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2This paper considers the problem of specifying a simple approxi-
mating density function for a given data set (z1,...,zyn). Simplicity is
measured by the number of modes but several different definitions of ap-
proximation are introduced. The taut string method is used to control
the numbers of modes and to produce candidate approximating densi-
ties. Refinements are introduced that improve the local adaptivity of the

procedures and the method is extended to spectral densities.

1. Contents In Section 1.1 we formulate the density problem in terms of ob-
taining the simplest density which is an adequate approximation for the given data.
The taut string method of Davies and Kovac (2001) is adapted to the density prob-
lem and is used for producing candidate densities of increasing complexity. The
difficulties of the density problem are discussed in Section 2. Section 3 contains a
more detailed account of the application of the taut string method to the density
problem. The asymptotics of the procedure on appropriate test beds are discussed
in Section 4. A refinement based on cell occupancy frequencies which increases local

sensitivity is described in Section 5. Section 5.4 compares the taut string method
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with kernel estimators in a small simulation study. Finally Section 6 describes the

application of the taut string methodology to the problem of spectral densities .

1.1. The density problem Given a sample x,, = (21,...,2,) of size n we con-
sider the problem of specifying a distribution F' with the smallest number of modes

XY with

) n

such that the resulting model of i.i.d. random variables XX = (X{', ...
common distribution F' is an adequate approximation for the data x,,.

We use different concepts of approximation one of which is the following. Let

En,

Falw) = 23 s < 0},

denote the empirical distribution of the data x, and F, the empirical distribu-
tion function of n i.i.d. random variables X with common distribution F. The

Kolmogoroff metric dg, is defined by
dio(F,G) = sup{z : |F(z) — G(z)|[}.

The i.i.d. model with distribution F' will be regarded as an adequate approximation

to the data x,, if
(11) dko(EnaF) S qu(n7a7dko)-

where qu(n, a, di,) denotes the a-quantile of the random variable d,(F,, F') which

is independent of F for continuous F. This gives rise to the Kolmogoroff problem:

PrROBLEM 1.1 KOLMOGOROFF PROBLEM. Determine the smallest integer ki,

for which there exists a density f™ with k, modes and whose distribution F™ satisfies

(12) dkO(E’nv Fn) < qu(na «, dko)-
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We note that the problem is well posed: for any data set x,, it has a solution. We
have posed the problem in terms of approximation so that no assumptions regarding
the “true” data generating mechanism are required or made.

The problem (1.1) is formulated in terms of the smallest number of modes re-
quired for an adequate approximation. A detailed theoretical discussion of such one-
sided problems is given by Donoho (1988): one of his examples is that of modality
of nonparametric densities and spectral densities. His paper also raises interesting
questions about statistical inference involving objects whose very existence cannot
be shown, an example being the “underlying density” for the data. We avoid such
problems by phrasing the paper in terms of approximation.

Hartigan and Hartigan (1985) and Hartigan (2000) construct tests for the modal-
ity of a density function. They are based on the Kolmogoroff distance of the nearest
mixture of uniform distributions to the data and are discussed in more detail below.

Hengartner and Stark (1995) also make use of the Kolmogoroff ball to determine
nonparametric confidence bounds for densities subject to an upper bound for the
number of modes. In the particular case of monotone or unimodal densities the
width of their bounds on appropriate test beds is (logn/ n)l/ % which agrees with the
results given in this paper. It seems that their bounds become difficult to calculate
for more than one mode as the complexity is given as (7) where [ is the number of
local extremes. The main differences to the work of Hengartner and Stark are as

follows:
e we provide an explicit density but no bounds,
e neither the number of modes nor even an upper bound is specified in advance,

e the algorithmic complexity of our method is O(n) independently of the num-

ber of modes.
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1.2. The taut string methodology The basic methodology we use for producing
densities is the taut string methodology. Taut strings were first used in the context
of monotonic regression: the greatest convex minorant of the integrated data is
a taut string and its derivative is precisely the monotone increasing least squares
approximation. This is described in Barlow, Bartholomew, Bremner and Brunk
(1972) who were the first to use the phrase “taut string”. We refer also to Leurgans
(1982). The first use of the taut string which goes beyond the monotone case and
which explicitly deals with modality is in Hartigan and Hartigan (1985) where it
is referred to as the “stretched string”. Hartigan and Hartigan (1985) introduced
their DIP test for unimodality which is based on the closest (in the Kolmogoroff
metric) unimodal distribution to the empirical distribution function of the data.
Based on the work of Hartigan and Hartigan (1985) Davies (1995) used the taut
string method to produce candidate densities of low modality to approximate data.
Mammen and van de Geer (1997) employed the taut string in the nonparametric
regression problem. They considered a penalized least squares problem where the
penalty is the total variation of the approximating function. The solution is the
basic taut string confined to a tube centered at the integrated data. Mammen and
van de Geer gave a detailed description of the taut string but did not mention
the connection with modality. Hartigan (2000) recently proposed a generalization
of the DIP test to an arbitrary number of modes. It is based on the Kolmogoroff
distance between the empirical distribution and the nearest distribution consisting
of a mixture of uniform distributions with at most m modes. This is calculated using
a taut string. Hartigan examines for each antimode of a taut string approximation
the supremum distance between the empirical distribution function and a monotone

density on a “shoulder interval” including the antimode. Finally Davies and Kovac



Densities and Modality 5

(2001) used the taut string methodology to control the number of local extremes
of a nonparametric approximation to a data set. They also introduced the idea of
local squeezing and residual driven tube widths which greatly increase the precision

and flexibility of the taut string methodology.

1.3. Smoothness The taut string methodology produces densities which are
piecewise constant and therefore not even continuous. Smoothness will not be a
consideration in this paper but we point out that techniques for smoothing such
functions have been developed. The idea is to obtain the smoothest density subject
to shape and deviation constraints taken from the taut string. We refer to Metzner

(1997), Lowendick and Davies (1998) and Majidi (2003).

1.4. Previous work Much work has been done on the problem of density esti-
mation. One of the most popular methods is that of kernel smoothing. We refer
to Nadaraya (1964), Watson (1964), Silverman (1986), Sheather and Jones (1991),
Wand and Jones (1995), Sain and Scott (1996) and Simonoff (1996) and the ref-
erences given there. The main problem here is the determination of appropriate
global or local bandwidths. A further approach is based on wavelets. We refer to
Donoho, Johnstone, Kerkyacharian and Picard (1996), Herrick, Nason and Silver-
man (2000) and to Chapter 7 of Vidakovic (1999). Mixtures of densities have been
considered in the Bayesian framework by Richardson and Green (1997) and Roeder
and Wasserman (1997). Other Bayesian methods are to be found in Verdinelli and

Wasserman (1998).

None of the above approaches is directly concerned with modality. For example
the non-Bayesian theory is generally based on integrated squared error or some

similar loss function. In spite of this methods are often judged by their ability to
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Fi1a. 1.  These figures illustrate the taut string method applied to a sample of mizture of normal
distributions with two different tubewidths. The right column shows the tubes and the taut strings
whilst the left column shows histograms of the data and the corresponding densities of the taut

string.

identify peaks in the data as in Loader (1999) and Herrick et al (2000). Work di-
rectly concerned with modality has been done by Miiller and Sawitzki (1991) using
their concept of excess mass. Their ideas have been extended to multidimensional
distributions by Polonik (1995a, 1995b, 1999). Hengartner and Stark (1995) use the
Kolmogoroff ball centred at the empirical distribution function to obtain nonpara-
metric confidence bounds for shape restricted densities. Another way of controlling
modality is that of mode testing. We refer to Good and Gaskins (1980), Silverman

(1986), Hartigan and Hartigan (1985) and Fisher, Mammen and Marron (1994).
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2. The difficulties of the density problem Obtaining adequate approxi-
mate densities is a special case of nonparametric regression. Whereas nonparametric
regression is usually concerned with the size of the dependent variable the density
problem is concerned with measuring the degree of closeness of the design points. In
spite of a formal similarity this is the more difficult problem and it may explain the
modesty evident in the literature on densities. The difficulties may be illustrated by
three data sets each of a sample size of n = 500. The first was generated using the
standard normal distribution, the second using the uniform distribution on [0, 1]
and the third using the so called claw distribution which is the following mixture

of five normal distributions

4
0.5 N(0,1)+ 0.1 > N(i/2—1,0.1).
i=0
This density will also be referred to as N5 (see Section 3.1). It is one of ten intro-
duced by Marron and Wand (1992) to study the performance of different density
methods. For each data set we calculated a kernel estimate with a global band-
width which was chosen to be as small as possible subject to the estimate having
the same modality as the density. Similarly for the taut string method we took the
Kolmogoroff ball to be as small as possible subject to the estimate having the same

modality as the density. The results are shown in Figure 2.

The kernel method performs very well on the sample from the normal distribution
but the approximation to the uniform density is poor. It can only be improved by
using a smaller bandwidth which then introduces superfluous modes. The approxi-
mation to the claw density is even worse. Only three peaks are correctly identified,
the remaining two peaks are in the tails near —2 and 3 where the claw density

does not have a peak. An explanation of this behaviour can be found in Hartigan
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tions using the smallest bandwidth that retains the correct modality.
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(2000) who discusses the relationship between the peaks and bandwidth for kernel
estimates.

The taut string method produces excellent approximations in all three cases.
In particular all five peaks of the claw density are correctly identified. The open
problem is to produce an automatic procedure for the taut string method which
will give good approximations on these and other test beds without knowledge of
the number of modes. In the case of nonparametric regression such an automatic
procedure is available and is reminiscent of hard thresholding for wavelets (Davies
and Kovac, 2001). Unfortunately there seems to be no equivalent for densities and

it is this which makes the density problem so difficult.

3. Taut strings, Kuiper metrics and densities

3.1. Test densities As part of the evaluation of the procedures to be defined
below we consider their performance on test beds defined by distributions. For the
sake of convenient reference we list here the distributions we consider. N (u,o?)

refers to the normal distribution with mean p and variance o2.

U the uniform distribution on [0,1],
N1 the standard normal distribution,
S the slash distribution, defined as A(0,1)/U4(0,1)

(see Morgenthaler and Tukey,1991)
N2 the mixture 0.5M(0,1) 4+ 0.5N(3,1),
N4 the mixture

0.8N(0,3) + 0.015M/(8,0.02) + 0.015A(9,0.02) + 0.17A/(15,0.2),
N5 the claw distribution 0.5M(0,1) +0.1 37 N(i/2 — 1,0.1),
N105  the mixture 0.1 3%, NV(5i — 5,1),

N10.10  the mixture 0.1 3%, AV(10i — 5,1).
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3.2. Taut strings We give a short description of the taut string method. A
thorough analysis of properties of the taut string can be found in Hartigan (2000).
Further details and an algorithm of complexity O(n) are given by Davies and Kovac
(2001).

Consider a sample x,, and form the ordered sample X(,,) = (%(1),...,Z(n)). For
a given € > 0 we consider the Kolmogoroff tube T'(E,,, ) centred at the empirical

distribution F,, and of radius € > 0
T(En,e) = {G : G monotone sup |G(z) — E,(z)| <e}

Imagine now a taut string taking the value of 0 at z(;) and 1 at z(,) and is
constrained to lie within the Kolmogoroff tube. Such a string is shown in the right
panels of Figure 1 for two different values of €. The taut string defines a function
Sp on the interval [, Z(,)]. Although S,, depends on E, and & we suppress this
dependency to relieve the burden on the notation. We denote the density of S,
by sp. It is defined as the left hand derivative of S;,, except at the smallest data
point x(;) where we use the right hand derivative. The left panels of Figure 1 show
histograms of the data with the corresponding densities s,, superimposed.

The taut string is a spline with knots at the points at which it touches the lower
or upper boundaries of the Kolmogoroff tube. The taut string has the following

properties (see Davies and Kovac, 2001; Mammen and van de Geer, 1997):
(a) S, is monotonic increasing and linear between knots.
(b) s, is nonnegative and piecewise constant between knots.

(¢) sp has the minimum modality of all functions whose integral over [m(l), x(n)]

lies in T'(Ey, ) and satisfies the end point conditions.
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(d) S, switches from the upper boundary E,, + ¢ to the lower boundary FE,, — ¢

at points where s, has a local maximum.

(e) Sy switches from the lower boundary E,, — ¢ to the upper boundary E,, + ¢

at points where s, has a local minimum.

(g) If¢; and €41 are consecutive knots on the same boundary then on the interval
(&> &5+1]

Hi: & <z <&}
n(&j+1 — &)

(3.3) sn(z) =

It is property (c) which is of importance and allows control of the number of modes.
If consecutive knots &; and &;41 are on opposite boundaries then it follows from (d)

and (e) above that (3.3) must be replaced by

Hi:& <x <&q1}|£2e
n(&+1 — &)

(3.4) sn(x) =

with a minus sign at local maxima and a plus sign at local minima. This means that
the derivative underestimates local maxima and overestimates local minima. In an
earlier version of this paper we followed Davies and Kovac (2001) and modified

string S, by setting
(3.5) S.(&5) = En(&;) at all knots &;

and linear in between. The corresponding derivative §,, satisfies

Hi: & < <&}l
(€1 — &)

(3.6) Sn(5) =

between the knots &; and &;41.

This modification has no effect on the modality and in general produces more
pronounced peaks. More by good luck rather than by good thinking the authors
fortunately noticed that much improved results can be obtained by not modifying

the taut string in this manner. The reason is that this alteration causes both the
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taut string and the empirical distribution to have the same mass on intervals defin-
ing local extremes. Below we shall use Kuiper metrics which are defined by those
intervals where the difference is greatest. The idea is that differences in distribu-
tions with different peaks should be greatest on intervals defining peaks. Modifying
the taut string as in (3.6) nullifies this effect. Nevertheless the final density which

is returned by the procedure is modified in this manner.

3.3. Data analysis FEven without an automatic procedure the taut string can
be used as a data analytical tool. If the radius of the Kolmogoroff tube is mono-
tonically decreased then the number of modes of the derivative of the taut string
increases monotonically. It is therefore possible to specify the number of modes of
the approximate density. Figure 3 shows this for the same sample as used for Figure
2. The densities of Figure 3 can be interpreted as histograms with an automatic
choice of the number of bins and the bin widths. To measure the performance of the
taut string procedure we simulated samples of different sizes from the claw distri-
bution and squeezed the tube as far as possible consistent with the density having
five peaks. A peak is classified as being correctly identified if the midpoint of the
interval defining a peak differs by less than 0.15 from the position of the nearest
peak of the claw density. Figure 4 shows the number of correctly identified peaks

as a function of sample size.

It shows that the taut string method is extremely good at finding peaks. For
samples of size 200 the five peaks will be correctly identified in over 80% of the
cases. This in a sense confirms Loader (1999) who, on the basis of theoretical results
of Marron and Wand (1992), claims that for samples of size n = 193 the claws
should be detectable. The problem we now address is the difficult one of defining

an automatic procedure with a similar performance.
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3.4. An automatic procedure The following theorem is an immediate conse-

quence of the properties of the taut string listed above.

THEOREM 3.1. The derivative s, of the taut string constrained to lie in the tube

T(Ey, qu(n,a,dy,)) is a solution of the Kolmogoroff density problem.

For finite n the values of qu(n, a, dk,) can be obtained by simulation. In the limit

vnaqu(n, o, dg,) tends to the corresponding quantile of

max By(t) — min Bo(t)
0<t<1 0<t<1

where By denotes a Brownian bridge and for which an explicit expression exists
(Dudley, 1989).

The solution of the Kolmogoroff density problem therefore defines an automatic
procedure based on the taut string and its performance can be evaluated on dif-
ferent test beds. If we do this on an i.i.d. test bed, that is with data of the form
X1(F),..., X, (F) where F has a k-modal density function f, then it is clear that
the taut string density s, will have at most £ modes with probability at least «.
This follows on noting that F' lies in the tube with probability « and that in this

case s, has at most as many modes as f. In particular if £ = 1 we have

THEOREM 3.2.  Let X1(F),..., X, (F) be an i.i.d. sample with common uni-

modal distribution F' and let s, be the solution of the Kolmogoroff density problem

(1.2). Then
(3.7 P(s,, unimodal) > .
A simulation was performed to investigate the performance of the procedure

with @ = 0.9 and the corresponding tube width 1.245/+/n on test beds defined by

the distributions listed in Section 3.1. The results are shown in Table 1. It is clear
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Dist. U S N1 N2 N4 N5 N105  N10.10
100 100 (0) 100 (0) 100 (0) 0 (1) 0 (2.34) 0 (4) 0 (9) 0 (9)
500 100 (0) 100 (0) 100 (0) 0 (1) 0 (2) 0 (4) 0 (9) 0 (8.6)
1000 | 100 (0) 100 (0) 100 (0) 0 (1) 0 (2) 0 (4) 0 (9) 0 (7.9)
5000 | 100 (0) 100 (0) 100 (0) 50 (0.5) 0 (2) 0 (4) 0(8.3) 100 (0)
10000 | 100 (0) 100 (0) 100 (0) 100 (0) 0 (2) 66 (0.4) 99 (0.01) 100 (0)

TABLE 1
The procedure using the 0.9-quantile of the Kolmogoroff metric. The numbers give the percentage
of simulations in which the correct modality was obtained. The numbers in brackets give the

mean absolute deviation from the correct modality. The results are based on 1000 simulations.

that for unimodal distribution the modality is correctly estimated with probability
at least 0.9 in accordance with Theorem 3.2. Indeed the actual probability greatly
exceeds 0.9 as all simulations resulted in exactly one peak. The results for the other
distributions are, in contrast, disappointing. Asymptotically the modality will be
correctly estimated with probability at least 0.9 but the rate of convergence is
clearly very slow. We now try and obtain an improved procedure in two ways.
Firstly we note that the choice of qu(n,«,dy,) for the radius of the tube means
that a probability of at least « is guaranteed for all unimodal test beds. If we
provisionally accept that the uniform distribution is a poor model for most data sets
then we may accept a worse performance for the uniform distribution in return for
enhanced performances for other distributions. Silverman (1986) and Miiller and
Sawitzki (1991) argue in a similar vein. The second way of gaining an improved
performance is to use a generalized Kuiper metric rather than the Kolmogoroff
metric. Kuiper metrics consider the differences in probability over a fixed number

of disjoint intervals and are therefore better at detecting modality.



Densities and Modality 17

3.5. Calibrating unimodality To implement the first way of improving perfor-
mance let qu(n, «, F, 1,dy,) denote the a—quantile of the Kolomogoroff distance of
the closest unimodal distribution (given by the taut string) to the empirical distri-
bution F,, of n ii.d. random variables with common distribution F. We have the

following theorem.

THEOREM 3.3.  Let X1(F),..., X, (F) be an i.i.d. sample with common uni-
modal distribution F and empirical distribution Fy,. Let s, be the derivative of the

string Sy, through the tube T(F,,qu(n, o, F,1,dg,)). Then

(3.8) P(s, unimodal) = .

Clearly
qu(nv «, F7 13 dko) S qu(n7 «, dko)
but it is not clear whether

sup qu(n, o, F,1,dg) = qu(n, a, di,).
F unimodal

We point out that the uniform distribution does not maximize qu(n,a, F, 1, dk,)
(Hartigan and Hartigan, 1985). We now take F' = U to be the uniform distribution
on the basis that it is not an adequate approximation for most data sets and set
a = 0.5. This means that on uniform test beds the modality will be correctly
determined with probability 0.5. The uniform distribution has the advantage that

the asymptotics of the quantiles qu(n, o, U, 1, dg,) can be calculated. We have

(3.9) lim nqu(n,a, U, 1,dy,) = qu(a, By)

n—oo

where qu(«, Bg) denotes the a-quantile of the random variable

(3.10) m}iln sgp |Bo(z) — H(z)|
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Dist. S N1 N2 N4 N5 N10.5 N10-10

100 100 (0) 100 (0) 22(0.8) 0(2 0(3.8) 0(8)  0(38)
500 100 (0) 100 (0) 78 (0.2) 0(2) 1(25) 0(55) 1 (2.5)
1000 | 100 (0) 100 (0) 95 (0) 0(2) 43 (0.7) 27 (L1) 43 (0.7)
5000 | 100 (0) 100 (0) 99 (0) 48 (0.6) 100 (0) 100 (0) 100 (0)

10000 | 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

TABLE 2
The procedure based on the 0.5-quantile of the Kolmogoroff distance of the closest unimodal
distribution to a uniform sample. The numbers give to the nearest integer the percentage of
stmulations in which the correct modality was obtained. The numbers in brackets give the mean
absolute deviation from the correct modality correct to one decimal place. The results are based

on 1000 simulations.

where the function H : [0,1] — R is convex on [0,¢y] and concave on [ty,1] for
some tg,0 <ty < 1. Simulations show that the 0.5-quantile of (3.10) is 0.432. A

correction for finite n gives
qu(n,0.5,U, 1,dk,) = 0.43/+/n — 0.64/n.

with a percentage error (based on simulations) of at most 0.0045. Table 2 shows the
results. We see that the performance for the Gaussian test bed is hardly impaired.
On the claw test bed we note that the performance for n = 1000 is now comparable
to that of the simple Kolmogoroff quantile for n = 10000.

If we apply the same idea to the normal distribution then heuristic arguments

indicate that
lim v/nqu(n,a, N(0,1),1,dk,) =0

but we have no exact asymptotic result. The same argument goes through for any

sufficiently smooth density. If true this implies that if we use a cut-off point for the
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size of the Kolmogoroff ball which is bounded below by some constant multiple of
1/4/n then the modality will be consistently estimated. We do not pursue this idea

any further.

3.6. Kuiper metrics Suppose that the density s, of the taut string is unimodal.
Part of the description of the taut string .S, given in Section 3.2 is that it switches
from the upper bound to the lower bound at each maximum. Consider now the

Kuiper metric dg, defined by
(3.11) di (F,G) =sup{a < b: |(F(b) — F(a)) — (G(b) — G(a))|}

It follows from the above that if dio(E,,S,) = ¢ and s, is unimodal then
diu(Fn, Sp) = 2e. The a-quantile qu(n, o, diy,) of diy(Fy, F) is independent of F
for continuous F' and is less than twice the a-quantile of di,(F,,, F'). This suggests
that the Kuiper metric is more appropriate for unimodality than the Kolmogoroff

metric. To demonstrate this we firstly define the Kuiper problem:

PROBLEM 3.1 KUIPER DENSITY PROBLEM. Determine the smallest integer k.,

for which there exists a density f™ with k, modes and whose distribution F™ satisfies

dku(Ena Fn) S qu(na OL, dku)

Suppose now that F™ is a unimodal distribution which solves the Kuiper density
problem. Let €1 = max{z : F"(z) — E,(2)} and e3 = max{z : G(z) — F"(2)}.
As dyy (Epn, F™) = 1 + g2 = qu(n, a, dy,,) it follows by shifting F™ by an amount
1lea — e1| that the solution of the Kolmogoroff problem with & = 1qu(n, o, dy)
is also unimodal. As qu(n, o, dyu) < qu(n, o, di,) this implies that if the solution
of the Kuiper density problem for a given « is unimodal, so is the solution of the

Kolmogoroff problem for the same «.
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To cover the case of multimodality we define the Kuiper metric df, of order s
by
(3.12) ra(F.G) = max()  |(F(b;) = F(az)) = (G(b;) — Glay))[}
1

where the maximum is taken over all a;, b; with

Again the distribution of df,(F,, F') is independent of F' for continuous F. If we

denote the a—quantile by qu(n, o, dy,,) we can formulate the x-Kuiper problem.

PROBLEM 3.2 k-KUIPER DENSITY PROBLEM. Determine the smallest integer
k. for which there exists a density f™ with k, modes and whose distribution F™

satisfies

dl]zu(En’ Fn) S qu(n’ Q, dgu)

If the density s, of the taut string has & modes then for the Kuiper metric diﬁ_lof

order 2k — 1 we have
Y B, Spy) = (2k — 1)e.

This follows on noting that the strings switches boundaries at each of the k local

maxima of s,, and also at the & — 1 local minima. As
qu(n, a, diﬁ_l) < (2k — D)qu(n, a, di,)

this indicates that the Kuiper metric diffl is more efficacious when the data ex-
hibit £ modes. We have no simple algorithm for solving the x-Kuiper problem so
we use the strategy of Davies and Kovac (2001) and decrease the radius ¢ of the

Kolmogoroff tube gradually until

diﬁ_l(En, Sn) < qu(n, a,diﬁ_l).
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Dist. S N1 N2 N4 N5 N10.5  N10.10
n = 250
k=3 99 (0) 96 (0) 67 (0.3) 0(2) 0(29) 0(67) 38 (0.8)

k=09 100 (0) 99 (0) 59 (0.4) 0 (1.9) 20 (1.5) 0 (34) 95 (0)

k=19 | 100 (0) 96 (0) 53(0.5) 1 (1.9) 20 (1.5) 0 (1.0) 99 (0)

k=3 99 (0) 99 (0) 90 (0.1) 0(2) 10 (L7) 0 (3.9) 100 (0)

k=9 100 (0) 99 (0) 74 (0.3) 1 (1.9) 70 (0.3) 50 (0.6) 100 (0)

k=19 | 100 (0) 99 (0) 66 (0.3) 2(1.9) 57 (0.5) 97 (0) 100 (0)

TABLE 3
Results for the procedures using the 0.5-quantile of the closest unimodal distribution in the Kuiper
metrics based on 3, 9 and 19 intervals. The numbers give the percentage of simulations in which
the correct modality was obtained. The numbers in brackets give the mean absolute deviation
from the correct modality. The results are based on 1000 simulations with a sample sizes of 250

and 500.

For large n approximations to qu(n, «, df,,) are available using the weak convergence

result
vndi, (Fn, F) = max{i [Bo(b;) — Bo(a;)|}
1
where By denotes the standard Brownian bridge on [0, 1] and
ap < by <az <bs...<ax<bg.

The distribution of max{|Bo(b) — Bo(a)|} corresponding to the unimodal case k = 1
is known (for example Dudley (1989), Proposition 12.3.4.) Sufficiently accurate
quantiles for finite n and for the other asymptotic cases may be obtained by sim-
ulations. Best results are obtained if « is related to the modality k of the test bed

by k = 2k — 1. In practice a default value of x is required and we use k = 19.
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We combine the k-Kuiper-metric with the ideas of Section 3.5. Let qu(n, o, F, 1,d5, )
denote the a-quantile of the k-Kuiper distance of the closest unimodal distribution
to the empirical distribution F, of n i.i.d. random variables with common distri-
bution F. We use the string S, as the closest unimodal distribution. If F' is the
uniform distribution of [0, 1], then we have again a 1/1/n asymptotic. For example

for kK = 19 and o = 0.5 simulations showed that

qu(n,0.5,U,1,d)) = 8.12/+y/n — 30.32/n'-04

is a good approximation.

The results shown in Table 3 confirm the claim that the Kuiper metric with
k = 2k — 1 performs best on test beds with k£ modes. Thus the procedure based
on the d3,, metric is best for the bimodal distribution N2, that based on the d3,
metric is best for the five-modal claw density N5 whilst that based on the di?
metric is best for the two ten-modal distributions N10_5 and N10_-10. None of the
procedures performs well for the four-modal N4 distribution. This is because it has
two very concentrated but lower power peaks situated at the points 8 and 9. For
this distribution global squeezing of the Kolmogoroff tube will only work for large
sample sizes. In small samples when the tube is sufficiently narrow to pick up the
lower power peaks it will have already caused peaks to appear at other points. This
is shown by Table 4. For the sample sizes shown the tube was squeezed to give just
four peaks and it was then checked if the four peaks were the correct ones. Table 4
gives the percentage of cases when this was the case. Thus even for a sample of size
2000 the correct peaks were only found in 80% of the cases. The problem is related
to that of detecting low power peaks in nonparametric regression. In Davies and

Kovac (2001) the problem was solved using local squeezing. In Section 5 below we
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introduce a form of local squeezing for densities which is based on cell occupancy

frequencies.

n | 500 1000 2000 4000

3 23 81 99

TABLE 4
Results of global squeezing for the four-modal distribution N4. The Kolomogoroff tube was squeezed
to give exactly four peaks. The numbers give the percentage of simulations in which these were

the correct peaks. The results are based on 1000 simulations.

3.7. Discrete data So far we have looked for an approximation to the data in the
form of a Lebesgue density. However at little cost we can extend the methodology
to integer-valued data which typically arise from counts. Suppose the data set x,, =
(1,...,xy) contains only N different values t; < t3 < --- < ty. We look for an
approximation in terms of N probabilities p; = P(X =t;),j = 1,... N where the
random variable X has support t; <2 < --- <tn. Let e1,...,exn be the empirical

frequencies of the ¢; in the data and consider the cumulative sums

J

E]‘ :Zei

=1

and the tube constructed by linear interpolation of the points (j/N, E;),j =
0,...,N. Differentiating yields an approximation of pi,...pyx. This procedure
corresponds to the taut string algorithm in the regression context (Davies and
Kovac, 2001) with time points t1, . . . t,, and with observations ey, . . . €,. Our default
procedure uses the x-Kuiper metric with x = 9 and « = 0.5. We point out that
this radius is conservative for discrete data, but we do not pursue this any further.
Other forms of approximation can be accommodated without much difficulty. An

example is shown in Figure 5 where the discrete taut string method was applied to
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Poisson Mixture Discrete Taut String Approximation

0.06
1
0.06
1

0.04
1
0.04
L

Fic. 5. Discrete data. The left panel shows the density function of the mixture of three Poisson
distributions and the frequencies of a sample of size 1200. The discrete taut string approximation

is shown in the right panel.

1200 observations from a mixture of three Poisson distributions

@ = 5 (B(1) + () + P1).

The other situation is where repeated values occur not because of the nature of
the data (counting) but because of rounding. The rounding of data is very common
and it can cause difficulties when looking for an approximation based on Lebesgue
densities. To see the difficulties assume that some data point z is observed k times.
Depending on the exact implementation of the taut string algorithm two problems
may occur. If the tube is centred around the empirical distribution function and
the tube width is smaller than k/2n, the derivative of the taut string at x will
be oo. If on the other hand the tube is constructed by linear interpolation of the

empirical distribution function then the empirical mass at x of k/n is spread over the
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interval [z, 2] where z; is the largest data point smaller than x. To overcome these
problems we propose the following. Let € be the precision or cut-off-error which
we set to e = 1073MAD(x,,) where MAD denotes the Median Absolute Deviation.
We construct a modified data set Z1,...Z, where the identical observations at x
are equally spread over the interval [z — ¢/2,x 4+ €/2]. To be precise we replace
T(+1) = B+ = 0= Tk DY

- 1 1 i—1
$]+Z:$+5(*§+%+ L

)

forv=1,..., k. The taut string method described above is then applied to Z instead

of x.

4. Asymptotics on test beds The asymptotic behaviour of the taut string
may be analysed on appropriate test beds. It turns out that asymptotically the
modality is correctly estimated and that the optimal rate of convergence is attained
except in small intervals containing the local extremes of the density f.

We denote the modality of the derivative of the taut string in the supremum tube
T(F,,C/+/n) by kS. The taut string based on the radius C/y/n will be denoted

by S¢ with derivative s$. We write I¢(n,C),1 < i < kY, for the intervals where

C

Sn

attains its local extreme values and denote the midpoints of these intervals by

t¢(n,C),1 < i < kS. The length of an interval I will be denoted by |I|.

THEOREM 4.1.  Let f be a k-modal density function on R such that

i F — .
g,(k—IlI%l—nmodal| (1') G(I)| >0

Then we have for all 6 > 0

lim liminf P({k¢ =k Ie <6 te e <8 = 1.
im _lim inf P({k, }ﬂ{lgggl F(n, )| < }ﬂ{lggglz(n,c") 51<6})

C—oo n—oo
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In the following A denotes a generic constant which depends only on f and whose

value may differ from appearance to appearance.

THEOREM 4.2.  Assume that
e f has a compact support on [0, 1]
o f has exactly k local extreme values at the points 0 <t < ... <tf <1
e f has a bounded second derivative ) which is non-zero at the k local extremes.
o f(t) =0 only fort € {t5,...,t5}
Then the following statements hold.

(a) lim liminf P(t; € I7(n,C),1 <i<k)=1.

C—oo n—oo

(b) For every Cy < 6 and Cy > 12

(1) (e 1/3
lim liminf P(|I¢(n, C)| - <M> clclB oy 1<i<k) =

C—oco n—oo O

(c) Let 5?’0 be the knots of the taut string SS and denote

m(n,C) = max{¢/;] — & ¢ &M € (0, 1)\UFIf (n, O) .

For some constant A only depending on [ we have

1/3
lim liminfP (m(n, C) < <A|f(1)($j)|_2/3 (loﬂ) )) =1.

C—oo n—oo n

(d) Denote

n

logn 13 logn 13 e
Then for some constant A only depending on f we have

1/3
lim limian< max_|f(t) — fS(t)] < <A|f<1>(t)|1/3 <1"ﬂ) )) =1.

—00 N—00 teM(n,C) n
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(e) For some constants Ay and As only depending on f we have

lim liminf P( max _|f(t) — fC(t)| < AC?*n=1/%) = 1.

C—o00 n—oo teupIf(n,C)

Part (d) of the theorem shows that bounded away from the local extrema the
taut string density attains the optimal rate of convergence up to a logarithmic

factor. The proofs follow the lines of Davies and Kovac (2001) and we omit them.

5. Cell occupancy frequencies and local squeezing

5.1. Cell occupancy frequencies The multiresolution procedure of Davies and
Kovac (2001) is based on comparing the residuals of some regression function with
those of Gaussian white noise. The comparison is based on the means on intervals
which form a multiresolution scheme. A similar idea can be applied to the density
problem. A distribution F is an adequate model for the data x, = (x1,...,2,) of

the transformed data
Wy = F(xa) = (F(a1),..., F(a,))

looks like an i.i.d. sample of size n from the uniform distribution on [0, 1]. This is

done by comparing the frequencies
wh ={l: k277 <w < (k+1)277}, 0<k<2,1<j<m,

with those to be expected from i.i.d. uniform random variables. The maximum
resolution level m is taken to be the smallest integer such that n < 2™. Suppose

that Uy,..., U, are independently and uniformly distributed on [0, 1]. Then

=Nl k27 <U < (k+1)277}
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is binomially distributed b(n,277). For given o we define the upper bounds vl (a)

by

(5.13) v (@) = min {U P(Zf 2v) < 12na}

where Z7 satisfies the binomial distribution b(n,277). Tt follows that

P(Wj, <vj(a),1<k<2/,1<j<n)>a

Lower bounds A7, (a) can be derived similarly. This gives rise to the following

problem:

PROBLEM 5.1 CELL OCCUPANCY PROBLEM. Determine the smallest integer k.,
for which there exists a density f™ with k, modes and whose distribution F™ is such

that the cell frequencies w7 satisfy
(5.14) A () S wjy < vf ()

where the v () are given by (5.13).

Although the cell occupancy problem is well defined there is no obvious connec-
tion between the modality of the density f™ and the set of inequalities (5.14). We
therefore again adopt the strategy of producing test densities derived from the taut
string and gradually increase the modality until the inequalities (5.14) hold. The
knowledge of which inequalities fail to hold provides further information which we

are able to exploit as described in the next section.

5.2. Local squeezing Local squeezing is described in Davies and Kovac (2001).
We apply it to the density problem as follows. Suppose that one of the inequalities

of (5.14) fails. We suppose that

wiy, = |{l: k279 < F™(x) < (k+1)277} > vl (a)
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Clearly there exists an interval [2 1), #(2)] such that k277 < F™(z;) < (k+1)277
for all points ; in [z(;1), 2(2)]. We now squeeze the tube locally on this interval
and do this for all intervals where the upper inequality fails. For coeflicients w; j
we proceed similarly but use slightly larger intervals such that k277 < F"(z;) <
(k +1)277 for all points z; in (1), a2)). The general procedure for doing this
is as follows. Firstly, a suitable initial global tube radius g is chosen using the
Kolmogorov or generalized Kuiper metrics and the taut string is calculated. If all
the inequalities (5.14) hold the procedure terminates. If not we reduce the radius
by a factor p,0 < p < 1, on all intervals where an inequality fails. Typical choices
for p are 0.9 or 0.95. The taut string through the modified tube is calculated and
using this new test distribution it is checked whether the inequalities (5.14) hold.
If so, the procedure terminates. Otherwise the tube radius is again decreased by
the factor p on all intervals where an inequality fails. This is continued until all the

inequalities are satisfied.

It is not easy to analyse the behaviour of the local squeezing procedure. In the
case of nonparametric regression Davies and Kovac (2001) give a heuristic argument
indicating that the procedure improves the behaviour at local extremes. A similar

argument can be given for densities but as it remains heuristic we omit it.

The ability of the local squeezing method to detect low power peaks (see Davies
and Kovac, 2001) is shown by the following example. The data consist of a sample
of size 1000 drawn from the four normal distribution N4 of Section 3.1 The density
is shown in the upper left corner of Figure 6. It exhibits a main peak, a moderate
peak on the right and in the centre two low power but very concentrated and very

close peaks.
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Fic. 6. Local squeezing: The upper left panel shows the density of N4. A kernel estimate is
shown in the upper right panel. The lower left panel illustrates global squeezing first with a solid
line using the Kolmogorov bounds and then with a dashed line the taut string density with four

modes. The local squeezing estimate is depicted in the lower right panel.
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The upper right panel shows a kernel estimate which was calculated using a
Gaussian kernel. The mode on the right-hand side was detected, but is considerably
broader than the normal component of the original density function. The main
component is well captured but there are three superfluous peaks. Finally, the two
sharp peaks in the centre of the data result in one flat local maximum. The lower
left panel shows the result with the taut string method and two global tube radii.
The solid line is derived from the d,lw metric. There are no spurious local extremes
but the small central peaks are not detected. The dashed line shows that further
global squeezing would only lead to additional spurious modes on the left before the
central peaks are detected. Finally, the lower right panel shows the result of local
squeezing. The number and locations of the local extrema are estimated correctly

and the difference to the original density function is very small.

Table 5 shows the performance of the local squeezing procedure for the distrib-
tions S, N1, N2, N4, N5, N10_5 and N10-10 for samples of sizes 250 and 500. The
procedure was calibrated as for the Kuiper metrics but due to the discrete nature
of the cell counts it was not possible to adjust the parameters so that in 50% of
the cases the modality for uniform samples was one. The choice lay between 48%
and 55% and we took the latter. The results show a much enhanced performance
for the distribution N4 but the results for the other distributions are worse than

for the Kuiper metrics. This suggests a compromise procedure.

5.3. Compromise default procedures Statistical procedures make no assump-
tions about the data (Tukey, 1993a) and consequently are required to be compro-
mises (see Tukey’s example of the milk bottle in Tukey, 1993b). Given a Kuiper
metric df,, we calibrate the procedure based upon it so that in 60% of the cases the

approximation to uniform samples is unimodal. Local squeezing is then applied so
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Dist. S N1 N2 N4 N5 N10.5 N10-10

n=250 | 91 (0.1) 83(0.2) 42 (0.6) 1(1.6) 4(22) 2(29) 99 (0)

n=500 | 89 (0.1) 80 (0.2) 45 (0.6) 22 (0.9) 17 (1.5) 36 (0.9) 100(0)

n=1000 | 88 (0.1) 79 (0.3) 54 (0.5) 75 (0.3) 43 (0.8) 91 (0.1) 100 (0)

TABLE 5
Results for the local squeezing procedure. The numbers give the percentage of simulations in which
the correct modality was obtained. The numbers in brackets give the mean absolute deviation
from the correct modality. The results are based on 5000 simulations with sample sizes of 250,

500 and 1000.
that the final approximation is unimodal in 50% of the cases. Again due to the dis-

crete nature of the cell counts 50% is not exactly attainable so we take the smallest
percentage higher than 50. A second choice is to standardize the Kuiper procedure
so that in 95% of the cases the approximation to uniform samples is unimodal. This
is then reduced to 90% using local squeezing. We modify the local squeezing proce-
dure as follows. Instead of using a multiresolution scheme we consider all intervals
of length at most y/n. This results in a procedure of O(n!-%) but easily calculable
for sample sizes of 50000 and more. The reasoning behind this alteration is that we
use local squeezing only to detect low power concentrated peaks. The others should
be detected by the preceeding Kuiper procedure. For reasons of space and compre-
hensibility we do not give an exact description of the local squeezing procedure but
the source code is available from our web site. This leaves open the choice of k in
dy,,. The software is available for all choices x = 1,3,...,19 with the default choice
k = 19. If data is to be analysed in a routine manner x can be chosen on the basis

of experience or knowledge of the data involved.
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Dist. S N1 N2 N4 N5 N10.5 N10-10

n=250 |97 (0) 93(0.1) 51 (0.5) 2(1.8) 17 (1.6) 40 (0.9) 99 (0)
n=500 | 97 (0) 94 (0.1) 64 (0.4) 19 (1.1) 60 (0.5) 95 (0) 100 (0)

n=1000 | 99 (0) 98 (0) 86 (0.1) 82 (0.2) 99 (0) 100 (0) 100 (0)

TABLE 6
Results for the compromise procedure based on d}cz. The numbers give the percentage of simula-
tions in which the correct modality was obtained. The numbers in brackets give the mean absolute
deviation from the correct modality. The results are based on 1000 simulations with a sample

sizes of 250, 500 and 1000.

5.4. Further simulations We now evaluate the two procedures COMPKU19_50
and COMPKU19.90 which are the compromise procedures described in the previous
section using the Kuiper metric d}? and calibrated at the uniform distribution to
give the correct modality with probabilities 0.5 and 0.9 respectively. We compare
them with two kernel based methods. The first KERNCV uses likelihood cross-
validation for the choice of the bandwidth whilst the second KERNSJ uses the
Sheather-Jones plugin bandwidths. The comparisons are performed using the ten
densities shown in Figure 7. They are taken from Marron and Wand (1992) and are
the uniform distribution on [0, 1], the Gaussian distribution and eight mixtures of

normal distributions.

Each method was applied to 1000 samples of each of the densities and three
different sample sizes (100, 500, 2000). For each estimate it was checked if the correct
number of modes was found and if the positions of the modes corresponded to those
of the densities. Table 7 shows how often the modes were determined correctly for
the various densities and methods. Some comments are in order. Firstly if we use

the procedure COMPKU5_50 which is tuned to three modes then the performance
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Density size | KERNCV ~ KERNSJ COMPKU19.50 COMPKU19.90
Uniform 100 1 16 50 91
500 0 1 53 89
2000 0 0 53 91
Gaussian 100 e 79 85 98
500 79 78 95 99
2000 74 59 98 99
Strongly skewed 100 4 0 90 99
500 1 0 96 100
2000 0 0 99 99
Outlier 100 15 0 90 99
500 0 0 97 100
2000 0 0 98 100
Bimodal 100 71 81 45 14
500 75 84 68 33
2000 75 73 97 92
Skewed bimodal 100 32 46 34 9
500 45 37 35 13
2000 34 12 49 22
Trimodal 100 29 12 11 1
500 57 67 11 2
2000 81 82 20 6
Claw 100 1 0 4 0
500 2 2 63 34
2000 0 0 100 100
Smooth comb 100 18 0 1 0
500 5 0 5 1
2000 1 1 89 80
Discrete comb 100 12 0 1 0
500 2 0 31 13
2000 0 82 98 99
TABLE 7

35

Correctly detected modes in samples of various densities and for several automatic methods.
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for the trimodal density improves. For n = 500 three modal values are found in
20% of the cases and for n = 2000 this rises to 37%. Secondly all the densities
are mixtures of a small number of Gaussian distributions with the exception of
the uniform density for which the kernel methods based on a Gaussian kernel fail.
The trimodal distribution is the one where the kernel methods perform clearly
better than the taut string method. If however the central Gaussian distribution
is replaced by a uniform distribution then the kernel methods again fail. We refer
to Hartigan (2000) for an explanation of this. It indicates that the comparison is
weighted in favour of the kernel methods as both they and the densities are based
on the Gaussian kernel. We note that the performance of the kernel methods seems

to deteriorate with increasing sample size.
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6. Hidden periodicities, spectral densities and taut strings

6.1. Hidden periodicities The second problem we consider is that of detecting
hidden periodicities in a data set x,. One method of formulating the problem is
the following: calculate an appropriate spectral density function f” and identify the
hidden periodicities in the data with the peaks of f™ (Brillinger, 1981; Priestley,
1981; Brockwell and Davis, 1987 and the references given there).

Existing methods by and large belong to one of two different categories of pro-
cedures. The first is nonparametric and uses some form of smoothing of the pe-
riodogram. This may take the form of kernel estimators or splines or wavelets or
averages of periodograms obtained by splitting the data into blocks (see Chapter 5
of Brillinger (1981), Neumann (1996) and the references given there). The second
possibility is to model the data by an autoregressive process whose order is deter-
mined using some criterion such as AIC (Akaike, 1977), BIC (Akaike, 1978) or HQ
(Hannan and Quinn, 1979). The spectral density associated with the autoregressive
process is then used to determine the hidden periodicities. None of these methods
controls the number of peaks directly although the problem of hidden peaks is one
of modality.

Before proceeding we assume that the data have been normalized to have sample
mean zero and variance 1. To ease the notation the transformed data will also be
denoted by x,. In the context of time series e,, will denote the empirical spectral

density or the periodogram defined by

2

1
= — 0<w< 2.
2mn

)

(6.15) en(w)

n
Z x¢ exp(iwt)
t=1

The corresponding empirical spectral distribution function F,, given by

(6.16) E,(w) = /0“’ en(A)dA.
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Fic. 8. Sunspot data with number of peaks increasing from 1 to 4.

The candidate spectral densities we use are based on the taut strings S,, through
the Kolmogoroff tubes centred at F,. We assume that the taut string is constrained
to go through (0, L,(0)) and (27, E,(27)) = (2m,1) where L,, denotes the lower
boundary.

One difference to the i.i.d. model is the fact that the empirical spectral distri-
bution function is defined for all w. In practice a grid must be chosen which, when
analysing the asymptotic behaviour on test beds, becomes increasingly fine. We use
the Fourier frequencies %, 7 =0,...n — 1, where the data have been augmented

by zeros to produce a power of two. Choosing a finer grid has had no effect on the

data sets we have analysed so far.

6.2. Data analysis Just as in Section 3.3 it is possible to use the taut string as
a data analytical tool. The radius of the Kolmogoroff tube is gradually decreased

and the resulting densities give information about the power and positions of the
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peaks. We give two examples. Figure 8 shows the first four peaks for the sunspot
data (Anderson 1971).

The second example is an artificial data set generated according to a scheme
of Gardner (1988). Gardner does not explicitly specify the spectral density except
that it has Gaussian shape with centre frequency 27 A with A = 0.35. The density

f of (6.17) approximates the graph shown in Gardner’s Figure 9.4 (a)
1 w 2
(6.17) flw) = 3e0lE—03),

A realization of length 2048 was generated by filtering in the frequency domain.

The following pure sine terms were added

V2sin (27(0.2 x t — 106/360)) , v2sin (27(0.21 x ¢ — 45.1/360)),

V2/10sin (27(0.1 x t — 32.6/360)) .

A segment of length 256 starting at ¢ = 1023 was taken as the simulated sample.
It is shown in Figure 9.

A similar data set was analysed by Gardner (Chapter 9.E, Experimental Study,
Gardner, 1988) in an experimental study of the performance of different spectral
estimates. Figure 10 shows the first four peaks (in a log scale) for the data set of
Figure 9. Finally Figure 11 shows the four peak density together with the peri-

odogram.

6.3. Two concepts of approximation The concepts of approximation used in the
i.i.d. case had the advantage that the distributions involved were independent of the
approximating model. This is no longer the case for stationary models. Furthermore,
specifying the spectral distribution function F' does not specify the joint distribution

of the stationary sequence. If however one is prepared to accept a Gaussian model
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Fia. 11. Gardner data with four peaks and the periodogram

the distribution Pr of the sequence is determined by F'. In analogy with the

case we have

PROBLEM 6.1 KUIPER SPECTRAL DENSITY PROBLEM. Determine the smallest

integer k, for which there exists a spectral density f™ with k, modes and whose

distribution F™ satisfies

(6.18) i (Eny F™) < qu(n, o, Ppn, diy,)

where Ppn denotes the distribution of the observations under the model.

There are two disadvantages with the procedure based on this concept of ap-

proximation. One is that the quantile in (6.18) depends on F'™. It would be possible

to overcome this by using the taut string S,, at each stage and then simulating the

quantile qu(n, o, Pgn, dk,, ). This is clearly very time consuming. The second disad-
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vantage is the following. Under appropriate conditions (Dahlhaus, 1988) we have

the weak convergence result
Vn(F, —F)=Z

where F),, denotes the empirical spectral distribution function of the model with
spectral distribution function F' and density f and Z denotes a continuous zero

mean Gaussian process defined by

min(A1,A2)
(6.19) E(Z(M)Z(M)) = / f()2dw

It follows from (6.19) that any large peaks will swamp smaller peaks which may be
present and so prevent their detection. The one advantage of (6.18) is that it allows

an asymptotic evaluation.

A more sensitive procedure is based on some kind of multiresolution analysis.
Suppose for the moment that the sample size n is a power of two n = 2™. Given a

spectral density function f we define

en(w)
6.20 gn(fiw) = .
(6:20) (re) =G5
and consider the multiresolution scheme
42"
621)  wir(H)= D galfiwin)i=1...,.2" k=0, ,m—1,
I=(j—1)2k+1

where the w; , = 27l/n are the Fourier frequencies. The class of stationary processes
with spectral density function f is too large to provide a meaningful definition of
approximation so we now restrict attention to Gaussian processes. Corresponding
to level dependent thresholds for wavelets we specify lower and upper bounds I ,,
and ug,, respectively for the multiresolution coefficients (6.21). These now define

the
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PROBLEM 6.2 MULTIRESOLUTION SPECTRAL DENSITY PROBLEM. Determine
the smallest integer k,, for which there exists a spectral density f™ with k, modes

such that

(6.22) Iem <wik(f™) < tpn,j=1,...,2" 1L k=0,....m—1.

The default bounds we use are lx , = qu(aiy, 2%) and ug,, = qu(aa,, 2F) where
qu(f,v) denotes the S-quantile of the Gamma distribution with v degrees of free-
dom, ay, = (1 — @)/2n and @z, = 1 — oy, with a = 0.9. The bounds are based
on the Gaussian model and the asymptotic results for such processes as given for
example by Theorem 5.2.6 of Brillinger (1981). If the asymptotic results held pre-
cisely for finite n then the bounds are chosen such that for a stationary Gaussian
process with spectral density function f the inequalities (6.22) hold with probabil-
ity at least 0.9 for f* = f. As the individual g,(f,w) of (6.20) for w = ZZL are
asymptotically independent the bounds will be approximately of the correct order,
again for Gaussian processes with a spectral density function. The usefulness of the
bounds for real data sets is an empirical matter. In particular they will be be too

slack if the spectral distribution function contains point masses.

This is the case for the Gardner data given above and may be seen in Figure
11. The absolute continuous part of the spectrum shows a degree of noise whereas
the remainder of the spectrum is noise free. The default bounds we propose will
detect the first peak but they are not sufficiently tight to split the two main peaks.
On the other hand if the bounds are sufficiently tight to separate the two peaks
then superfluous peaks will be produced in the absolutely continuous part of the
spectrum. There would seem to be no easy solution which will work equally well

for continuous as well as for discrete spectra.
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We have no algorithm to solve the problem as it stands so again we use the
local squeezing variant of the taut string method. The string is squeezed locally
on the intervals where (6.22) fail and this is continued until all the inequalities
are satisfied. When doing this however care must be taken regarding the order in
which the inequalities are treated. From the form of g,(f,w) in (6.20) it is clear
that a particular g,(f,w) can be very large and influence all interval containing
this particular frequency and this although the corresponding e, (w) is very small.
Squeezing locally over all intervals effected by this frequency will often produce

many superfluous peaks.

To avoid this we consider the intervals in order of size commencing with intervals
of size one. When all the inequalities are satisfied we then move on to intervals of
size two and continue in this manner until all the inequalities are satisfied. This is
the default version of the algorithm. If global squeezing is used then the peaks will
be introduced according to their power and may be introduced on intervals where
the inequalities (6.22) are satisfied. This is the case for the Gardner data. If the
default version with local squeezing is used the main peak is not split. If however

global squeezing is used then it is split.

A practical problem which occasionally occurs is that the local squeezing version
may find peaks of very small power which have no practical relevance. They may
be removed by increasing the baseline of the empirical spectral density by a small
amount. The software does this by first adding a small proportion of the total power,
or the mean empirical spectral density, to the empirical spectral density and then
proceeding as before.

6.4. Asymptotics on test beds We indicate briefly the results of an asymptotic

analysis using the Kuiper concept of approximation. The test bed we consider is that
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of a stationary process X, (F),1 < n < oo, with a spectral distribution function F

and spectral density function f as follows.

TEST BED 6.1.
o F has exactly k local extreme values on the interval (0, 7).
e F satisfies

infaerk-1) S}(ljp | |F(w) —G(w)] >0
we|0, ™

where F(k—1) denotes the set of distributions with at most k—1 local extreme

values.

To investigate the behaviour of the taut string on the test bed (6.1) we consider
a tube of width 2C'/\/n and denote the taut string through this tube by S,,(C) with
derivative s,,(C) and modality kS'. The intervals on which s,,(C) takes on its local
extreme values will be denoted by If(n,C),i = 1,..., kS with midpoints w¢(n, C).
The first theorem shows that on test bed (6.1) the number and locations of the

local extreme values are determined in a consistent manner.

THEOREM 6.1.  Consider the test bed (6.1). Then for all § > 0

. . . C _ e € _ € =
lim liminf P({k;, =k} N {11233)(1@ |If(n,C)| <6} N {fgiagxk [té(n,C) — 5] < 6}) = 1.

C—oo n—oo
To obtain rates of convergence on appropriate test beds we must impose further
conditions.

TEST BED 6.2.

e all spectral densities f7 of order j exist and sup,, |f(w)| < B’ for some con-

stant B
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the spectral density function f = 2 has a continuous second derivative f®)

f has exactly k local extreme values, 0 < wy, ... ,wy, < 27, and f1(w) # 0 for

w e 0,2\ {w1,...,wk}

FOw) #0,=1,...,k

the fourth order spectral density is continuous.

The above conditions correspond to (i) of Assumption 2.1 of Dahlhaus (1988).
Rates of convergence require a modulus of continuity for the process Z, =

vn (F, — F) where F},, denotes the empirical spectral distribution function of the

sample (X1(F),...,X,(F)). Under the conditions of Theorem 2.4 of Dahlhaus

(1988) it follows that

(6.23) sup | Zn(w2) — Zn(w1)] < Cv/wa — wi|log(ws — w1)]

0<w1 <ws <2m,w2—w1 <J
with probability tending to one as § tends to zero. From this the it can be shown that
the rate of uniform convergence away from the local extremes is O <(@) 1/3> .
This differs from the rate of convergence for the test beds considered in Davies and
Kovac (2001) by an extra logn term. This is explained by the different modulus
of continuity. On the test beds of Davies and Kovac (2001) it is 1/3|log d| whereas

above it is /0 | log d|.

6.5. Fzxamples The default version we use is the procedure deriving from the
multiresolution problem with « =1 — 0.1/n and a squeezing factor of 0.9. For the
sunspot data the result is the one peak density shown in the top left panel of Figure
8. For the Gardner data the result is the three peak density derived from the four
peak density shown in the bottom right panel of Figure 10 but with the major peak

not split (see above). Finally we consider data generated according to a scheme of
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Fi1Gc. 12. Log spectral densities of a sample of size 1024 generated by the scheme (6.24).

Neumann (1996) which is as follows:
(6.24) X, = Yy, + coZn

where

Yn + alYn,1 + (ZQYn,Q = boEn + b1€n71 + b2€n72

and {e,},{Z,} are independent Gaussian white noise processes with variance 1.
Neumann chose the coefficient values as follows: a1 = 0.2, as = 0.9, by = 1, by =
0, b2 = 1 and ¢y = 0.5. A sample of size 1024 was generated according to this
scheme. Figure 12 shows the logarithm of the spectral density of the sequence
{X,} together with the logarithm obtained from the default version of the taut

string method. The two peaks are correctly identified. The wavelet method used by
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Neumann results in 6 peaks ((b) of Figure 2 of Neumann 1996) for the data set he

considered.

7. Proofs

7.1. Proof of Theorem 4.1 Using the Glivenko-Cantelli theorem, the property
of the taut string of minimizing the modality in T'(F,, %) and Proposition 12.3.3

of Dudley (1989) we see that

min(P (kS < k), P (kS > k)) > P (F eT( ) > 1 — exp(—2C?)

C
Fn’ﬁ)

and conclude that

lim lim P (kS =k) =1.

C—o0n—oo

The other claims are proved similarly.

7.2. Proof of Theorem 4.2 Proof of (a):
Since the empirical process E,, = /n(F,, — F) is tight, we conclude (Billingsley,

1968, p. 106) that

lim lim P( sup  |En(s) — E,(t)| < i) -1

C—o0n—00 s<t<s+27, c
where 7, = max(t? — té-), t5 denotes the point where f takes its j-th local extreme
value and té— the left endpoint of the j-th local extreme interval of fC respectively.

From Theorem 4.1 we deduce that for C' and n sufficiently large f,? has the

correct modality and

1
(7.25) sup |En(s) — En(t)| < =
s<t<27, c

with arbitrarily high probability,
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Suppose EF¢ is initially convex and ¢} < t. Then F¢ is the largest convex
minorant of F,, + C/+/n (Barlow et al, 1972) until it reaches the left endpoint
t'(n,C) of I¢(n,C) = [t' (n, C), t}(n, C)].

For some constant § > 0 such that for each C' and sufficiently large n

where

l _ 1y _ 2C
(7.26) H(h) = Fnlty + 1) hF"(tl) Vi

As F is convex on [t},t$] it can be shown using Taylor expansions that

(727 G = Ui+ h}z — F(t9)

defines a strictly increasing function on [0, 3] where p = t§ — t}. Furthermore, for

all 7 < p

20 20 2 .
Vit g Cynr

This shows that H cannot attain its maximum on [0, 1] and consequently ¢} > 5.

H (%u) —H(r)>G <%u> - G(r) +

Similar arguments hold for the other extrema.

Proof of (b):
We suppose that S, has a local maximum on I{(n,C) = [t} (n, C), ] (n,C)], that

t§ € If and that (7.25) is satisfied. Define G by

Gih) = F(t, +h) - Ft)) — 3—%

h

and consider hg = argmaxy<j,<;G(h). Then G'(ho) = 0 implies
2
va

Using Taylor expansions in ¢§ and the fact that f/'(t{) = 0 we obtain

F(# + ho)ho = F(t) + ho) — F(t}) —

hd > S + o(hd).

Vg (i)
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In the other direction we consider

F(t§ +h) = F(t5) - 22

(7.28) hi = argmaxgyj<;

and

F(t7 —h) = F(t5) -

hoy = argming <, <4

It is not difficult to see that hg < hy + ho. Setting the derivative of the right-hand
side of (7.28) to zero and using a Taylor expansion in t§ yields

6C
Vi f"(t9)

The same argument holds for hy as well and both together show that

h} = — + o(h3).

hs < ,&
=)

Define H as in (7.26) and consider

+o(hd).

2
VC - nh'

ho = argmaxG(h) —

The considerations above show that

(C+=\F . 12(C+ 2=\
( ff”(te)> <h°(”"“”§< ﬁf”(ﬁ))

Furthermore considerations as in (a) show that G(z) — \/%

creasing function. Therefore for all h > (1 + %)BO

- ~ 2
H(hg) — H(h) > G(hg) —G(h) — =——— >0
Consequently, H cannot attain its maximum in h > ho( \/_ ) and hence

argmaxgp, s H(h) < (14 ﬁ) . f” te

Similarly it can be shown that

1 6C-7=)°
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Proof of (c):

The proof relies on the modulus of continuity of the empirical process F,,.

LEMMA 7.1. Let Y(n,C) denote random variables such that for all e > 0

lim lim P(|Y(n,C)| <e)=1.

C—o00n—00

Consider a,, = n~" for some v <1 and

8¢ = max{ s v (o}

Then for all B > 2 we have

E, — E,(t
lim lim P(  max 2310 ®)] > B) =0.

Cmoen=oe o <lomtl<of fir — 5| log(rLy)

Proof: Define random integer-valued variables K,, by

Ky, = [log, (—S)J

Qn
Using a result of Mason, Shorack and Wellner (1983) we conclude that provided
By <3
|En(5) — En(t)l

IP’( max > B)
an<|s—t|<BS \/|t — -log(ﬁ)

- 1
< ZIP(|En(s) —E,(t)|> B- \/|t — s -log(m) for some s,t with
k=0

2, < |s—t| < 28y, ’ k< Kn)

% oxp (_(1 —ﬁ§)4%i¢ (\/%))

where we denote 2¥t1a,, by ax,

o0
<2
k=

0

log(3-)

A =B 5
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and

(1+2)(log(l +2)—1)+ 1_

lﬂ(x) =2 72
It is easily veryfied that w(%) — 1. Thus
(7.29) lim P((1-89)* 4 e >3):1
' e n Jnar) ~ B

Putting this together we deduce that

1
P(|En(s) —E,(t)| > B- \/|t — s ~log(m) for some s,t with a,, < |s —t] < ﬁg)

201og(n)?
n’Y(B/Z_l)

This completes the proof of the Lemma. o
We proceed now with the proof of (c). Since is f is twice continuously differen-
tiable, there is some constant D > 0 such that
1
|[F(a+h) = Pz) = hf(z) = 5h*f'(@)] < Dh?
for all  and h.
Let B be an arbitrary constant greater than 2 and

d(n, C) = min{|f"(z)] | € [0, 1] \ Ui I} (n, C)}.

Define a random sequence h(n,C) by

(8B)2/3 log(d(n, C)*n)'/3
(3n)1/3d(n, C)2/3

h(n,C) =
We consider the situation where
e ¢ attains the correct modality
o t7 € If(n,C) for all 4.

e The empirical process satisfies

sup [ Eu(t) — Bn(s)] < B+ \/|s —t] -log(1/]s — t])
|s—t|<Y (n,C)
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where Y (n, C) is defined by

Y (n,C) = max{z,;41 — x; | ¢j, zj11knots, [xj,x;41] # I{(n,C) for all i}.

e For all z € [0,1] \ U;If(n,C)

holds.

e For each extreme interval If(n,C), the distances of each endpoint to t§ are

both smaller than 4h.,.

The preceding lemmas and parts of this theorem show that the probability that all
these assumptions are satisfied simultaneously converges to 1 as n and C' tend to
o0. For example, (7.2) follows from (b) which provides a constant A > 0 such that
/(@) = A-n1/5.

Consider now an arbitrary point ¢; € [0,1] \ U;If(n, C) where f/(t1) > 0. Then

Fn(tl-l—h;)—Fn(tl) Sf(tl)—l—%hnf/(tl)—i_Dhi—’—@

Plugging in the expression for h, and using the assumptions made above we see

that

Fn(tl + hn) - Fn(tl)
hn

< J(t) + ghaf () 1+ + 7).

Similarly, we conclude that for all h € [4hy,, t§]

Fn(tl + h) — Fn(tl)
h

> f(t) + hf )1 - 7 - 7)

where 77 is the smallest local extreme value greater than ;.
Suppose that there are knots x; and x;4; that do not embrace a local extreme

interval such that hg = ;41 —z; > 4h, and such that f is increasing on [z;, z;41].
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The width A is the local argmin

~ F, h) — F,,
h = argming_j, s (21 +h) (xl)

On the other hand the considerations above show that

Fn(ml + hn) — Fn(ml) F(l‘l + h) — Fn(l‘l)
I < h

Therefore, the distance between two knots that do not embrace an extreme interval

is bounded by 4h.,.

Proof of (d):
We assume that all the assumptions made in the proof of (c) are again satisfied
and that each two extreme intervals I7 and I , are separated by at least two

additional knots z; and x;41:
max [y <x; <xjp1 <minlf, .

Define h,, as in (7.28). Consider a knot x; which does not delimit a local extreme

interval I¢. We take f to be increasing in x;. Then the proof of (c) shows that

j — Fo(x; oo (n)\ /3
F () < Ful@i + hn = Fulw:) < flas) + Culf' ()2 (1 : )) .

hn, n

Similar arguments show that

i) — XT; — oo(n 1/3
19 () > Fo(2:) = Fp(2i — hy > Fas) — Gl ()2 (1 g( )) |

hn, n

Analogous inequalities can be derived in the case where f is decreasing in z;.

Suppose now that ¢ is an arbitrary point in

() ()

n

Let x; be the nearest knot which does not delimit a local extreme interval. Then

(7.30)  |f(6) — £SO < 1F@) = fl@a)| + | f(@i) — £§ @) + 1S (@) — £S ().
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The inequalities above show that the second term is bounded by

s (B

n

The first term is bounded by

log(n) ) 1 _

Calt =il 1] < Ca |7 )3 (21
This follows from (b).

Depending on the exact definition of f&(z) at knot points the third term is either

n

1/3
0 or bounded by 201 | f'(z;)[*/* (log<n>) ,

This completes the proof of (d).

Proof of (e):
As in the other cases we assume that fC attains the correct modality and that
t¢ € I¢(n,C) for each extreme point t$. We also assume that for each extreme

interval I?

(1 . )-< 6(0ﬁ>,§|lf(n,0)|§(1+i (%)

ol

") v e\ T
The regression function f¢ takes in t$ the slope of the taut string in the extreme
interval If = [x1,x2]. Taylor expansions in t§ using f’(t¢) = 0 and an application
of the modulus of continuity for the empirical process F,, as formulated in Lemma

7.1 yield

1 (4e\1/3
FE) — F9)] < Dy - (14 of1))- LU

The proof is now completed by extending the bound to arbritrary points in extreme
intervals I¢. This is done in the usual way as in as in (7.30) using a Taylor expansion

in t7 and shows that

[F(t) = J(t5)] < Daf IEP S (£5).
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Software The software is available from our home page at

http://www.stat-math.uni-essen.de.

A package for R is in preparation.
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