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2This paper considers the problem of specifying a simple approxi-

mating density function for a given data set (x1, . . . , xn). Simplicity is

measured by the number of modes but several different definitions of ap-

proximation are introduced. The taut string method is used to control

the numbers of modes and to produce candidate approximating densi-

ties. Refinements are introduced that improve the local adaptivity of the

procedures and the method is extended to spectral densities.

1. Contents In Section 1.1 we formulate the density problem in terms of ob-

taining the simplest density which is an adequate approximation for the given data.

The taut string method of Davies and Kovac (2001) is adapted to the density prob-

lem and is used for producing candidate densities of increasing complexity. The

difficulties of the density problem are discussed in Section 2. Section 3 contains a

more detailed account of the application of the taut string method to the density

problem. The asymptotics of the procedure on appropriate test beds are discussed

in Section 4. A refinement based on cell occupancy frequencies which increases local

sensitivity is described in Section 5. Section 5.4 compares the taut string method
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with kernel estimators in a small simulation study. Finally Section 6 describes the

application of the taut string methodology to the problem of spectral densities .

1.1. The density problem Given a sample xn = (x1, . . . , xn) of size n we con-

sider the problem of specifying a distribution F with the smallest number of modes

such that the resulting model of i.i.d. random variables XF
n = (XF

1 , . . . , X
F
n ) with

common distribution F is an adequate approximation for the data xn.

We use different concepts of approximation one of which is the following. Let

En,

En(x) =
1

n

n
∑

i=1

{xi ≤ x},

denote the empirical distribution of the data xn and Fn the empirical distribu-

tion function of n i.i.d. random variables XF
n with common distribution F. The

Kolmogoroff metric dko is defined by

dko(F,G) = sup{x : |F (x) −G(x)|}.

The i.i.d. model with distribution F will be regarded as an adequate approximation

to the data xn if

(1.1) dko(En, F ) ≤ qu(n, α, dko).

where qu(n, α, dko) denotes the α-quantile of the random variable dko(Fn, F ) which

is independent of F for continuous F. This gives rise to the Kolmogoroff problem:

Problem 1.1 Kolmogoroff problem. Determine the smallest integer kn

for which there exists a density fn with kn modes and whose distribution F n satisfies

(1.2) dko(En, F
n) ≤ qu(n, α, dko).
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We note that the problem is well posed: for any data set xn it has a solution. We

have posed the problem in terms of approximation so that no assumptions regarding

the “true” data generating mechanism are required or made.

The problem (1.1) is formulated in terms of the smallest number of modes re-

quired for an adequate approximation. A detailed theoretical discussion of such one-

sided problems is given by Donoho (1988): one of his examples is that of modality

of nonparametric densities and spectral densities. His paper also raises interesting

questions about statistical inference involving objects whose very existence cannot

be shown, an example being the “underlying density” for the data. We avoid such

problems by phrasing the paper in terms of approximation.

Hartigan and Hartigan (1985) and Hartigan (2000) construct tests for the modal-

ity of a density function. They are based on the Kolmogoroff distance of the nearest

mixture of uniform distributions to the data and are discussed in more detail below.

Hengartner and Stark (1995) also make use of the Kolmogoroff ball to determine

nonparametric confidence bounds for densities subject to an upper bound for the

number of modes. In the particular case of monotone or unimodal densities the

width of their bounds on appropriate test beds is (logn/n)
1/3

which agrees with the

results given in this paper. It seems that their bounds become difficult to calculate

for more than one mode as the complexity is given as
(

n
l

)

where l is the number of

local extremes. The main differences to the work of Hengartner and Stark are as

follows:

• we provide an explicit density but no bounds,

• neither the number of modes nor even an upper bound is specified in advance,

• the algorithmic complexity of our method is O(n) independently of the num-

ber of modes.
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1.2. The taut string methodology The basic methodology we use for producing

densities is the taut string methodology. Taut strings were first used in the context

of monotonic regression: the greatest convex minorant of the integrated data is

a taut string and its derivative is precisely the monotone increasing least squares

approximation. This is described in Barlow, Bartholomew, Bremner and Brunk

(1972) who were the first to use the phrase “taut string”. We refer also to Leurgans

(1982). The first use of the taut string which goes beyond the monotone case and

which explicitly deals with modality is in Hartigan and Hartigan (1985) where it

is referred to as the “stretched string”. Hartigan and Hartigan (1985) introduced

their DIP test for unimodality which is based on the closest (in the Kolmogoroff

metric) unimodal distribution to the empirical distribution function of the data.

Based on the work of Hartigan and Hartigan (1985) Davies (1995) used the taut

string method to produce candidate densities of low modality to approximate data.

Mammen and van de Geer (1997) employed the taut string in the nonparametric

regression problem. They considered a penalized least squares problem where the

penalty is the total variation of the approximating function. The solution is the

basic taut string confined to a tube centered at the integrated data. Mammen and

van de Geer gave a detailed description of the taut string but did not mention

the connection with modality. Hartigan (2000) recently proposed a generalization

of the DIP test to an arbitrary number of modes. It is based on the Kolmogoroff

distance between the empirical distribution and the nearest distribution consisting

of a mixture of uniform distributions with at mostmmodes. This is calculated using

a taut string. Hartigan examines for each antimode of a taut string approximation

the supremum distance between the empirical distribution function and a monotone

density on a “shoulder interval” including the antimode. Finally Davies and Kovac
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(2001) used the taut string methodology to control the number of local extremes

of a nonparametric approximation to a data set. They also introduced the idea of

local squeezing and residual driven tube widths which greatly increase the precision

and flexibility of the taut string methodology.

1.3. Smoothness The taut string methodology produces densities which are

piecewise constant and therefore not even continuous. Smoothness will not be a

consideration in this paper but we point out that techniques for smoothing such

functions have been developed. The idea is to obtain the smoothest density subject

to shape and deviation constraints taken from the taut string. We refer to Metzner

(1997), Löwendick and Davies (1998) and Majidi (2003).

1.4. Previous work Much work has been done on the problem of density esti-

mation. One of the most popular methods is that of kernel smoothing. We refer

to Nadaraya (1964), Watson (1964), Silverman (1986), Sheather and Jones (1991),

Wand and Jones (1995), Sain and Scott (1996) and Simonoff (1996) and the ref-

erences given there. The main problem here is the determination of appropriate

global or local bandwidths. A further approach is based on wavelets. We refer to

Donoho, Johnstone, Kerkyacharian and Picard (1996), Herrick, Nason and Silver-

man (2000) and to Chapter 7 of Vidakovic (1999). Mixtures of densities have been

considered in the Bayesian framework by Richardson and Green (1997) and Roeder

and Wasserman (1997). Other Bayesian methods are to be found in Verdinelli and

Wasserman (1998).

None of the above approaches is directly concerned with modality. For example

the non-Bayesian theory is generally based on integrated squared error or some

similar loss function. In spite of this methods are often judged by their ability to
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Fig. 1. These figures illustrate the taut string method applied to a sample of mixture of normal

distributions with two different tubewidths. The right column shows the tubes and the taut strings

whilst the left column shows histograms of the data and the corresponding densities of the taut

string.

identify peaks in the data as in Loader (1999) and Herrick et al (2000). Work di-

rectly concerned with modality has been done by Müller and Sawitzki (1991) using

their concept of excess mass. Their ideas have been extended to multidimensional

distributions by Polonik (1995a, 1995b, 1999). Hengartner and Stark (1995) use the

Kolmogoroff ball centred at the empirical distribution function to obtain nonpara-

metric confidence bounds for shape restricted densities. Another way of controlling

modality is that of mode testing. We refer to Good and Gaskins (1980), Silverman

(1986), Hartigan and Hartigan (1985) and Fisher, Mammen and Marron (1994).
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2. The difficulties of the density problem Obtaining adequate approxi-

mate densities is a special case of nonparametric regression. Whereas nonparametric

regression is usually concerned with the size of the dependent variable the density

problem is concerned with measuring the degree of closeness of the design points. In

spite of a formal similarity this is the more difficult problem and it may explain the

modesty evident in the literature on densities. The difficulties may be illustrated by

three data sets each of a sample size of n = 500. The first was generated using the

standard normal distribution, the second using the uniform distribution on [0, 1]

and the third using the so called claw distribution which is the following mixture

of five normal distributions

0.5 ∗ N (0, 1) + 0.1 ∗
4
∑

i=0

N (i/2 − 1, 0.1).

This density will also be referred to as N5 (see Section 3.1). It is one of ten intro-

duced by Marron and Wand (1992) to study the performance of different density

methods. For each data set we calculated a kernel estimate with a global band-

width which was chosen to be as small as possible subject to the estimate having

the same modality as the density. Similarly for the taut string method we took the

Kolmogoroff ball to be as small as possible subject to the estimate having the same

modality as the density. The results are shown in Figure 2.

The kernel method performs very well on the sample from the normal distribution

but the approximation to the uniform density is poor. It can only be improved by

using a smaller bandwidth which then introduces superfluous modes. The approxi-

mation to the claw density is even worse. Only three peaks are correctly identified,

the remaining two peaks are in the tails near −2 and 3 where the claw density

does not have a peak. An explanation of this behaviour can be found in Hartigan
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Fig. 2. Normal, uniform and claw density. The panels show kernel and taut string approxima-

tions using the smallest bandwidth that retains the correct modality.
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(2000) who discusses the relationship between the peaks and bandwidth for kernel

estimates.

The taut string method produces excellent approximations in all three cases.

In particular all five peaks of the claw density are correctly identified. The open

problem is to produce an automatic procedure for the taut string method which

will give good approximations on these and other test beds without knowledge of

the number of modes. In the case of nonparametric regression such an automatic

procedure is available and is reminiscent of hard thresholding for wavelets (Davies

and Kovac, 2001). Unfortunately there seems to be no equivalent for densities and

it is this which makes the density problem so difficult.

3. Taut strings, Kuiper metrics and densities

3.1. Test densities As part of the evaluation of the procedures to be defined

below we consider their performance on test beds defined by distributions. For the

sake of convenient reference we list here the distributions we consider. N (µ, σ2)

refers to the normal distribution with mean µ and variance σ2.

U the uniform distribution on [0, 1 ],

N1 the standard normal distribution,

S the slash distribution, defined as N (0, 1)/U(0, 1)

(see Morgenthaler and Tukey,1991)

N2 the mixture 0.5N (0, 1) + 0.5N (3, 1),

N4 the mixture

0.8N (0, 3) + 0.015N (8, 0.02) + 0.015N (9, 0.02) + 0.17N (15, 0.2),

N5 the claw distribution 0.5N (0, 1) + 0.1
∑4

i=0 N (i/2− 1, 0.1),

N10 5 the mixture 0.1
∑10

i=1 N (5i− 5, 1),

N10 10 the mixture 0.1
∑10

i=1 N (10i− 5, 1).
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3.2. Taut strings We give a short description of the taut string method. A

thorough analysis of properties of the taut string can be found in Hartigan (2000).

Further details and an algorithm of complexity O(n) are given by Davies and Kovac

(2001).

Consider a sample xn and form the ordered sample x(n) = (x(1), . . . , x(n)). For

a given ε > 0 we consider the Kolmogoroff tube T (En, ε) centred at the empirical

distribution En and of radius ε > 0

T (En, ε) = {G : G monotone sup
x

|G(x) −En(x)| ≤ ε}

Imagine now a taut string taking the value of 0 at x(1) and 1 at x(n) and is

constrained to lie within the Kolmogoroff tube. Such a string is shown in the right

panels of Figure 1 for two different values of ε. The taut string defines a function

Sn on the interval [x(1), x(n)]. Although Sn depends on En and ε we suppress this

dependency to relieve the burden on the notation. We denote the density of Sn

by sn. It is defined as the left hand derivative of Sn except at the smallest data

point x(1) where we use the right hand derivative. The left panels of Figure 1 show

histograms of the data with the corresponding densities sn superimposed.

The taut string is a spline with knots at the points at which it touches the lower

or upper boundaries of the Kolmogoroff tube. The taut string has the following

properties (see Davies and Kovac, 2001; Mammen and van de Geer, 1997):

(a) Sn is monotonic increasing and linear between knots.

(b) sn is nonnegative and piecewise constant between knots.

(c) sn has the minimum modality of all functions whose integral over [x(1), x(n)]

lies in T (En, ε) and satisfies the end point conditions.
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(d) Sn switches from the upper boundary En + ε to the lower boundary En − ε

at points where sn has a local maximum.

(e) Sn switches from the lower boundary En − ε to the upper boundary En + ε

at points where sn has a local minimum.

(g) If ξj and ξj+1 are consecutive knots on the same boundary then on the interval

(ξj , ξj+1]

(3.3) sn(x) =
|{i : ξj < xi ≤ ξj+1}|

n(ξj+1 − ξj)
.

It is property (c) which is of importance and allows control of the number of modes.

If consecutive knots ξj and ξj+1 are on opposite boundaries then it follows from (d)

and (e) above that (3.3) must be replaced by

(3.4) sn(x) =
|{i : ξj < xi ≤ ξj+1}| ± 2ε

n(ξj+1 − ξj)

with a minus sign at local maxima and a plus sign at local minima. This means that

the derivative underestimates local maxima and overestimates local minima. In an

earlier version of this paper we followed Davies and Kovac (2001) and modified

string S̃n by setting

(3.5) S̃n(ξj) = En(ξj) at all knots ξj

and linear in between. The corresponding derivative s̃n satisfies

(3.6) s̃n(ξj) =
|{i : ξj < xi ≤ ξj+1}|

n(ξj+1 − ξj)
between the knots ξj and ξj+1.

This modification has no effect on the modality and in general produces more

pronounced peaks. More by good luck rather than by good thinking the authors

fortunately noticed that much improved results can be obtained by not modifying

the taut string in this manner. The reason is that this alteration causes both the



12 P. L. Davies and A. Kovac

taut string and the empirical distribution to have the same mass on intervals defin-

ing local extremes. Below we shall use Kuiper metrics which are defined by those

intervals where the difference is greatest. The idea is that differences in distribu-

tions with different peaks should be greatest on intervals defining peaks. Modifying

the taut string as in (3.6) nullifies this effect. Nevertheless the final density which

is returned by the procedure is modified in this manner.

3.3. Data analysis Even without an automatic procedure the taut string can

be used as a data analytical tool. If the radius of the Kolmogoroff tube is mono-

tonically decreased then the number of modes of the derivative of the taut string

increases monotonically. It is therefore possible to specify the number of modes of

the approximate density. Figure 3 shows this for the same sample as used for Figure

2. The densities of Figure 3 can be interpreted as histograms with an automatic

choice of the number of bins and the bin widths. To measure the performance of the

taut string procedure we simulated samples of different sizes from the claw distri-

bution and squeezed the tube as far as possible consistent with the density having

five peaks. A peak is classified as being correctly identified if the midpoint of the

interval defining a peak differs by less than 0.15 from the position of the nearest

peak of the claw density. Figure 4 shows the number of correctly identified peaks

as a function of sample size.

It shows that the taut string method is extremely good at finding peaks. For

samples of size 200 the five peaks will be correctly identified in over 80% of the

cases. This in a sense confirms Loader (1999) who, on the basis of theoretical results

of Marron and Wand (1992), claims that for samples of size n = 193 the claws

should be detectable. The problem we now address is the difficult one of defining

an automatic procedure with a similar performance.
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Fig. 3. Six taut string estimates of a sample of the claw distribution with increasing number of

modes.
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3.4. An automatic procedure The following theorem is an immediate conse-

quence of the properties of the taut string listed above.

Theorem 3.1. The derivative sn of the taut string constrained to lie in the tube

T (En, qu(n, α, dko)) is a solution of the Kolmogoroff density problem.

For finite n the values of qu(n, α, dko) can be obtained by simulation. In the limit

√
nqu(n, α, dko) tends to the corresponding quantile of

max
0≤t≤1

B0(t) − min
0≤t≤1

B0(t)

where B0 denotes a Brownian bridge and for which an explicit expression exists

(Dudley, 1989).

The solution of the Kolmogoroff density problem therefore defines an automatic

procedure based on the taut string and its performance can be evaluated on dif-

ferent test beds. If we do this on an i.i.d. test bed, that is with data of the form

X1(F ), . . . , Xn(F ) where F has a k-modal density function f, then it is clear that

the taut string density sn will have at most k modes with probability at least α.

This follows on noting that F lies in the tube with probability α and that in this

case sn has at most as many modes as f . In particular if k = 1 we have

Theorem 3.2. Let X1(F ), . . . , Xn(F ) be an i.i.d. sample with common uni-

modal distribution F and let sn be the solution of the Kolmogoroff density problem

(1.2). Then

(3.7) P(sn unimodal) ≥ α.

A simulation was performed to investigate the performance of the procedure

with α = 0.9 and the corresponding tube width 1.245/
√
n on test beds defined by

the distributions listed in Section 3.1. The results are shown in Table 1. It is clear
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Dist. U S N1 N2 N4 N5 N10 5 N10 10

100 100 (0) 100 (0) 100 (0) 0 (1) 0 (2.34) 0 (4) 0 (9) 0 (9)

500 100 (0) 100 (0) 100 (0) 0 (1) 0 (2) 0 (4) 0 (9) 0 (8.6)

1000 100 (0) 100 (0) 100 (0) 0 (1) 0 (2) 0 (4) 0 (9) 0 (7.9)

5000 100 (0) 100 (0) 100 (0) 50 (0.5) 0 (2) 0 (4) 0 (8.3) 100 (0)

10000 100 (0) 100 (0) 100 (0) 100 (0) 0 (2) 66 (0.4) 99 (0.01) 100 (0)

Table 1

The procedure using the 0.9-quantile of the Kolmogoroff metric. The numbers give the percentage

of simulations in which the correct modality was obtained. The numbers in brackets give the

mean absolute deviation from the correct modality. The results are based on 1000 simulations.

that for unimodal distribution the modality is correctly estimated with probability

at least 0.9 in accordance with Theorem 3.2. Indeed the actual probability greatly

exceeds 0.9 as all simulations resulted in exactly one peak. The results for the other

distributions are, in contrast, disappointing. Asymptotically the modality will be

correctly estimated with probability at least 0.9 but the rate of convergence is

clearly very slow. We now try and obtain an improved procedure in two ways.

Firstly we note that the choice of qu(n, α, dko) for the radius of the tube means

that a probability of at least α is guaranteed for all unimodal test beds. If we

provisionally accept that the uniform distribution is a poor model for most data sets

then we may accept a worse performance for the uniform distribution in return for

enhanced performances for other distributions. Silverman (1986) and Müller and

Sawitzki (1991) argue in a similar vein. The second way of gaining an improved

performance is to use a generalized Kuiper metric rather than the Kolmogoroff

metric. Kuiper metrics consider the differences in probability over a fixed number

of disjoint intervals and are therefore better at detecting modality.
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3.5. Calibrating unimodality To implement the first way of improving perfor-

mance let qu(n, α, F, 1, dko) denote the α−quantile of the Kolomogoroff distance of

the closest unimodal distribution (given by the taut string) to the empirical distri-

bution Fn of n i.i.d. random variables with common distribution F. We have the

following theorem.

Theorem 3.3. Let X1(F ), . . . , Xn(F ) be an i.i.d. sample with common uni-

modal distribution F and empirical distribution Fn. Let sn be the derivative of the

string Sn through the tube T (Fn, qu(n, α, F, 1, dko)). Then

(3.8) P(sn unimodal) = α.

Clearly

qu(n, α, F, 1, dko) ≤ qu(n, α, dko)

but it is not clear whether

sup
F unimodal

qu(n, α, F, 1, dko) = qu(n, α, dko).

We point out that the uniform distribution does not maximize qu(n, α, F, 1, dko)

(Hartigan and Hartigan, 1985). We now take F = U to be the uniform distribution

on the basis that it is not an adequate approximation for most data sets and set

α = 0.5. This means that on uniform test beds the modality will be correctly

determined with probability 0.5. The uniform distribution has the advantage that

the asymptotics of the quantiles qu(n, α, U, 1, dko) can be calculated. We have

(3.9) lim
n→∞

√
nqu(n, α, U, 1, dko) = qu(α,B0)

where qu(α,B0) denotes the α-quantile of the random variable

(3.10) min
H

sup
x

|B0(x) −H(x)|
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Dist. S N1 N2 N4 N5 N10 5 N10 10

100 100 (0) 100 (0) 22 (0.8) 0 (2) 0 (3.8) 0 (8) 0 (3.8)

500 100 (0) 100 (0) 78 (0.2) 0 (2) 1 (2.5) 0 (5.5) 1 (2.5)

1000 100 (0) 100 (0) 95 (0) 0 (2) 43 (0.7) 27 (1.1) 43 (0.7)

5000 100 (0) 100 (0) 99 (0) 48 (0.6) 100 (0) 100 (0) 100 (0)

10000 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

Table 2

The procedure based on the 0.5-quantile of the Kolmogoroff distance of the closest unimodal

distribution to a uniform sample. The numbers give to the nearest integer the percentage of

simulations in which the correct modality was obtained. The numbers in brackets give the mean

absolute deviation from the correct modality correct to one decimal place. The results are based

on 1000 simulations.

where the function H : [0, 1] → R is convex on [0, tH ] and concave on [tH , 1] for

some tH , 0 ≤ tH ≤ 1. Simulations show that the 0.5-quantile of (3.10) is 0.432. A

correction for finite n gives

qu(n, 0.5, U, 1, dko) = 0.43/
√
n− 0.64/n.

with a percentage error (based on simulations) of at most 0.0045. Table 2 shows the

results. We see that the performance for the Gaussian test bed is hardly impaired.

On the claw test bed we note that the performance for n = 1000 is now comparable

to that of the simple Kolmogoroff quantile for n = 10000.

If we apply the same idea to the normal distribution then heuristic arguments

indicate that

lim
n→∞

√
nqu(n, α,N (0, 1), 1, dko) = 0

but we have no exact asymptotic result. The same argument goes through for any

sufficiently smooth density. If true this implies that if we use a cut-off point for the
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size of the Kolmogoroff ball which is bounded below by some constant multiple of

1/
√
n then the modality will be consistently estimated. We do not pursue this idea

any further.

3.6. Kuiper metrics Suppose that the density sn of the taut string is unimodal.

Part of the description of the taut string Sn given in Section 3.2 is that it switches

from the upper bound to the lower bound at each maximum. Consider now the

Kuiper metric dku defined by

(3.11) dku(F,G) = sup{a < b : |(F (b) − F (a)) − (G(b) −G(a))|}

It follows from the above that if dko(En, Sn) = ε and sn is unimodal then

dku(En, Sn) = 2ε. The α-quantile qu(n, α, dku) of dku(Fn, F ) is independent of F

for continuous F and is less than twice the α-quantile of dko(Fn, F ). This suggests

that the Kuiper metric is more appropriate for unimodality than the Kolmogoroff

metric. To demonstrate this we firstly define the Kuiper problem:

Problem 3.1 Kuiper density problem. Determine the smallest integer kn

for which there exists a density fn with kn modes and whose distribution F n satisfies

dku(En, F
n) ≤ qu(n, α, dku).

Suppose now that F n is a unimodal distribution which solves the Kuiper density

problem. Let ε1 = max{x : F n(x) − En(x)} and ε2 = max{x : G(x) − F n(x)}.

As dku(En, F
n) = ε1 + ε2 = qu(n, α, dku) it follows by shifting F n by an amount

1
2 |ε2 − ε1| that the solution of the Kolmogoroff problem with ε = 1

2qu(n, α, dku)

is also unimodal. As 1
2qu(n, α, dku) < qu(n, α, dko) this implies that if the solution

of the Kuiper density problem for a given α is unimodal, so is the solution of the

Kolmogoroff problem for the same α.
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To cover the case of multimodality we define the Kuiper metric dκ
ku of order κ

by

(3.12) dκ
ku(F,G) = max{

κ
∑

1

|(F (bj) − F (aj)) − (G(bj) −G(aj))|}

where the maximum is taken over all aj , bj with

a1 ≤ b1 ≤ a2 ≤ b2 · · · ≤ aκ ≤ bκ.

Again the distribution of dκ
ku(Fn, F ) is independent of F for continuous F . If we

denote the α−quantile by qu(n, α, dκ
ku) we can formulate the κ-Kuiper problem.

Problem 3.2 κ-Kuiper density problem. Determine the smallest integer

kn for which there exists a density fn with kn modes and whose distribution F n

satisfies

dk
ku(En, F

n) ≤ qu(n, α, dκ
ku).

If the density sn of the taut string has k modes then for the Kuiper metric d2k−1
ku of

order 2k − 1 we have

d2k−1
ku (Em, Sn, ) = (2k − 1)ε.

This follows on noting that the strings switches boundaries at each of the k local

maxima of sn and also at the k − 1 local minima. As

qu(n, α, d2k−1
ku ) < (2k − 1)qu(n, α, dko)

this indicates that the Kuiper metric d2k−1
ku is more efficacious when the data ex-

hibit k modes. We have no simple algorithm for solving the κ-Kuiper problem so

we use the strategy of Davies and Kovac (2001) and decrease the radius ε of the

Kolmogoroff tube gradually until

d2k−1
ku (En, Sn) ≤ qu(n, α, d2k−1

ku ).
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Dist. S N1 N2 N4 N5 N10 5 N10 10

n = 250

k = 3 99 (0) 96 (0) 67 (0.3) 0 (2) 0 (2.9) 0 (6.7) 38 (0.8)

k = 9 100 (0) 99 (0) 59 (0.4) 0 (1.9) 20 (1.5) 0 (3.4) 95 (0)

k = 19 100 (0) 96 (0) 53(0.5) 1 (1.9) 20 (1.5) 0 (1.0) 99 (0)

n = 500

k = 3 99 (0) 99 (0) 90 (0.1) 0 (2) 10 (1.7) 0 (3.9) 100 (0)

k = 9 100 (0) 99 (0) 74 (0.3) 1 (1.9) 70 (0.3) 50 (0.6) 100 (0)

k = 19 100 (0) 99 (0) 66 (0.3) 2 (1.9) 57 (0.5) 97 (0) 100 (0)

Table 3

Results for the procedures using the 0.5-quantile of the closest unimodal distribution in the Kuiper

metrics based on 3, 9 and 19 intervals. The numbers give the percentage of simulations in which

the correct modality was obtained. The numbers in brackets give the mean absolute deviation

from the correct modality. The results are based on 1000 simulations with a sample sizes of 250

and 500.

For large n approximations to qu(n, α, dκ
ku) are available using the weak convergence

result

√
ndκ

ku(Fn, F ) ⇒ max{
κ
∑

1

|B0(bj) −B0(aj)|}

where B0 denotes the standard Brownian bridge on [0, 1] and

a1 < b1 < a2 < b2 . . . < aκ < bκ.

The distribution of max{|B0(b)−B0(a)|} corresponding to the unimodal case k = 1

is known (for example Dudley (1989), Proposition 12.3.4.) Sufficiently accurate

quantiles for finite n and for the other asymptotic cases may be obtained by sim-

ulations. Best results are obtained if κ is related to the modality k of the test bed

by κ = 2k − 1. In practice a default value of κ is required and we use κ = 19.
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We combine the κ-Kuiper-metric with the ideas of Section 3.5. Let qu(n, α, F, 1, dκ
ku)

denote the α-quantile of the κ-Kuiper distance of the closest unimodal distribution

to the empirical distribution Fn of n i.i.d. random variables with common distri-

bution F. We use the string Sn as the closest unimodal distribution. If F is the

uniform distribution of [0, 1], then we have again a 1/
√
n asymptotic. For example

for κ = 19 and α = 0.5 simulations showed that

qu(n, 0.5, U, 1, d19
ku) h 8.12/

√
n− 30.32/n1.04

is a good approximation.

The results shown in Table 3 confirm the claim that the Kuiper metric with

κ = 2k − 1 performs best on test beds with k modes. Thus the procedure based

on the d3
ku metric is best for the bimodal distribution N2, that based on the d9

ku

metric is best for the five-modal claw density N5 whilst that based on the d19
ku

metric is best for the two ten-modal distributions N10 5 and N10 10. None of the

procedures performs well for the four-modal N4 distribution. This is because it has

two very concentrated but lower power peaks situated at the points 8 and 9. For

this distribution global squeezing of the Kolmogoroff tube will only work for large

sample sizes. In small samples when the tube is sufficiently narrow to pick up the

lower power peaks it will have already caused peaks to appear at other points. This

is shown by Table 4. For the sample sizes shown the tube was squeezed to give just

four peaks and it was then checked if the four peaks were the correct ones. Table 4

gives the percentage of cases when this was the case. Thus even for a sample of size

2000 the correct peaks were only found in 80% of the cases. The problem is related

to that of detecting low power peaks in nonparametric regression. In Davies and

Kovac (2001) the problem was solved using local squeezing. In Section 5 below we
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introduce a form of local squeezing for densities which is based on cell occupancy

frequencies.

n 500 1000 2000 4000

3 23 81 99

Table 4

Results of global squeezing for the four-modal distribution N4. The Kolomogoroff tube was squeezed

to give exactly four peaks. The numbers give the percentage of simulations in which these were

the correct peaks. The results are based on 1000 simulations.

3.7. Discrete data So far we have looked for an approximation to the data in the

form of a Lebesgue density. However at little cost we can extend the methodology

to integer-valued data which typically arise from counts. Suppose the data set xn =

(x1, . . . , xn) contains only N different values t1 < t2 < · · · < tN . We look for an

approximation in terms of N probabilities pj = P(X = tj), j = 1, . . . N where the

random variable X has support t1 < t2 < · · · < tN . Let e1, . . . , eN be the empirical

frequencies of the tj in the data and consider the cumulative sums

Ej =

j
∑

i=1

ei

and the tube constructed by linear interpolation of the points (j/N,Ej), j =

0, . . . , N . Differentiating yields an approximation of p1, . . . pN . This procedure

corresponds to the taut string algorithm in the regression context (Davies and

Kovac, 2001) with time points t1, . . . tn and with observations e1, . . . en. Our default

procedure uses the κ-Kuiper metric with κ = 9 and α = 0.5. We point out that

this radius is conservative for discrete data, but we do not pursue this any further.

Other forms of approximation can be accommodated without much difficulty. An

example is shown in Figure 5 where the discrete taut string method was applied to
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Fig. 5. Discrete data. The left panel shows the density function of the mixture of three Poisson

distributions and the frequencies of a sample of size 1200. The discrete taut string approximation

is shown in the right panel.

1200 observations from a mixture of three Poisson distributions

Q =
1

3
(P(1) + P(7) + P(21)).

The other situation is where repeated values occur not because of the nature of

the data (counting) but because of rounding. The rounding of data is very common

and it can cause difficulties when looking for an approximation based on Lebesgue

densities. To see the difficulties assume that some data point x is observed k times.

Depending on the exact implementation of the taut string algorithm two problems

may occur. If the tube is centred around the empirical distribution function and

the tube width is smaller than k/2n, the derivative of the taut string at x will

be ∞. If on the other hand the tube is constructed by linear interpolation of the

empirical distribution function then the empirical mass at x of k/n is spread over the



Densities and Modality 25

interval [xl, x] where xl is the largest data point smaller than x. To overcome these

problems we propose the following. Let ε be the precision or cut-off-error which

we set to ε = 10−3MAD(xn) where MAD denotes the Median Absolute Deviation.

We construct a modified data set x̃1, . . . x̃n where the identical observations at x

are equally spread over the interval [x − ε/2, x + ε/2]. To be precise we replace

x(j+1) = x(j+2) = · · · = x(j+k) by

x̃j+i = x+ ε · (−1

2
+

1

2k
+
i− 1

k
)

for i = 1, . . . , k. The taut string method described above is then applied to x̃ instead

of x.

4. Asymptotics on test beds The asymptotic behaviour of the taut string

may be analysed on appropriate test beds. It turns out that asymptotically the

modality is correctly estimated and that the optimal rate of convergence is attained

except in small intervals containing the local extremes of the density f .

We denote the modality of the derivative of the taut string in the supremum tube

T (Fn, C/
√
n) by kC

n . The taut string based on the radius C/
√
n will be denoted

by SC
n with derivative sC

n . We write Ie
i (n,C), 1 ≤ i ≤ kC

n , for the intervals where

sC
n attains its local extreme values and denote the midpoints of these intervals by

tei (n,C), 1 ≤ i ≤ kC
n . The length of an interval I will be denoted by |I |.

Theorem 4.1. Let f be a k-modal density function on R such that

min
g,(k−1)−modal

|F (x) −G(x)| > 0.

Then we have for all δ > 0

lim
C→∞

lim inf
n→∞

P({kC
n = k}∩{ max

1≤i≤kC
n

|Ie
i (n,C)| ≤ δ}∩{ max

1≤i≤kC
n

|tei (n,C)−tej | ≤ δ}) = 1.
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In the following A denotes a generic constant which depends only on f and whose

value may differ from appearance to appearance.

Theorem 4.2. Assume that

• f has a compact support on [0, 1]

• f has exactly k local extreme values at the points 0 < te1 < . . . < tek < 1

• f has a bounded second derivative f (2) which is non-zero at the k local extremes.

• f (1)(t) = 0 only for t ∈ {te1, . . . , tek}

Then the following statements hold.

(a) lim
C→∞

lim inf
n→∞

P(tei ∈ Ie
i (n,C), 1 ≤ i ≤ k) = 1.

(b) For every C1 < 6 and C2 > 12

lim
C→∞

lim inf
n→∞

P(|Ie
i (n,C)| ·

(√
n|f (1)(tei )|

C

)1/3

∈ [C
1/3
1 , C

1/3
2 ], 1 ≤ i ≤ k) = 1.

(c) Let ξn,C
j be the knots of the taut string SC

n and denote

m(n,C) = max{ξn,C
j+1 − ξn,C

j : ξn,C
j , ξn,C

j+1 ∈ (0, 1)\∪k
1I

e
i (n,C)}.

For some constant A only depending on f we have

lim
C→∞

lim inf
n→∞

P

(

m(n,C) ≤
(

A|f (1)(xj)|−2/3

(

logn

n

)1/3
))

= 1.

(d) Denote

M(n,C) = [A

(

logn

n

)1/3

, 1 −A

(

logn

n

)1/3

]\∪n
i I

e
i (n,C).

Then for some constant A only depending on f we have

lim
C→∞

lim inf
n→∞

P

(

max
t∈M(n,C)

|f(t) − fC
n (t)| ≤

(

A|f (1)(t)|1/3

(

logn

n

)1/3
))

= 1.
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(e) For some constants A1 and A2 only depending on f we have

lim
C→∞

lim inf
n→∞

P( max
t∈∪n

1
Ie

i
(n,C)

|f(t) − fC
n (t)| ≤ AC2/3n−1/3) = 1.

Part (d) of the theorem shows that bounded away from the local extrema the

taut string density attains the optimal rate of convergence up to a logarithmic

factor. The proofs follow the lines of Davies and Kovac (2001) and we omit them.

5. Cell occupancy frequencies and local squeezing

5.1. Cell occupancy frequencies The multiresolution procedure of Davies and

Kovac (2001) is based on comparing the residuals of some regression function with

those of Gaussian white noise. The comparison is based on the means on intervals

which form a multiresolution scheme. A similar idea can be applied to the density

problem. A distribution F is an adequate model for the data xn = (x1, . . . , xn) of

the transformed data

un = F (xn) = (F (x1), . . . , F (xn))

looks like an i.i.d. sample of size n from the uniform distribution on [0, 1]. This is

done by comparing the frequencies

wn
jk = |{l : k2−j < ul ≤ (k + 1)2−j}|, 0 ≤ k ≤ 2j , 1 ≤ j ≤ m,

with those to be expected from i.i.d. uniform random variables. The maximum

resolution level m is taken to be the smallest integer such that n ≤ 2m. Suppose

that U1, . . . , Un are independently and uniformly distributed on [0, 1]. Then

Wn
jk = |{l : k2−j < Ul ≤ (k + 1)2−j}|
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is binomially distributed b(n, 2−j). For given α we define the upper bounds υn
j,k(α)

by

(5.13) υn
j (α) = min

{

υ : P(Zn
j ≥ υ) ≤ 1 − α

2n

}

where Zn
j satisfies the binomial distribution b(n, 2−j). It follows that

P(Wn
jk < υn

j (α), 1 ≤ k ≤ 2j , 1 ≤ j ≤ n) ≥ α.

Lower bounds λn
j,k(α) can be derived similarly. This gives rise to the following

problem:

Problem 5.1 Cell occupancy problem. Determine the smallest integer kn

for which there exists a density fn with kn modes and whose distribution F n is such

that the cell frequencies wn
j,k satisfy

(5.14) λn
j (α) ≤ wn

j,k ≤ υn
j (α)

where the υn
j,k(α) are given by (5.13).

Although the cell occupancy problem is well defined there is no obvious connec-

tion between the modality of the density fn and the set of inequalities (5.14). We

therefore again adopt the strategy of producing test densities derived from the taut

string and gradually increase the modality until the inequalities (5.14) hold. The

knowledge of which inequalities fail to hold provides further information which we

are able to exploit as described in the next section.

5.2. Local squeezing Local squeezing is described in Davies and Kovac (2001).

We apply it to the density problem as follows. Suppose that one of the inequalities

of (5.14) fails. We suppose that

wn
j,k = |{l : k2−j < Fn(xl) ≤ (k + 1)2−j}| ≥ υn

j,k(α)
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Clearly there exists an interval [x(l1), x(l2)] such that k2−j < Fn(xl) ≤ (k + 1)2−j

for all points xl in [x(l1), x(l2)]. We now squeeze the tube locally on this interval

and do this for all intervals where the upper inequality fails. For coefficients wj,k

we proceed similarly but use slightly larger intervals such that k2−j < Fn(xl) ≤

(k + 1)2−j for all points xl in (x(l1), x(l2)). The general procedure for doing this

is as follows. Firstly, a suitable initial global tube radius γ0 is chosen using the

Kolmogorov or generalized Kuiper metrics and the taut string is calculated. If all

the inequalities (5.14) hold the procedure terminates. If not we reduce the radius

by a factor ρ, 0 < ρ < 1, on all intervals where an inequality fails. Typical choices

for ρ are 0.9 or 0.95. The taut string through the modified tube is calculated and

using this new test distribution it is checked whether the inequalities (5.14) hold.

If so, the procedure terminates. Otherwise the tube radius is again decreased by

the factor ρ on all intervals where an inequality fails. This is continued until all the

inequalities are satisfied.

It is not easy to analyse the behaviour of the local squeezing procedure. In the

case of nonparametric regression Davies and Kovac (2001) give a heuristic argument

indicating that the procedure improves the behaviour at local extremes. A similar

argument can be given for densities but as it remains heuristic we omit it.

The ability of the local squeezing method to detect low power peaks (see Davies

and Kovac, 2001) is shown by the following example. The data consist of a sample

of size 1000 drawn from the four normal distribution N4 of Section 3.1 The density

is shown in the upper left corner of Figure 6. It exhibits a main peak, a moderate

peak on the right and in the centre two low power but very concentrated and very

close peaks.
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Fig. 6. Local squeezing: The upper left panel shows the density of N4. A kernel estimate is

shown in the upper right panel. The lower left panel illustrates global squeezing first with a solid

line using the Kolmogorov bounds and then with a dashed line the taut string density with four

modes. The local squeezing estimate is depicted in the lower right panel.
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The upper right panel shows a kernel estimate which was calculated using a

Gaussian kernel. The mode on the right-hand side was detected, but is considerably

broader than the normal component of the original density function. The main

component is well captured but there are three superfluous peaks. Finally, the two

sharp peaks in the centre of the data result in one flat local maximum. The lower

left panel shows the result with the taut string method and two global tube radii.

The solid line is derived from the d1
ku metric. There are no spurious local extremes

but the small central peaks are not detected. The dashed line shows that further

global squeezing would only lead to additional spurious modes on the left before the

central peaks are detected. Finally, the lower right panel shows the result of local

squeezing. The number and locations of the local extrema are estimated correctly

and the difference to the original density function is very small.

Table 5 shows the performance of the local squeezing procedure for the distrib-

tions S, N1, N2, N4, N5, N10 5 and N10 10 for samples of sizes 250 and 500. The

procedure was calibrated as for the Kuiper metrics but due to the discrete nature

of the cell counts it was not possible to adjust the parameters so that in 50% of

the cases the modality for uniform samples was one. The choice lay between 48%

and 55% and we took the latter. The results show a much enhanced performance

for the distribution N4 but the results for the other distributions are worse than

for the Kuiper metrics. This suggests a compromise procedure.

5.3. Compromise default procedures Statistical procedures make no assump-

tions about the data (Tukey, 1993a) and consequently are required to be compro-

mises (see Tukey’s example of the milk bottle in Tukey, 1993b). Given a Kuiper

metric dκ
ku we calibrate the procedure based upon it so that in 60% of the cases the

approximation to uniform samples is unimodal. Local squeezing is then applied so
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Dist. S N1 N2 N4 N5 N10 5 N10 10

n = 250 91 (0.1) 83 (0.2) 42 (0.6) 1 (1.6) 4 (2.2) 2 (2.9) 99 (0)

n = 500 89 (0.1) 80 (0.2) 45 (0.6) 22 (0.9) 17 (1.5) 36 (0.9) 100(0)

n = 1000 88 (0.1) 79 (0.3) 54 (0.5) 75 (0.3) 43 (0.8) 91 (0.1) 100 (0)

Table 5

Results for the local squeezing procedure. The numbers give the percentage of simulations in which

the correct modality was obtained. The numbers in brackets give the mean absolute deviation

from the correct modality. The results are based on 5000 simulations with sample sizes of 250,

500 and 1000.

that the final approximation is unimodal in 50% of the cases. Again due to the dis-

crete nature of the cell counts 50% is not exactly attainable so we take the smallest

percentage higher than 50. A second choice is to standardize the Kuiper procedure

so that in 95% of the cases the approximation to uniform samples is unimodal. This

is then reduced to 90% using local squeezing. We modify the local squeezing proce-

dure as follows. Instead of using a multiresolution scheme we consider all intervals

of length at most
√
n. This results in a procedure of O(n1.5) but easily calculable

for sample sizes of 50000 and more. The reasoning behind this alteration is that we

use local squeezing only to detect low power concentrated peaks. The others should

be detected by the preceeding Kuiper procedure. For reasons of space and compre-

hensibility we do not give an exact description of the local squeezing procedure but

the source code is available from our web site. This leaves open the choice of κ in

dκ
ku. The software is available for all choices κ = 1, 3, . . . , 19 with the default choice

κ = 19. If data is to be analysed in a routine manner κ can be chosen on the basis

of experience or knowledge of the data involved.
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Dist. S N1 N2 N4 N5 N10 5 N10 10

n = 250 97 (0) 93(0.1) 51 (0.5) 2 (1.8) 17 (1.6) 40 (0.9) 99 (0)

n = 500 97 (0) 94 (0.1) 64 (0.4) 19 (1.1) 60 (0.5) 95 (0) 100 (0)

n = 1000 99 (0) 98 (0) 86 (0.1) 82 (0.2) 99 (0) 100 (0) 100 (0)

Table 6

Results for the compromise procedure based on d19

ku
. The numbers give the percentage of simula-

tions in which the correct modality was obtained. The numbers in brackets give the mean absolute

deviation from the correct modality. The results are based on 1000 simulations with a sample

sizes of 250, 500 and 1000.

5.4. Further simulations We now evaluate the two procedures COMPKU19 50

and COMPKU19 90 which are the compromise procedures described in the previous

section using the Kuiper metric d19
ku and calibrated at the uniform distribution to

give the correct modality with probabilities 0.5 and 0.9 respectively. We compare

them with two kernel based methods. The first KERNCV uses likelihood cross-

validation for the choice of the bandwidth whilst the second KERNSJ uses the

Sheather-Jones plugin bandwidths. The comparisons are performed using the ten

densities shown in Figure 7. They are taken from Marron and Wand (1992) and are

the uniform distribution on [0, 1], the Gaussian distribution and eight mixtures of

normal distributions.

Each method was applied to 1000 samples of each of the densities and three

different sample sizes (100, 500, 2000). For each estimate it was checked if the correct

number of modes was found and if the positions of the modes corresponded to those

of the densities. Table 7 shows how often the modes were determined correctly for

the various densities and methods. Some comments are in order. Firstly if we use

the procedure COMPKU5 50 which is tuned to three modes then the performance
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Density size KERNCV KERNSJ COMPKU19 50 COMPKU19 90

Uniform 100 1 16 50 91

500 0 1 53 89

2000 0 0 53 91

Gaussian 100 77 79 85 98

500 79 78 95 99

2000 74 59 98 99

Strongly skewed 100 4 0 90 99

500 1 0 96 100

2000 0 0 99 99

Outlier 100 15 0 90 99

500 0 0 97 100

2000 0 0 98 100

Bimodal 100 71 81 45 14

500 75 84 68 33

2000 75 73 97 92

Skewed bimodal 100 32 46 34 9

500 45 37 35 13

2000 34 12 49 22

Trimodal 100 29 12 11 1

500 57 67 11 2

2000 81 82 20 6

Claw 100 1 0 4 0

500 2 2 63 34

2000 0 0 100 100

Smooth comb 100 18 0 1 0

500 5 0 5 1

2000 1 1 89 80

Discrete comb 100 12 0 1 0

500 2 0 31 13

2000 0 82 98 99

Table 7

Correctly detected modes in samples of various densities and for several automatic methods.
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for the trimodal density improves. For n = 500 three modal values are found in

20% of the cases and for n = 2000 this rises to 37%. Secondly all the densities

are mixtures of a small number of Gaussian distributions with the exception of

the uniform density for which the kernel methods based on a Gaussian kernel fail.

The trimodal distribution is the one where the kernel methods perform clearly

better than the taut string method. If however the central Gaussian distribution

is replaced by a uniform distribution then the kernel methods again fail. We refer

to Hartigan (2000) for an explanation of this. It indicates that the comparison is

weighted in favour of the kernel methods as both they and the densities are based

on the Gaussian kernel. We note that the performance of the kernel methods seems

to deteriorate with increasing sample size.



Densities and Modality 37

6. Hidden periodicities, spectral densities and taut strings

6.1. Hidden periodicities The second problem we consider is that of detecting

hidden periodicities in a data set xn. One method of formulating the problem is

the following: calculate an appropriate spectral density function fn and identify the

hidden periodicities in the data with the peaks of fn (Brillinger, 1981; Priestley,

1981; Brockwell and Davis, 1987 and the references given there).

Existing methods by and large belong to one of two different categories of pro-

cedures. The first is nonparametric and uses some form of smoothing of the pe-

riodogram. This may take the form of kernel estimators or splines or wavelets or

averages of periodograms obtained by splitting the data into blocks (see Chapter 5

of Brillinger (1981), Neumann (1996) and the references given there). The second

possibility is to model the data by an autoregressive process whose order is deter-

mined using some criterion such as AIC (Akaike, 1977), BIC (Akaike, 1978) or HQ

(Hannan and Quinn, 1979). The spectral density associated with the autoregressive

process is then used to determine the hidden periodicities. None of these methods

controls the number of peaks directly although the problem of hidden peaks is one

of modality.

Before proceeding we assume that the data have been normalized to have sample

mean zero and variance 1. To ease the notation the transformed data will also be

denoted by xn. In the context of time series en will denote the empirical spectral

density or the periodogram defined by

(6.15) en(ω) =
1

2πn

∣

∣

∣

∣

∣

n
∑

t=1

xt exp(iωt)

∣

∣

∣

∣

∣

2

, 0 ≤ ω ≤ 2π.

The corresponding empirical spectral distribution function En given by

(6.16) En(ω) =

∫ ω

0

en(λ)dλ.
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Fig. 8. Sunspot data with number of peaks increasing from 1 to 4.

The candidate spectral densities we use are based on the taut strings Sn through

the Kolmogoroff tubes centred at En. We assume that the taut string is constrained

to go through (0, Ln(0)) and (2π,En(2π)) = (2π, 1) where Ln denotes the lower

boundary.

One difference to the i.i.d. model is the fact that the empirical spectral distri-

bution function is defined for all ω. In practice a grid must be chosen which, when

analysing the asymptotic behaviour on test beds, becomes increasingly fine. We use

the Fourier frequencies 2πj
n , j = 0, . . . n − 1, where the data have been augmented

by zeros to produce a power of two. Choosing a finer grid has had no effect on the

data sets we have analysed so far.

6.2. Data analysis Just as in Section 3.3 it is possible to use the taut string as

a data analytical tool. The radius of the Kolmogoroff tube is gradually decreased

and the resulting densities give information about the power and positions of the
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peaks. We give two examples. Figure 8 shows the first four peaks for the sunspot

data (Anderson 1971).

The second example is an artificial data set generated according to a scheme

of Gardner (1988). Gardner does not explicitly specify the spectral density except

that it has Gaussian shape with centre frequency 2πλ with λ = 0.35. The density

f of (6.17) approximates the graph shown in Gardner’s Figure 9.4 (a)

(6.17) f(ω) =
1

3
e−300( ω

2π
−0.35)2

.

A realization of length 2048 was generated by filtering in the frequency domain.

The following pure sine terms were added

√
2 sin (2π(0.2× t− 106/360)) ,

√
2 sin (2π(0.21× t− 45.1/360)) ,

√
2/10 sin (2π(0.1 × t− 32.6/360)) .

A segment of length 256 starting at t = 1023 was taken as the simulated sample.

It is shown in Figure 9.

A similar data set was analysed by Gardner (Chapter 9.E, Experimental Study,

Gardner, 1988) in an experimental study of the performance of different spectral

estimates. Figure 10 shows the first four peaks (in a log scale) for the data set of

Figure 9. Finally Figure 11 shows the four peak density together with the peri-

odogram.

6.3. Two concepts of approximation The concepts of approximation used in the

i.i.d. case had the advantage that the distributions involved were independent of the

approximating model. This is no longer the case for stationary models. Furthermore,

specifying the spectral distribution function F does not specify the joint distribution

of the stationary sequence. If however one is prepared to accept a Gaussian model
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Fig. 10. Gardner data with number of peaks increasing from 1 to 4
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Fig. 11. Gardner data with four peaks and the periodogram

then the distribution PF of the sequence is determined by F . In analogy with the

i.i.d. case we have

Problem 6.1 Kuiper spectral density problem. Determine the smallest

integer kn for which there exists a spectral density fn with kn modes and whose

distribution F n satisfies

(6.18) dku(En, F
n) ≤ qu(n, α,PF n , dku)

where PF n denotes the distribution of the observations under the model.

There are two disadvantages with the procedure based on this concept of ap-

proximation. One is that the quantile in (6.18) depends on F n. It would be possible

to overcome this by using the taut string Sn at each stage and then simulating the

quantile qu(n, α,PSn , dku). This is clearly very time consuming. The second disad-
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vantage is the following. Under appropriate conditions (Dahlhaus, 1988) we have

the weak convergence result

√
n(Fn − F ) ⇒ Z

where Fn denotes the empirical spectral distribution function of the model with

spectral distribution function F and density f and Z denotes a continuous zero

mean Gaussian process defined by

(6.19) E(Z(λ1)Z(λ2)) =

∫ min(λ1,λ2)

0

f(ω)2dω

It follows from (6.19) that any large peaks will swamp smaller peaks which may be

present and so prevent their detection. The one advantage of (6.18) is that it allows

an asymptotic evaluation.

A more sensitive procedure is based on some kind of multiresolution analysis.

Suppose for the moment that the sample size n is a power of two n = 2m. Given a

spectral density function f we define

(6.20) gn(f, ω) =
en(ω)

f(ω)
.

and consider the multiresolution scheme

(6.21) wjk(f) =

j2k

∑

l=(j−1)2k+1

gn(f, ωl,n), j = 1, . . . , 2m−k−1, k = 0, . . . ,m− 1,

where the ωl,n = 2πl/n are the Fourier frequencies. The class of stationary processes

with spectral density function f is too large to provide a meaningful definition of

approximation so we now restrict attention to Gaussian processes. Corresponding

to level dependent thresholds for wavelets we specify lower and upper bounds lk,n

and uk,n respectively for the multiresolution coefficients (6.21). These now define

the
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Problem 6.2 Multiresolution spectral density problem. Determine

the smallest integer kn for which there exists a spectral density fn with kn modes

such that

(6.22) lk,n ≤ wjk(fn) ≤ uk,n, j = 1, . . . , 2m−k−1, k = 0, . . . ,m− 1.

The default bounds we use are lk,n = qu(α1n, 2
k) and uk,n = qu(α2n, 2

k) where

qu(β, ν) denotes the β-quantile of the Gamma distribution with ν degrees of free-

dom, α1n = (1 − α)/2n and α2n = 1 − α1n with α = 0.9. The bounds are based

on the Gaussian model and the asymptotic results for such processes as given for

example by Theorem 5.2.6 of Brillinger (1981). If the asymptotic results held pre-

cisely for finite n then the bounds are chosen such that for a stationary Gaussian

process with spectral density function f the inequalities (6.22) hold with probabil-

ity at least 0.9 for fn = f. As the individual gn(f, ω) of (6.20) for ω = 2πj
n are

asymptotically independent the bounds will be approximately of the correct order,

again for Gaussian processes with a spectral density function. The usefulness of the

bounds for real data sets is an empirical matter. In particular they will be be too

slack if the spectral distribution function contains point masses.

This is the case for the Gardner data given above and may be seen in Figure

11. The absolute continuous part of the spectrum shows a degree of noise whereas

the remainder of the spectrum is noise free. The default bounds we propose will

detect the first peak but they are not sufficiently tight to split the two main peaks.

On the other hand if the bounds are sufficiently tight to separate the two peaks

then superfluous peaks will be produced in the absolutely continuous part of the

spectrum. There would seem to be no easy solution which will work equally well

for continuous as well as for discrete spectra.
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We have no algorithm to solve the problem as it stands so again we use the

local squeezing variant of the taut string method. The string is squeezed locally

on the intervals where (6.22) fail and this is continued until all the inequalities

are satisfied. When doing this however care must be taken regarding the order in

which the inequalities are treated. From the form of gn(f, ω) in (6.20) it is clear

that a particular gn(f, ω) can be very large and influence all interval containing

this particular frequency and this although the corresponding en(ω) is very small.

Squeezing locally over all intervals effected by this frequency will often produce

many superfluous peaks.

To avoid this we consider the intervals in order of size commencing with intervals

of size one. When all the inequalities are satisfied we then move on to intervals of

size two and continue in this manner until all the inequalities are satisfied. This is

the default version of the algorithm. If global squeezing is used then the peaks will

be introduced according to their power and may be introduced on intervals where

the inequalities (6.22) are satisfied. This is the case for the Gardner data. If the

default version with local squeezing is used the main peak is not split. If however

global squeezing is used then it is split.

A practical problem which occasionally occurs is that the local squeezing version

may find peaks of very small power which have no practical relevance. They may

be removed by increasing the baseline of the empirical spectral density by a small

amount. The software does this by first adding a small proportion of the total power,

or the mean empirical spectral density, to the empirical spectral density and then

proceeding as before.

6.4. Asymptotics on test beds We indicate briefly the results of an asymptotic

analysis using the Kuiper concept of approximation. The test bed we consider is that



Densities and Modality 45

of a stationary process Xn(F ), 1 ≤ n <∞, with a spectral distribution function F

and spectral density function f as follows.

Test bed 6.1.

• F has exactly k local extreme values on the interval (0, π).

• F satisfies

infG∈F(k−1) sup
ω∈[0, π]

|F (ω) −G(ω)| > 0

where F(k−1) denotes the set of distributions with at most k−1 local extreme

values.

To investigate the behaviour of the taut string on the test bed (6.1) we consider

a tube of width 2C/
√
n and denote the taut string through this tube by Sn(C) with

derivative sn(C) and modality kC
n . The intervals on which sn(C) takes on its local

extreme values will be denoted by Ie
i (n,C), i = 1, . . . , kC

n with midpoints ωe
i (n,C).

The first theorem shows that on test bed (6.1) the number and locations of the

local extreme values are determined in a consistent manner.

Theorem 6.1. Consider the test bed (6.1). Then for all δ > 0

lim
C→∞

lim inf
n→∞

P({kC
n = k} ∩ { max

1≤i≤k
|Ie

i (n,C)| ≤ δ} ∩ { max
1≤i≤k

|tei (n,C)− tei | ≤ δ}) = 1.

To obtain rates of convergence on appropriate test beds we must impose further

conditions.

Test bed 6.2.

• all spectral densities f j of order j exist and supω |f j(ω)| ≤ Bj for some con-

stant B
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• the spectral density function f = f 2 has a continuous second derivative f (2)

• f has exactly k local extreme values, 0 < ω1, . . . , ωk < 2π, and f (1)(ω) 6= 0 for

ω ∈ [0, 2π]\{ω1, . . . , ωk}

• f (2)(ωj) 6= 0, j = 1, . . . , k

• the fourth order spectral density is continuous.

The above conditions correspond to (i) of Assumption 2.1 of Dahlhaus (1988).

Rates of convergence require a modulus of continuity for the process Zn =

√
n (Fn − F ) where Fn denotes the empirical spectral distribution function of the

sample (X1(F ), . . . , Xn(F )). Under the conditions of Theorem 2.4 of Dahlhaus

(1988) it follows that

(6.23) sup
0≤ω1<ω2≤2π,ω2−ω1<δ

|Zn(ω2) − Zn(ω1)| ≤ C
√
ω2 − ω1| log(ω2 − ω1)|

with probability tending to one as δ tends to zero. From this the it can be shown that

the rate of uniform convergence away from the local extremes is O

(

(

(log n)2

n

)1/3
)

.

This differs from the rate of convergence for the test beds considered in Davies and

Kovac (2001) by an extra logn term. This is explained by the different modulus

of continuity. On the test beds of Davies and Kovac (2001) it is
√

δ| log δ| whereas

above it is
√
δ | log δ|.

6.5. Examples The default version we use is the procedure deriving from the

multiresolution problem with α = 1 − 0.1/n and a squeezing factor of 0.9. For the

sunspot data the result is the one peak density shown in the top left panel of Figure

8. For the Gardner data the result is the three peak density derived from the four

peak density shown in the bottom right panel of Figure 10 but with the major peak

not split (see above). Finally we consider data generated according to a scheme of
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Fig. 12. Log spectral densities of a sample of size 1024 generated by the scheme (6.24).

Neumann (1996) which is as follows:

(6.24) Xn = Yn + c0Zn

where

Yn + a1Yn−1 + a2Yn−2 = b0εn + b1εn−1 + b2εn−2

and {εn}, {Zn} are independent Gaussian white noise processes with variance 1.

Neumann chose the coefficient values as follows: a1 = 0.2, a2 = 0.9, b0 = 1, b1 =

0, b2 = 1 and c0 = 0.5. A sample of size 1024 was generated according to this

scheme. Figure 12 shows the logarithm of the spectral density of the sequence

{Xn} together with the logarithm obtained from the default version of the taut

string method. The two peaks are correctly identified. The wavelet method used by
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Neumann results in 6 peaks ((b) of Figure 2 of Neumann 1996) for the data set he

considered.

7. Proofs

7.1. Proof of Theorem 4.1 Using the Glivenko-Cantelli theorem, the property

of the taut string of minimizing the modality in T (Fn,
C√
n
) and Proposition 12.3.3

of Dudley (1989) we see that

min(P
(

kC
n ≤ k

)

,P
(

kC
n ≥ k

)

) ≥ P

(

F ∈ T (Fn,
C√
n

)

)

≥ 1 − exp(−2C2)

and conclude that

lim
C→∞

lim
n→∞

P
(

kC
n = k

)

= 1.

The other claims are proved similarly.

7.2. Proof of Theorem 4.2 Proof of (a):

Since the empirical process En =
√
n(Fn − F ) is tight, we conclude (Billingsley,

1968, p. 106) that

lim
C→∞

lim
n→∞

P

(

sup
s≤t≤s+2τn

|En(s) −En(t)| ≤ 1

C

)

= 1

where τn = max(tej − tlj), t
e
j denotes the point where f takes its j-th local extreme

value and tlj the left endpoint of the j-th local extreme interval of fC
n respectively.

From Theorem 4.1 we deduce that for C and n sufficiently large fC
n has the

correct modality and

(7.25) sup
s≤t≤2τn

|En(s) −En(t)| ≤ 1

C

with arbitrarily high probability,
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Suppose FC
n is initially convex and tl1 < te1. Then FC

n is the largest convex

minorant of Fn + C/
√
n (Barlow et al, 1972) until it reaches the left endpoint

tl1(n,C) of Ie
1(n,C) = [tl1(n,C), tr1(n,C)].

For some constant δ > 0 such that for each C and sufficiently large n

tr1 − te1 = argmax0≤h≤δH(h)

where

(7.26) H(h) =
Fn(tl1 + h) − Fn(tl1) − 2C√

n

h
.

As F is convex on [tl1, t
e
1] it can be shown using Taylor expansions that

(7.27) G(h) =
F (te1 + h) − F (te1)

h

defines a strictly increasing function on [0, 4
3µ] where µ = te1 − tl1. Furthermore, for

all τ < µ

H

(

4

3
µ

)

−H(τ) ≥ G

(

4

3
µ

)

−G(τ) +
2C√
nτ

− 2C√
n 4

3µ
− 2

C
√
nτ

> 0

This shows that H cannot attain its maximum on [0, µ] and consequently tr1 > te1.

Similar arguments hold for the other extrema.

Proof of (b):

We suppose that Sn has a local maximum on Ie
1 (n,C) = [tl1(n,C), tr1(n,C)], that

te1 ∈ Ie
1 and that (7.25) is satisfied. Define G by

G(h) =
F (tl1 + h) − F (tl1) − 2C√

n

h
.

and consider h0 = argmax0≤h≤δG(h). Then G′(h0) = 0 implies

f(tl1 + h0)h0 = F (tl1 + h0) − F (tl1) −
2C√
n
.

Using Taylor expansions in te1 and the fact that f ′(te1) = 0 we obtain

h3
0 ≥ − 6C√

nf ′′(te1)
+ o(h3

0).
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In the other direction we consider

(7.28) h1 = argmax0≤h≤δ

F (te1 + h) − F (te1) − 2C√
n

h

and

h2 = argmin0≤h≤δ

F (te1 − h) − F (te1) − 2C√
n

h

It is not difficult to see that h0 ≤ h1 + h2. Setting the derivative of the right-hand

side of (7.28) to zero and using a Taylor expansion in te1 yields

h3
1 = − 6C√

nf ′′(te1)
+ o(h3

1).

The same argument holds for h2 as well and both together show that

h3
0 ≤ − 12C√

nf ′′(te1)
+ o(h3

0).

Define H as in (7.26) and consider

h̃0 = argmaxG(h) − 2√
C · nh

.

The considerations above show that
(

−
6(C + 1√

C√
nf ′′(te1)

)
1

3

≤ h̃0(1 + o(1)) ≤
(

−
12(C + 1√

C√
nf ′′(te1)

)
1

3

.

Furthermore considerations as in (a) show that G(x) − 2√
C·n defines a strictly de-

creasing function. Therefore for all h > (1 + 1√
C

)h̃0

H(h̃0) −H(h) ≥ G(h̃0) −G(h) − 2

C
√
nh

> 0.

Consequently, H cannot attain its maximum in h > h̃0(1 + 1√
C

) and hence

argmax0<h<δH(h) < (1 +
1√
C

) ·
(

−
12(C + 1√

C√
nf ′′(te1)

)
1

3

.

Similarly it can be shown that

argmax0<h<δH(h) < (1 − 1

1 +
√
C

) ·
(

−
6(C − 1√

C√
nf ′′(te1)

)
1

3

.
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Proof of (c):

The proof relies on the modulus of continuity of the empirical process En.

Lemma 7.1. Let Y (n,C) denote random variables such that for all ε > 0

lim
C→∞

lim
n→∞

P (|Y (n,C)| < ε) = 1.

Consider αn = n−γ for some γ < 1 and

βC
n = max

{

1

log(n)
, Y (n,C)}

}

Then for all B > 2 we have

lim
C→∞

lim
n→∞

P( max
αn<|s−t|<βC

n

|En(s) −En(t)|
√

|t− s| · log( 1
|t−s|)

> B) = 0.

Proof: Define random integer-valued variables Kn by

Kn = blog2

(

βC
n

αn

)

c

Using a result of Mason, Shorack and Wellner (1983) we conclude that provided

βC
n < 1

2

P

(

max
αn<|s−t|<βC

n

|En(s) −En(t)|
√

|t− s| · log( 1
|t−s|)

> B
)

≤
∞
∑

k=0

P

(

|En(s) −En(t)| > B ·
√

|t− s| · log(
1

|t− s| ) for some s, t with

2kαn < |s− t| < 2k+1αn

∣

∣

∣
k ≤ Kn

)

≤
∞
∑

k=0

20

ak · (βC
n )3

· exp

(

−(1 − βC
n )4

λ2
k

a
ψ

(

λk√
nak

))

where we denote 2k+1αn by ak,

λk = B ·

√

log( 1
αn

)

2



52 P. L. Davies and A. Kovac

and

ψ(x) = 2 · (1 + x)(log(1 + x) − 1) + 1

x2
.

It is easily veryfied that ψ( λk√
nak

) → 1. Thus

(7.29) lim
C,n→∞

P((1 − βC
n )4 · ψ

(

λk√
nak

)

>
2

B
) = 1

Putting this together we deduce that

P

(

|En(s) −En(t)| > B ·
√

|t− s| · log(
1

|t− s| ) for some s, t with αn < |s− t| < βC
n

)

<
20 log(n)3

nγ(B/2−1)

This completes the proof of the Lemma.

We proceed now with the proof of (c). Since is f is twice continuously differen-

tiable, there is some constant D > 0 such that

|F (x+ h) − F (x) − hf(x) − 1

2
h2f ′(x)| ≤ Dh3

for all x and h.

Let B be an arbitrary constant greater than 2 and

d(n,C) = min{|f ′(x)| |x ∈ [0, 1] \ ∪iI
e
i (n,C)}.

Define a random sequence h(n,C) by

h(n,C) =
(8B)2/3 log(d(n,C)2n)1/3

(3n)1/3d(n,C)2/3
.

We consider the situation where

• fC
n attains the correct modality

• tei ∈ Ie
i (n,C) for all i.

• The empirical process satisfies

sup
|s−t|<Y (n,C)

|En(t) −En(s)| < B ·
√

|s− t| · log(1/|s− t|)
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where Y (n,C) is defined by

Y (n,C) = max{xj+1 − xj | xj , xj+1knots, [xj , xj+1] 6= Ie
i (n,C) for all i}.

• For all x ∈ [0, 1] \ ∪iI
e
i (n,C)

hn ≤ f ′(x)

32D

holds.

• For each extreme interval Ie
i (n,C), the distances of each endpoint to te1 are

both smaller than 4hn.

The preceding lemmas and parts of this theorem show that the probability that all

these assumptions are satisfied simultaneously converges to 1 as n and C tend to

∞. For example, (7.2) follows from (b) which provides a constant A > 0 such that

|f ′(x)| ≥ A · n−1/6.

Consider now an arbitrary point t1 ∈ [0, 1] \ ∪iI
e
i (n,C) where f ′(t1) > 0. Then

Fn(t1 + hn) − Fn(t1)

hn
≤ f(t1) +

1

2
hnf

′(t1) +Dh2
n +

B
√

log(1/hn)√
nhn

.

Plugging in the expression for hn and using the assumptions made above we see

that

Fn(t1 + hn) − Fn(t1)

hn
≤ f(t1) +

1

2
hnf

′(t1)(1 +
1

4
+

1

4
).

Similarly, we conclude that for all h ∈ [4hn, t
e
j ]

Fn(t1 + h) − Fn(t1)

h
≥ f(t1) +

1

2
hf ′(t1)(1 − 1

4
− 1

4
)

where tej is the smallest local extreme value greater than t1.

Suppose that there are knots xj and xj+1 that do not embrace a local extreme

interval such that h0 = xj+1 −xj > 4hn and such that f is increasing on [xj , xj+1].
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The width h̃ is the local argmin

h̃ = argmin0<h<δ

Fn(x1 + h) − Fn(x1)

h
.

On the other hand the considerations above show that

Fn(x1 + hn) − Fn(x1)

hn
<
F (x1 + h) − Fn(x1)

h
.

Therefore, the distance between two knots that do not embrace an extreme interval

is bounded by 4hn.

Proof of (d):

We assume that all the assumptions made in the proof of (c) are again satisfied

and that each two extreme intervals Ie
i and Ie

i+1 are separated by at least two

additional knots xj and xj+1:

max Ie
i < xj < xj+1 < min Ie

i+1.

Define hn as in (7.28). Consider a knot xi which does not delimit a local extreme

interval Ie
i . We take f to be increasing in xi. Then the proof of (c) shows that

fC
n (xi) ≤

Fn(xi + hn − Fn(xi)

hn
≤ f(xi) + C1|f ′(xi)|1/3

(

log(n)

n

)1/3

.

Similar arguments show that

fC
n (xi) ≥

Fn(xi) − Fn(xi − hn

hn
≥ f(xi) − C1|f ′(xi)|1/3

(

log(n)

n

)1/3

.

Analogous inequalities can be derived in the case where f is decreasing in xi.

Suppose now that t is an arbitrary point in
[

A

(

log(n)

n

)1/3

, 1−A

(

log(n)

n

)1/3
]

\ ∪k
i=1I

e
i (n,C).

Let xi be the nearest knot which does not delimit a local extreme interval. Then

(7.30) |f(t) − fC
n (t)| ≤ |f(t) − f(xi)| + |f(xi) − fC

n (xi)| + |fC
n (xi) − fC

n (x)|.
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The inequalities above show that the second term is bounded by

C2|f ′(xi)|1/3

(

log(n)

n

)1/3

.

The first term is bounded by

C3 · |t− xi| · |f ′(xi)| ≤ C3 · |f ′(xi)|1/3

(

log(n)

n

)1/3

.

This follows from (b).

Depending on the exact definition of fC
n (x) at knot points the third term is either

0 or bounded by 2C1|f ′(xi)|1/3
(

log(n)
n

)1/3

.

This completes the proof of (d).

Proof of (e):

As in the other cases we assume that fC
n attains the correct modality and that

tei ∈ Ie
i (n,C) for each extreme point tei . We also assume that for each extreme

interval Ie
i

(1 − 1

1 +
√
C

) ·
(

−
6(C − 1√

C√
nf ′′(te1)

)
1

3

≤ |Ie
i (n,C)| ≤ (1 +

1√
C

) ·
(

−
12(C + 1√

C√
nf ′′(te1)

)
1

3

.

The regression function fC
n takes in tei the slope of the taut string in the extreme

interval Ie
i = [x1, x2]. Taylor expansions in tei using f ′(tei ) = 0 and an application

of the modulus of continuity for the empirical process En as formulated in Lemma

7.1 yield

|fC
n (tei ) − f(tei )| ≤ D1 · (1 + o(1)) · f

′′(tei )
1/3

n1/3
.

The proof is now completed by extending the bound to arbritrary points in extreme

intervals Ie
i . This is done in the usual way as in as in (7.30) using a Taylor expansion

in tei and shows that

|f(t) − f(tei )| ≤ D2|Ie
i |2f ′′(tei ).
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Software The software is available from our home page at

http://www.stat-math.uni-essen.de.

A package for R is in preparation.
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