G2.AddEdge(2, 5);

Calculate minimum weight paths

> const [P2, a2] = MinimumWeightPaths(G2, false);

Print the minimal path

> console.log("P2:", P2);
P2: [ [ 0, "A", false ], [ 0, "B", false ], [ 0, "A", true ], [ 0, "A", false ], [ 2, "B",
false ], [ 0, "C", true ] ]

> console.log("a2:", a2);
a2: [ [ 1, 2, 3, 4, 2, 5 ], [ 1, 2, 4, 3, 2, 5 ], [ 3, 2, 1, 4, 2, 5 ], [ 3, 2, 4, 1, 2, 5

], [ 4, 2, 1, 3, 2, 5 ], [ 4, 2, 3, 1, 2, 5 ] ]
> console.log("G2 = ", G2.Label());
G2 = A-B-A&A-c2-C

Example (Minimum weight paths).

> var G = new Graph(4, [[1, 2], [2, 3], [3, 4], [4, 1], [1, 3]]);
> G.SetLabels(["C", "B", "C", "A"]);
> console.log(TeXGraph(G));

CB

C

A

Now we calculate minimum weight paths:

> let [P, a] = MinimumWeightPaths(G);

Print the minimal path and the trails, both from one odd degree vertex to the other one:

> console.log("P:", P);
P: [ [ 0, "C", false ], [ 0, "A", false ], [ 0, "C", false ], [ 0, "B", false ], [ 1, "C",
false ], [ 3, "C", true ] ]

> console.log("a:", a);
a: [ [ 1, 4, 3, 2, 1, 3 ], [ 3, 4, 1, 2, 3, 1 ] ]

Here is another graph on five vertices, this time not Eulerian

> G = new Graph(5, [[2, 1], [2, 3], [2, 4], [2, 5]]);
> G.SetLabels(["A", "B", "A", "A", "C"]);
> console.log(TeXGraph(G));
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Calculate minimum weight path, which is A-B-A, A-2-C (where 2 is ‘second vertex on the path’)

> [P, a] = MinimumWeightPaths(G);

Print the minimal path

> console.log("P:", P);
P: [ [ 0, "A", false ], [ 0, "B", false ], [ 0, "A", true ], [ 0, "A", false ], [ 2, "B",
false ], [ 0, "C", true ] ]

There are 6 ways to trace this path, and they form an Aut(G)=S3-torsor. The first one is

> console.log(`One trail out of ${a.length} is ${a[0]}`);
One trail out of 6 is 1,2,3,4,2,5

function StandardGraphCoordinates(G)

Returns vertex coordinate lists x, y for planar drawing of a graph G

function TeXGraph(G, options = {})

Draw a graph in TikZ, preferably planar. Options:
x = "default", // X-coordinates for vertices
y = "default", // Y-coordinates for vertices
labels = "default", // Labels for vertices (sequence or "default")
scale = 0.8, // Global scale for the TikZ picture
xscale = 1, // Scale factor in x direction
yscale = 1, // Scale factor in y direction
vertexlabel = "default", // Labeling function for vertices (or "default")
edgelabel = "default", // Labeling function for edges (or "default")
vertexnodestyle = "default", // Style for vertices
edgenodestyle = "default", // Style for edge labels
edgestyle = "default" // Style for edges

function SVGGraph(G, options = {})

Draw a graph in SVG, preferably planar. Options:
x = "default", // x-coordinates for vertices
y = "default", // y-coordinates for vertices
labels = "default", // Labels for vertices (sequence or "default")
scale = 0.8, // Global scale for the TikZ picture
xscale = 100, // Scale factor in x direction
yscale = 100, // Scale factor in y direction
innersep = (labels?1:3), // Inner separation space for vertices in pixels
nodeRadius = 10, // Vertex radius
padding = 12, // Vertex radius + eps for padding at the edges

Labels can be a sequence of strings (or None, or "default" -> 1, 2, 3) to draw vertices.

function GraphFromEdgesString(edgesString)

Construct a graph from a string encoding edges such as "1-2-3-4, A-B, C-D", assigning the vertex
labels to the corresponding strings.

Example.

> const G = GraphFromEdgesString("1-2-3-4, 1-3, 2-4-A-1")
> console.log(G.Label())
1-2-3-4-A-c1-c3&c2-c4
> console.log(TeXGraph(G))

1

2

3 4

A

> const svg = SVGGraph(G) // for use in HTML files
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11.8 RedShape

A reduction type a graph whose vertices are principal types (type RedPrin) and edges are link chains.
They fall naturally into ‘shapes’, where every vertex only remembers the Euler characteristic χ of the
type, and edge the gcd of the chain. Thus, the problem of finding all reduction types in a given genus
(see ReductionTypes) reduces to that of finding the possible shapes (see Shapes) and filling in shape
components with given χ and gcds of loose edges (see PrincipalTypes).

class RedShape

RedShape.Graph()

Returns the underlying undirected graph G of the shape.

RedShape.DoubleGraph()

Returns the vertex-labelled double graph D of the shape.

RedShape.Vertices()

Returns the vertex set of G as a graph.

RedShape.Edges()

Returns the edges of G as a graph

RedShape.NumVertices()

Returns the number of vertices in the graph G underlying the shape.

RedShape.Chi(v)

Returns the Euler characteristic chi(v) <= 0 of the vertex v.

RedShape.LGCDs(v)

Returns the LGCDs of a vertex v that together with chi determine the vertex type (chi, lgcds).

RedShape.TotalChi()

Returns the total Euler characteristic of a graph shape chi <= 0, sum over chi's of vertices.

RedShape.VertexLabels()

Returns a sequence of -chi's for individual components of the shape S.

RedShape.EdgeLabels()

Returns a list of edges v_i -> v_j of the form [i, j, edgegcd].

RedShape.toString()

Print in the form Shape(V,E) so as to be evaluatable

RedShape.TeX(options = {})

Tikz a shape of a reduction graph, and, if required, the bounding box x1, y1, x2, y2.

Example (Graph, DoubleGraph and primary invariants for shapes). Under the hood of shapes of
reduction types are their labelled graphs and associated ‘double’ graphs. As an example, take the
following reduction type:

> const R = ReductionType("1g2--IV=IV-1g1-c1");
> console.log(R.TeX());
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1g2

1g1

IV

IV

There are four principal types, and they become vertices of R.Shape() whose labels are their Euler
characteristics −5,−2,−4,−5. The edges are labelled with GCDs of the link chain between the types.
For example:

— the link chain 1g2-1g1 of gcd 1 becomes the label “1”,
— the link chain IV=IV of gcd 3 becomes “3”,
— the two chains 1g2–IV of gcd 1 become “1,1”

on the corresponding edges.

> const S = R.Shape();
> console.log(S.toString());
Shape([5,2,4,5],[1,2,1,1,4,1,1,2,3,1,3,4,3])
> console.log(TeXGraph(S.Graph()));

-5

-2

-4

-5

> console.log(S.Vertices()); // Indexed (from 1) set of vertices of S.Graph()
[ 1, 2, 3, 4 ]
> console.log(S.Edges()); // and edges [ (from_vertex, to_vertex), ... ]
[ [ 1, 2 ], [ 1, 4 ], [ 2, 3 ], [ 3, 4 ] ]
> console.log(S.VertexLabels()); // [-chi] for each type
[ 5, 2, 4, 5 ]
> console.log(S.EdgeLabels()); // [ [from_vertex, to_vertex, gcd1, gcd2, ...], ...]
[ [ 1, 2, 1 ], [ 1, 4, 1, 1 ], [ 2, 3, 1 ], [ 3, 4, 3 ] ]

MinimumWeightPaths is implemented in python for graphs with labelled vertices but not edges. To
use them for shapes, the underlying graphs are converted to graphs with only labelled vertices. This is
done simply by introducing a new vertex on every edge which carries the corresponding edge label. For
compactness, if the label is “1” (most common case), we don’t introduce the vertex at all. This is called
the double graph of the shape:

> const blue = "circle,scale=0.7,inner sep=2pt,fill=blue!20"; // former vertices
> const red = "circle,draw,scale=0.5,inner sep=2pt, fill=red!20"; // former edges
> const D = S.DoubleGraph();
> const bluered = v => (D.GetLabel(v)[0] <= 0 ? blue : red);
> console.log(TeXGraph(D, { scale: 1, vertexnodestyle: bluered }));

-5

-2 -4

-51,1

3

These are used in isomorphism testing for shapes, and to construct minimal paths.

function Shape(V, E)

Constructs a graph shape from the data V, E as described in shapes*.txt data files:
V = sequence of chi's for individual components
E = list of edges v_i->v_j of the form [i,j,edgegcd1,edgegcd2,...]

Example.
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> const shape = Shape([1, 2, 3], [[1, 2, 3], [2, 3, 1], [1, 3, 2]])
> console.log(shape.G.Vertices()); // Vertex set of graph G
[ 1, 2, 3 ]
> console.log(shape.G.Edges()); // Edge set of graph G
[ [ 1, 2 ], [ 2, 3 ], [ 1, 3 ] ]
> console.log(shape.D.Vertices()); // Vertex set of graph D
[ 1, 2, 3, 4, 5 ]
> console.log(shape.D.Edges()); // Edge set of graph D
[ [ 1, 4 ], [ 2, 4 ], [ 2, 3 ], [ 1, 5 ], [ 3, 5 ] ]

function Shapes(genus)

Returns all shapes {shape:..., count:...} in a given genus g=2, 3 or 4

11.9 Dual graphs (GrphDual)

A dual graph is a combinatorial representation of the special fibre of a model with normal crossings. It
is a multigraph whose vertices are components Γi, and an edge corresponds to an intersection point of
two components. Every component Γ has multiplicity m = mΓ and geometric genus g = gΓ. Here are
three examples of dual graphs, and their associated reduction types; we always indicate the multiplicity
of a component (as an integer), and only indicate the genus when it is positive (as g followed by an
integer).

1
1

1

1 3
Γ2

2

1

2

1 1
Γ1

2
4
Γ2

2 1

6 g1
Γ1

1

2 3

Type I4 (genus 1) Type I1 IV∗ (genus 2) Type IIg1 III (genus 8).

A component is principal if it meets the rest of the special fibre in at least 3 points (with loops on a
component counting twice), or has g > 0. The first example has no principal components, and the other
two have two each, Γ1 and Γ2.

This section provides a class (GrphDual) for representing dual graphs and their manupulation and
invariants.

11.10 Default construction

function DualGraph(m, g, edges, comptexnames = "default")

Parameters:
m: List of multiplicities for each provided component
g: List of genera for each provided component
edges: List of edges in the form

[i,j] - intersection point between component #i and component #j (1<=i,j<=n)
[i,0,d1,d2,...] - open chain from component #i (1<=i<=n)
[i,j,d1,d2,...] - link chain from component #i to component #j (1<=i,j<=n)

comptexnames (optional): 'default', function to name components, or a list of names for components.

Example (Constructing a dual graph).

> let m = [3,1,1,1,3]; // multiplicities of c1,c2,c3,c4,c5
> let g = [0,0,0,0,0]; // genera of c1,c2,c3,c4,c5
> let E = [[1,2],[1,3],[1,4],[2,5],[3,5],[4,5]]; // edges c1-c2,...
> const G1 = DualGraph(m,g,E);
> console.log(G1.toString());
DualGraph([3,1,1,1,3], [0,0,0,0,0], [[1,2],[1,3],[1,4],[2,5],[3,5],[4,5]])
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> m = [3,3]; // Principal components and chains (same graph)
> g = [0,0];
> E = [[1,2,1],[1,2,1],[1,2,1]];
> const G2 = DualGraph(m,g,E);
> console.log(G2.toString());
DualGraph([3,3,1,1,1], [0,0,0,0,0], [[1,3],[1,4],[1,5],[3,2],[4,2],[5,2]])
> m = [3,3];
> g = [0,0]; // Principal components, different chains
> E = [[1,2,1],[1,2,1,1],[1,2,1,1,1,1]];
> const G3 = DualGraph(m,g,E);
> console.log(G3.toString());
DualGraph([3,3,1,1,1,1,1,1,1], [0,0,0,0,0,0,0,0,0],
[[1,3],[1,4],[1,6],[3,2],[4,5],[5,2],[6,7],[7,8],[8,9],[9,2]])

This is what the three special fibres look like (with component names in blue):

3
5

3
11 1 1 3

2

3
11 1 1 3

2

3
1

1

1

1
1

1

1

1

Example (Printing dual graph as a string and reconstructing it).

> const R = ReductionType("1g1-1g2-1g3-c1");
> const G = R.DualGraph(); // Triangular dual graph on 3 vertices and 3 edges
> console.log(G.toString());
DualGraph([1,1,1], [3,2,1], [[1,2],[1,3],[2,3]])
> const G2 = eval(G.toString()); // and reconstructed back
> console.log(G2.toString());
DualGraph([1,1,1], [3,2,1], [[1,2],[1,3],[2,3]])

11.11 Step by step construction

class GrphDual

GrphDual.constructor()

Initialize an empty dual graph

GrphDual.AddComponent(name, genus, multiplicity, texname = null)

Adds a component (vertex) to the graph with attributes m, g, and optional texname.
Returns name of the added component (which is given by name if <>None, <>"")

GrphDual.AddEdge(node1, node2)

Adds an edge between two components (vertices) in the graph.

GrphDual.AddChain(c1, c2, mults)

Adds a chain of P1s with multiplicities between c1 and c2. Adds as many vertices as
there are multiplicities in 'mults', and links them in a chain starting at c1 and
ending at c2 (if c2 is provided, else it's an open chain).

Example (Type II∗ reduction). This is how we can construct the dual graph of the type II∗ elliptic
curve, creating some components and edges by hand, and adding the rest as open chains.
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> var G = new GrphDual();
> var c1 = G.AddComponent("A", 0, 6); // Called 'A', multiplicity 6
> var c2 = G.AddComponent("", 0, 3); // default name ('c2')
> G.AddEdge(c1, c2); // Link the two (shortest chain)
> G.AddChain(c1, null, [4, 2]); // The other two chains
> G.AddChain(c1, null, [5, 4, 3, 2, 1]);
> console.log(G.Components());
[ "A", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9" ]
> console.log(G.ReductionType().Label());
II*

11.12 Global methods and arithmetic invariants

GrphDual.Graph()

Returns the underlying graph.

GrphDual.Components()

Returns the list of vertices of the underlying graph.

GrphDual.IsConnected()

Check that the dual graph is connected

GrphDual.HasIntegralSelfIntersections()

Are all component self-intersections integers

GrphDual.AbelianDimension()

Sum of genera of components

GrphDual.ToricDimension()

Number of loops in the dual graph

GrphDual.IntersectionMatrix()

Intersection matrix for a dual graph, whose entries are pairwise intersection numbers of the
components.

Example. Here is the dual graph of the reduction type 1g3 1g2 1g1 c1, consisting of three components
genus 1,2,3, all of multiplicity 1, connected in a triangle.

> var G = DualGraph([1,1,1],[1,2,3],[[1,2],[2,3],[3,1]]);
> console.assert(G.IsConnected()); // Check the dual graph is connected
> console.assert(G.HasIntegralSelfIntersections()); // and every component c has c.c in Z
> console.log(G.AbelianDimension()); // genera 1+2+3 => 6
6
> console.log(G.ToricDimension()); // 1 loop => 1
1
> console.log(G.ReductionType().TeX());
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1g3

1g2

1g1

> console.log(G.IntersectionMatrix()); // Intersection(G,v,w) for v,w components
[ [ -2, 1, 1 ], [ 1, -2, 1 ], [ 1, 1, -2 ] ]

GrphDual.PrincipalComponents()

Return a list of indices of principal components.
A vertex is a principal component if either its genus is greater than 0
or it has 3 or more incident edges (counting loops twice).
In the exceptional case [d]I_n one component is declared principal.

GrphDual.ChainsOfP1s()

Returns a sequence of tuples [<v0,v1,[chain multiplicities]>] for chains of P1s between principal
components, and v1=None for open chains

GrphDual.ReductionType()

Reduction type from a dual graph

11.13 Contracting components to get a mrnc model

GrphDual.ContractComponent(c, checks=true)

Contract a component in the dual graph, assuming it meets one or two components, and has genus 0.

GrphDual.MakeMRNC()

Repeatedly contract all genus 0 components of self-intersection -1, resulting in a minimal model
with normal crossings.

GrphDual.Check()

Check that the graph is connected and self-intersections are integers.

Example (Contracting components).

> let G = DualGraph([1,1],[1,0],[[1,2,1,1,1]]); // Not a minimal rnc model
> console.log(G.Components(), G.Components().map(v => G.Intersection(v,v)));
[ "1", "2", "c3", "c4", "c5" ] [ -1, -1, -2, -2, -2 ]
> G.ContractComponent("2"); // Remove the last component
> G.ContractComponent("c5"); // and then the one before that
> console.log(G.Components());
[ "1", "c3", "c4" ]
> console.log(G.toString());
DualGraph([1,1,1], [1,0,0], [[1,2],[2,3]])
> G.MakeMRNC(); // Contract the rest of the chain
> console.log(G.Components());
[ "1" ]
> console.log(G.toString());
DualGraph([1], [1], [])
> console.log(G.ReductionType().Label()); // Associated reduction type
1g1

11.14 Invariants of individual vertices
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GrphDual.HasComponent(c)

Test whether the graph has a component named c

GrphDual.Multiplicity(v)

Multiplicity m of the vertex

GrphDual.Multiplicities()

Returns the list of multiplicities of all the vertices.

GrphDual.Genus(v)

Genus g of the vertex

GrphDual.Genera()

Returns the list of geometric genera of all the vertices.

GrphDual.Neighbours(i)

List of incident vertices, with each loop contributing the vertex itself twice

GrphDual.Intersection(c1, c2)

Compute the intersection number between components c1 and c2 (or self-intersection if c1=c2).

GrphDual.TeXName(v)

TeXName assigned to a vertex v

Example (Cycle of 5 components).

> let G = DualGraph([1], [1], [[1,1,1,1,1,1]]);
> let C = G.Components();
> console.log(C);
[ "1", "c2", "c3", "c4", "c5" ]
> console.assert(G.HasComponent("c2"));
> console.log(G.Multiplicity("c2"));
1
> console.log(G.Genus("c2"));
0
> console.log(G.IntersectionMatrix());
-2 1 0 0 1
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
1 0 0 1 -2

11.15 Reduction types (RedType)

Now we come to reduction types, implemented through the class RedType. They can be constructed in
a variety of ways:

113



ReductionType(m,g,O,L) Construct from a sequence of components (including all principal
ones), their multiplicities m, genera g, outgoing multiplicities
of open chains O, and link chains L beween them, e.g.
ReductionType([1],[0],[[]],[[1,1,0,0,3]]) (Type I3)

ReductionTypes(g) All reduction types in genus g. Can restrict to just semistable ones
and/or ask for their count instead of actual the types, e.g.
ReductionTypes(2) (all 104 genus 2 types)
ReductionTypes(2, countonly=True) (only count them)
ReductionTypes(2, semistable=True) (7 semistable ones)

ReductionType(label) Construct from a canonical label, e.g.
ReductionType("I3")

ReductionType(G) Construct from a dual graph, e.g.
ReductionType(DualGraph([1],[1],[])) (good elliptic curve)

ReductionTypes(S) Reduction types with a given shape, e.g.
ReductionTypes(Shape([2],[])) (46 of the genus 2 types)

Conversely, from a reduction type we can construct its dual graph (R.DualGraph()) and a canonical
label R.Label()), and these functions are also described in this section. Finally, there are functions to
draw reduction types in TeX (R.TeX()).

function ReductionType(...args)

Reduction type from either:
ReductionType(label: Str) reduction type from a label, e.g. "I3"
ReductionType(G: GrphDual) reduction type from a dual graph
ReductionType(m, g, O, L) reduction type from sequence of components, their invariants, and chains
of P1s:

m = sequence of multiplicities of components c_1,...,c_k
g = sequence of their geometric genera
O = outgoing multiplicities of open chains, one sequence for each component
L = link chains, of the form

[[i,j,di,dj,n],...] - link chain from c_i to c_j with multiplicities m[i],di,...,dj,m[j], of
depth n
n can be omitted, and chain data [i,j,di,dj] is interpreted as having minimal possible depth.

Example (II∗). We construct Kodaira type II∗ as a reduction type

6
Γ1

5

4
3

2
1

3 4

2

> const m = [6]; // multiplicity of one starting component Gamma_1
> const g = [0]; // their geometric genera
> const O = [[3, 4, 5]]; // outgoing multiplicities of open chains from each of them
> const L = []; // link chains
> const R = ReductionType(m, g, O, L);
> console.log(R.Label());
II*
> console.assert(R.equals(ReductionType("II*"))); // same type from label
Assertion failed

Example (I∗3). Similarly, we construct Kodaira type I∗3 as a reduction type

2
Γ1

1 1

2

2

2

1 1

> const m = [2, 2]; // multiplicities of starting components Gamma_1, Gamma_2
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> const g = [0, 0]; // their geometric genera
> const O = [[1, 1], [1, 1]]; // outgoing multiplicities of open chains from each of them
> const L = [[1, 2, 2, 2, 3]]; // link chains [[i,j, di,dj ,optional depth],...]
> const R = ReductionType(m, g, O, L);
> console.log(R.Label());
I3*
> console.assert(R.equals(ReductionType("I3*"))); // same type from label
Assertion failed

function ReductionTypes(arg, options = {})

ReductionTypes(arg, { countonly=false, semistable=false, elliptic=false })
- All reduction types in genus g <= 6 or their count (if countonly=true; faster).
- semistable=true restricts to semistable types.
- elliptic=true (when g=1) restricts to Kodaira types of elliptic curves.

ReductionTypes(S, { countonly=false, semistable=false })
- Sequence of reduction types with a given shape S, semistable if necessary.
- If countonly=true, only return the number of types (faster).

Returns a sequence of RedType's or an integer if countonly=true.

Example (Reduction types in a given genus). Here are all reduction types for elliptic curves (10 Kodaira
types), the count for genus 2 (104 Namikawa-Ueno types) and the count for semistable types in genus 3.

> console.log(ReductionTypes(1, {elliptic: true}).map(R => R.Label()));
[ "1g1", "I1", "I0*", "I1*", "IV", "IV*", "III", "III*", "II", "II*" ]
> console.log(ReductionTypes(2, {countonly: true}));
104
> console.log(ReductionTypes(3, {semistable: true, countonly: true}));
42

Example (Reduction types with a given shape). There are 1901 reduction types in genus 3, in 35
different shapes. Here is one of the more ‘exotic’ ones, with 6 types in it. It has two vertices with
χ = −3 and χ = −1 and two edges between them, with gcd 1 and 2.

> const S = Shape([3, 1], [[1, 2, 1, 2]]);
> console.log(S.TeX());

31,2

(6) D
2

> const L = ReductionTypes(S);
> console.log(L.map(R => R.Label()));
[ "I0*-=D", "I1*-=D", "III--{2-2}D", "III*-{2-2}-D", "II--{2-2}D", "II*-{4-2}-D" ]
> console.log(L.map(R => R.TeX({scale: 1.5, forcesups: true})).join("\\qquad"));

I∗0 D

1-1

2-2
I∗1 D

1-1

2-2
III D

1-1

2-2
III∗ D

2-2

3-1
II D

1-1

2-2
II∗ D

4-2

5-1

class RedType

RedType.get(target, prop)

RedType.Chi()

Total Euler characteristic of R

RedType.Genus()

Total genus of R
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Example.

> R = new ReductionType("III=(3)III-{2-2}II-{6-12}18g2ˆ6,12");
> console.log(R.Label()); // Canonical label
[6]Tg2-{12-6}II-{2-2}III=(3)III
> console.log(R.Genus()); // Total genus
43

RedType.IsGood()

true if comes from a curve with good reduction

RedType.IsSemistable()

true if comes from a curve with semistable reduction (all (principal) components of an mrnc model
have multiplicity 1)

RedType.IsSemistableTotallyToric()

true if comes from a curve with semistable totally toric reduction (semistable with no positive
genus components)

RedType.IsSemistableTotallyAbelian()

true if comes from a curve with semistable totally abelian reduction (semistable with no loops in
the dual graph)

Example (Semistable reduction types).

> let semi = ReductionTypes(3, {semistable: true}); // genus 3, semistable,
> console.log(semi.map(R => R.Label()).join(" "));
1g3 I1g2 I1g1,1 I1,1,1 1g2-1g1 1g2-I1 I1g1-1g1 I1g1-I1 I1,1-1g1 I1,1-I1 1g1---1 I1---1

1g1--1g1 I1--I1 1g1--I1 1----1 1g1--1-1g1 1g1--1-I1 I1--1-1g1 I1--1-I1 1g1-1g1-1g1
1g1-I1-1g1 1g1-1g1-I1 1g1-I1-I1 I1-1g1-I1 I1-I1-I1 1g1-1---1 I1-1---1 1g1-1--1-c1
I1-1--1-c1 1--1-1--c1 1g1-1-1g1&1g1-c2 1g1-1-1g1&I1-c2 1g1-1-I1&I1-c2 I1-1-I1&I1-c2
1g1-1--1-1g1 1g1-1--1-I1 I1-1--1-I1 1g1-1-1--1-c2 I1-1-1--1-c2 1-1--1-1--c1
1-1-1-1-c1-c3&c2-c4

> let ab = semi.filter(R => R.IsSemistableTotallyAbelian()); // totally abelian reduction
> console.log(ab.map(R => R.TeX()));

1g3 1g2 1g1 1g1 1g1 1g1

1g1

1

1g1

1g1

> let tor = semi.filter(R => R.IsSemistableTotallyToric());
> console.log(tor.map(R => R.TeX()));

I1,1,1 I1,1 I1 I1 1 I1 I1 1 1 I1 1 I1 I1 I1 I1 I1 1 1

I1

1

1

1

1

1

I1

1

I1

I1 I1 1 1 I1 I11

1

1

1

1

1

1

1

1

1

1

Count semistable reduction types in genus 2,3,4,... (OEIS A174224)

> console.log([2,3,4].map(n => ReductionTypes(n, {semistable: true, countonly: true})));
[ 7, 42, 379 ]

RedType.TamagawaNumber()

Tamagawa number of the curve with a given reduction type, over an algebraically closed residue field
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Example (Tamagawa numbers for reduction types of elliptic curves).

> var E = ReductionTypes(1, {elliptic: true});
> for (const R of E) {console.log(R.Label(), R.TamagawaNumber());}
1g1 1
I1 1
I0* 4
I1* 4
IV 3
IV* 3
III 2
III* 2
II 1
II* 1

11.16 Invariants of individual principal components and chains

RedType.PrincipalTypes()

Principal types (vertices) of the reduction type

RedType.length()

Number of principal types in a reduction type

RedType.getItem(i)

Principal type number i in the reduction type, accessed as R[i] (numbered from i=1)

RedType.LinkChains()

Return all the link chains in the reduction type

RedType.LooseChains()

Return all the link chains in R between different principal components, sorted as in label.

RedType.Multiplicities()

Sequence of multiplicities of principal types

RedType.Genera()

Sequence of geometric genera of principal types

RedType.GCD()

GCD detecting non-primitive types

RedType.Shape()

The shape of the reduction type.

Example (Principal types and chains). Take a reduction type that consists of smooth curves of genus
3, 2 and 1, connected with two chains of P1s of depth 2.

> var R = ReductionType("1g3-(2)1g2-(2)1g1");
> console.log(R.TeX());
1g3 1g2 1g12 2

This is how we access the three principal types, their primary invariants, and the chains. Individual
principal types can be accessed as R[i], and all of them as R.PrincipalTypes()
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> console.log(R[1].Label(), R[2].Label(), R[3].Label());
1g3 1g2 1g1
> console.log(R.Genera()); // geometric genus g of each principal type
[ 3, 2, 1 ]
> console.log(R.Multiplicities()); // multiplicity m of each principal type
[ 1, 1, 1 ]
> console.log(R.LinkChains().join(", ")); // chains, including loops and D-links
[1] loose c1 1,1 -(2) c2 1,1, [2] loose c2 1,1 -(2) c3 1,1

RedType.Weight()

Weight of a reduction type, used for comparison and sorting

Example.

> R1 = ReductionType("I1g1")
> console.log(R1.Weight());
[ 1, 0, -2, 1, -1, 0, 0, 1, 0, 1, 1, 1, 4, 73, 49, 103, 49 ]
> R2 = ReductionType("Dg1")
> console.log(R2.Weight());
[ 1, 0, -2, 2, -1, 0, 0, 0, 2, 1, 1, 3, 68, 103, 49 ]
> console.log(R1.lessThan(R2)); // I1g1<Dg1 so it precedes it in tables
true

RedType.equals(other)

Equality comparison based on label.

RedType.lessThan(other)

Less than comparison based on weight.

RedType.greaterThan(other)

Greater than comparison based on weight.

RedType.lessThanOrEqual(other)

Less than or equal to comparison based on weight.

RedType.greaterThanOrEqual(other)

Greater than or equal to comparison based on weight.

Example (Sorted reduction types in genus 1 and 2).

> var L = ReductionTypes(1, {elliptic: true});
> RedType.Sort(L);
> console.log(L.map(R => R.Label()).join(", "));
1g1, I1, I0*, I1*, IV, IV*, III, III*, II, II*
> L = ReductionTypes(2);
> RedType.Sort(L);
> console.log(L.map(R => R.Label()).join(", "));
1g2, I1g1, I1,1, Dg1, [2]g1_D, 2ˆ1,1,1,1,1,1, I0*_0, D_{2-2}, I0*_D, I1*_0, [2]_1,D,

I1*_D, [2]_D,D,D, 3ˆ1,1,2,2, IV_0, IV*_-1, 4ˆ1,3,2,2, III_0, III*_-1, III_D, 4ˆ1,3_D,
III*_D, [2]I0*_D, [2]I1*_D, 5ˆ1,1,3, 5ˆ1,2,2, 5ˆ2,4,4, 5ˆ3,3,4, 6ˆ1,1,4, 6ˆ5,5,2,
6ˆ2,4,3,3, II_D, [2]IV_D, [2]T_{6}D, [2]IV*_D, II*_D, 8ˆ1,3,4, 8ˆ5,7,4, [2]III_D,
[2]III*_D, 10ˆ1,4,5, 10ˆ3,2,5, 10ˆ7,8,5, 10ˆ9,6,5, [2]II_D, [2]II*_D, 1g1-1g1, 1g1-I1,
1g1-I0*, 1g1-I1*, 1g1-IV, 1g1-IV*, 1g1-III, 1g1-III*, 1g1-II, 1g1-II*, I1-I1, I1-I0*,
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I1-I1*, I1-IV, I1-IV*, I1-III, I1-III*, I1-II, I1-II*, I0*-I0*, I0*-I1*, I0*-IV,
I0*-IV*, I0*-III, I0*-III*, I0*-II, I0*-II*, I1*-I1*, I1*-IV, I1*-IV*, I1*-III,
I1*-III*, I1*-II, I1*-II*, IV-IV, IV-IV*, IV-III, IV-III*, IV-II, IV-II*, IV*-IV*,
IV*-III, IV*-III*, IV*-II, IV*-II*, III-III, III-III*, III-II, III-II*, III*-III*,
III*-II, III*-II*, II-II, II-II*, II*-II*, T=T, D-=D, 1---1

11.17 Reduction types, labels, and dual graphs

RedType.DualGraph({compnames="default"} = {})

Full dual graph from a reduction type, possibly with variable length edges,
and optional names of components.
Returns: GrphDual - The constructed dual graph.

RedType.Label(options = {})

Return canonical string label of a reduction type.
tex:=true gives a TeX-friendly label (\redtype{...})
html:=true gives a HTML-friendly label (<span class='redtype'>...</span>)
wrap:=false keeps the format above but removes \redtype / <span> wrapping
forcesubs:=true forces depths of chains & loops to be always printed (usually in round brackets)
forcesups:=true forces outgoing chain multiplicities to be always printed (in curly brackets).

depths can be "default", "original", "minimal", or a custom sequence.

RedType.Family()

Returns the reduction type label with minimal chain lengths in the same family.

Example (Plain and TeX labels for reduction types).

> var R = ReductionType("IIg1_1-(3)III-(4)IV");
> console.log(R.Label()); // plain text label
IIg1_1-(3)III-(4)IV
> var R2 = ReductionType(R.Label());
> console.assert(R.equals(R2)); // can be used to reconstruct the type
Assertion failed
> console.log(R.Family()); // family (reduction type with minimal depths)
IIg1_1-III-IV
> console.log(R.Label({tex: true})); // label in TeX

IIg1,1.(3)III.(4)IV

> console.log(R[1].toString()); // first principal type as a standalone type
IIg1_1-{1}
> console.log(R.TeX()); // reduction type as a graph in TeX
IIg1,1 III IV

3 4

Example (Canonical label in detail). Take a graph G on 4 vertices

> var G = new Graph(4,[[1,2],[1,3],[1,4]]);
> console.log(TeXGraph(G, {labels: "none"}));

Place a component of multiplicity 1 at the root and II, III∗, I∗0 at the three leaves. Link each leaf to the
root with a chain of multiplicity 1. This gives a reduction type that occurs for genus 3 curves:

> var R = ReductionType("1-II&c1-III*&c1-I0*"); // First component is the root,
> console.log(R.TeX()); // the other three are leaves

119



I∗0

1

II

III∗

Here is the corresponding special fibre

4
Γ4

3

2
1

2

6
Γ1

1
Γ2

3

2

2
Γ3

1 1 1

2 3

How is the following canonical label chosen among all possible labels?

> console.log(R.Label());
I0*-1-II&III*-c2

Each principal component is a principal type (as there are no loops or D-links), and its primary invariants
are its Euler characteristic χ and a multiset lgcd of gcd’s of outgoing (loose) link chains

> let Prin = R.PrincipalTypes();
> console.log(Prin.map(S => S.toString()));
[ "I0*-{1}", "1-{1}-{1}-{1}", "II-{1}", "III*-{3}" ]
> console.log(Prin.map(S => S.Chi())); // add up to 2-2*genus, so genus=3
[ -1, -1, -1, -1 ]
> console.log(Prin.map(S => S.LGCD()));
[ [ 1 ], [ 1, 1, 1 ], [ 1 ], [ 1 ] ]

All four leaves have χ = −2, lgcd=[1] and the root χ = 1, lgcd=[1, 1, 1]. There are 10 types of the
former kind (II-, III-, IV-, ...), drawn as 11(10) in shapes, and one of the root kind, drawn as 1.

> console.log(PrincipalTypes(-1,[1]).toString());
1g1-{1},I1-{1},I0*-{1},I1*-{1},IV-{1},IV*-{2},III-{1},III*-{3},II-{1},II*-{5}
> console.log(PrincipalTypes(-1,[1,1,1]).toString());
1-{1}-{1}-{1}

Together they form a shape graph S as follows:

> var S = R.Shape();
> console.log(S.TeX({scale: 1}));

11

(10)

1

11

(10)

11

(10)

The vertices and edges of S are assigned weights. Vertex weights are χ’s, edge weights are lgcd’s

> console.log(S.VertexLabels());
[ 1, 1, 1, 1 ]
> console.log(S.EdgeLabels());
[ [ 1, 2, 1 ], [ 2, 3, 1 ], [ 2, 4, 1 ] ]

Then the shortest path is found using MinimumWeightPaths. It is v-v-v&v-2 (v=new vertex with
χ = −1, -=edge, &=jump). Note that by convention actual edges are preferred to jumps, and going to
a new vertex preferred to revisiting an old one. Also vertices with smaller χ come first, if possible, as
they have smaller labels.
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v-v-v&v-2 < v-v&v-2-v (jumps are larger than edge marks)
v-v-v&v-2 < v-v-v&2-v (repeated vertex indices are larger than vertex marks)

> var [P, T] = MinimumWeightPaths(S);
> console.log(P); // v-v-v&v-2
[ [ 0, [ -1 ], false ], [ 0, [ -1 ], false ], [ 0, [ -1 ], true ], [ 0, [ -1 ], false ], [

2, [ -1 ], true ] ]

This path can be used to construct the graph, and determines it up to isomorphism. There are |AutS| =
6 ways to trail S in accordance with this path, and as far the shape is concerned, they are completely
identical.

> console.log(T);
[ [ 1, 2, 3, 4, 2 ], [ 1, 2, 4, 3, 2 ], [ 3, 2, 1, 4, 2 ], [ 3, 2, 4, 1, 2 ], [ 4, 2, 1,

3, 2 ], [ 4, 2, 3, 1, 2 ] ]

This gives six possible labels for our reduction type that all traverse the shape according to path P :

> var l = (i) => R[i].Label();
> console.log(T.map(c => `${l(c[0])}-${l(c[1])}-${l(c[2])}&${l(c[3])}-c2`));
[ "I0*-1-II&III*-c2", "I0*-1-III*&II-c2", "II-1-I0*&III*-c2", "II-1-III*&I0*-c2",

"III*-1-I0*&II-c2", "III*-1-II&I0*-c2" ]

Now we assign weights to vertices and edges that characterise the actual shape components (rather than
just their χ) and link chains (rather than just their lgcd)

> console.log(R.PrincipalTypes().map(S => S.Weight()));
[ [ -1, 2, -0, 1, 0, 0, 3, 1, 1, 1, 1 ], [ -1, 1, -0, 3, 0, 0, 0, 1, 1, 1 ], [ -1, 6, -0,
1, 0, 0, 2, 2, 3, 1 ], [ -1, 4, -0, 1, 0, 0, 2, 3, 2, 3 ] ]

> console.log(R.EdgesWeight(2,1)); // weight of the 1-II link chain
[ 1, 1, 0 ]
> console.log(R.EdgesWeight(2,3)); // weight of the 1-I0* link chain
[ 1, 1, 0 ]
> console.log(R.EdgesWeight(2,4)); // weight of the 1-III* link chain
[ 1, 3, 0 ]

The component weight Weight(R[i]) starts with (χ,−m,−g, ...) so when all components have the same
χ like in this example, the ones with large multiplicity m have smaller weight. Because m(II)=6,
m(III*)=4, m(I0*)=2, the trails T [1] and T [2] are preferred to the other four. They both start with a
component II, then an edge II-1 and a component 1. After that they differ in that T [1] traverses an edge
1-I0* and T [2] an edge 1-III*. Because the edge weight is smaller for T [1], this is the minimal path, and
it determines the label for R:

> console.log(R.Label());
I0*-1-II&III*-c2

RedType.TeX(options = {})

TikZ representation of a reduction type, as a graph with PrincipalTypes (principal components with
chi>0) as vertices, and edges for link chains.
oneline:=true removes line breaks.
forcesups:=true and/or forcesubs:=true shows edge decorations (outgoing multiplicities and/or chain
depths) even when they are default.

Example (TeX for reduction types).

> R = new ReductionType("1g1--I1-I1");
> console.log(R.TeX(),R.TeX({forcesups: true, forcesubs: true, scale: 1.5}));

1g1 I1 I1 1g1 I1 I1

1-1

1

1-1

1

1-1

1
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Example (Degenerations of two elliptic curves meeting at a point).

> const S = ReductionType("1g1-1g1").Shape(); // Two elliptic curves meeting at a point
(genus 2)

The corresponding shape is a graph v-v with two vertices with χ = −1 and one edge of gcd 1

> console.log(S.TeX());

11

(10) 11

(10)

There are 10 possibilities for such a vertex, one for each Kodaira type, and Binomial(10,2)=55 such
types in total

> console.log(PrincipalTypes(-1,[1]).join(", "));
1g1-{1}, I1-{1}, I0*-{1}, I1*-{1}, IV-{1}, IV*-{2}, III-{1}, III*-{3}, II-{1}, II*-{5}
> console.log(ReductionTypes(S, {countonly: true}));
55

RedType.SetDepths(depth)

Set depths for DualGraph and Label based on either a function or a sequence.
If `depth` is a function, it should be of the form:
depth(e: RedChain) -> int/str

For example:
e => e.depth // Original depths
e => MinimalLinkDepth(e.mi, e.di, e.mj, e.dj) // Minimal depths
e => `n_${e.index}` // Custom string-based depth

If `depth` is a sequence, its length must match the number of link chains in the reduction type.

Raises:
Error: If `depth` is neither a function nor a sequence or if the sequence length doesn't match.

RedType.SetVariableDepths()

Set depths for DualGraph and Label to a variable depth format like 'n_i'.

RedType.SetOriginalDepths()

Remove custom depths and reset to original depths for printing in Label and other functions.

RedType.SetMinimalDepths()

Set depths to minimal ones in the family for each edge.

RedType.GetDepths()

Return the current depths (string sequence) set by SetDepths or the original ones if not changed.

Example (Setting variable depths for drawing families).

> var R = new ReductionType("I3-(2)I5");
> console.log(R.Label({tex: true}));

I3.(2)I5

> R.SetDepths(["a", "b", "5"]); // Make two of the three chains variable depth
> console.log(R.Label({tex: true}));

Ia.(b)I5

> R.SetOriginalDepths();
> console.log(R.Label({tex: true}));

I3.(2)I5
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