EXTENDING THE SCOPE OF WAVELET REGRESSION METHODS BY
COEFFICIENT-DEPENDENT THRESHOLDING
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ABSTRACT. Various aspects of the wavelet approach to nonparametric regression are consid-
ered, with the overall aim of extending the scope of wavelet techniques, to irregularly-spaced
data, to regularly-spaced data sets of arbitrary size, to heteroscedastic and correlated data, and
to data that contain outliers. The core of the methodology is an algorithm for finding all the
variances and within-level covariances in the wavelet table of a sequence with given covari-
ance structure. If the original covariance matrix is band limited, then the algorithm is linear in

the length of the sequence.

The variance-calculation algorithm allows data on any set of independent variable values to
be treated, by first interpolating to a fine regular grid of suitable length, and then constructing
a wavelet expansion of the gridded data. Various thresholding methods are discussed and
investigated. Exact risk formulae for the mean square error of the methodology for given
design are derived. Good performance is obtained by noise-proportional thresholding, with

thresholds somewhat smaller than the classical universal threshold.

Outliers in the data can be removed or downweighted, and aspects of such robust tech-
niques are developed and demonstrated in an example. Another natural application is to cor-
related data, where the covariance of the wavelet coefficients is not due to an initial grid

transform but is an intrinsic feature. The use of the method in these circumstances is demon-

strated by an application to data synthesized in the study of ion channel gating. The basic
approach of the paper has many other potential applications, and some of these are discussed

briefly.
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1. INTRODUCTION

1.1. Background and main result. In statistics, wavelet methods have been most widely
studied in the non-parametric regression problem of estimating a function f on the basis of

observations y; at time points ¢;, modelled as

(1) yz:f(tl)+6la 221,2,,71

where ¢4, ... , &, are noise.

With some notable exceptions, the current literature mainly deals with n a power of 2,
independent and identically distributed errors ¢;, and equally spaced points ¢;. Our method-
ology allows all these assumptions to be relaxed, but we shall especially be concerned with
non-equally spaced points ¢; and with general sample size, with robust methods that allow
outliers to be downweighted in the fitting process, and with correlated and heteroscedastic
errors g;.

Most wavelet-based methods use the discrete wavelet transform (DWT) described by Mal-
lat (1989). In its standard form, this provides a multiresolution analysis of a vector c; of 27
values. In the “classical’ wavelet regression setting, these values are the data points y;, and the
variance matrix of ¢ is a multiple of the identity matrix. Because the DWT is an orthogonal
transform, the wavelet coefficients are also uncorrelated with equal variances. Johnstone and
Silverman (1997) have considered the case of wavelet thresholding where the noise is corre-
lated but stationary. The variances of the wavelet coefficients at each level are then identical,

but differ between levels, and so the coefficients can be thresholded level by level.

But what if ¢; has more general, and not necessarily stationary, variance matrix X? In
general the DWT coefficients will be heteroscedastic and correlated. We set up an algorithm
yielding all the variances and within-level covariances of the DWT for a wide range of vari-
ance matrices X. Provided X is band-limited, the algorithm will be linear in 2”7. This algorithm
is the core of our methodology and has very broad potential uses. We present it and discuss its
complexity properties in Section 2, before applying it in specific regression contexts, relaxing

many of the classical assumptions.
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FIGURE 1. Eighty-eight measurements of exhaust from burning ethanol with
three wavelet estimators. A wavelet basis with five vanishing moments was
used. Top right: data regarded as lying on a regular grid, and standard uni-
versal thresholding wavelet estimator applied. (The data is extended to length
128 by reflection.) Bottom left: our method for irregular data assuming equal
variances. Bottom right: our method for irregular data with local estimation of
the variance. Universal thresholds are used in each case; for the bottom figures
these are noise-proportional.

1.2. Anexample. Before reviewing our regression methodology, we present a particular ex-
ample. Figure 1 shows a data set of Brinkmann (1981) that has been analyzed extensively,
for example by Hastie (1992) and Cleveland et al. (1992). The data consist of 88 measure-
ments from an experiment in which ethanol was burned in a single cylinder automobile test
engine. The concentration of the sum of nitric oxide (NO) and nitrogen dioxide (NO) in en-
gine exhaust, normalized by the work done by the engine, is related to the equivalence ratio,
a measure of the richness of the air/ethanol mix. Because of the nature of the experiment, the
observations are not available at equally-spaced design points, and the variability is larger for

low equivalence ratios. The first curve is obtained by the naive approach of using only the
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ranks of the ¢; but then applying a standard wavelet approach to obtain an estimate of f at the
points ¢;. The second and third estimates are obtained using the methods of this paper. The
second estimate uses the methodology of Section 4.1 to deal with the irregularity of the ¢;, but
estimates the variance globally. Generally, the performance of the estimator is much better,
but the clearly spurious high-frequency feature near 0.4 has survived even the high threshold
that is used in the procedure. The third estimate uses the method discussed in Section 7 to
handle the heteroscedasticity in the data. It can be seen that a change in slope near 0.6 is well

estimated, without other high-frequency effects intruding into the estimate.

1.3. Review of our regression methodology. Our regression method for generally posi-
tioned ¢; falls into three main parts, developed in Sections 3 and 4. First, if necessary, we map
the original data to a grid of 2/ equally-spaced points to produce a vector §. Even if the orig-
inal data are independent and identically distributed, the covariance matrix X of the gridded
values will in general be nonstationary but band-limited. A general covariance matrix may
also arise from correlated or heteroscedastic data. The second phase is to apply the DWT to
the vector g, and to use our algorithm to find its within-level covariance structure. The third
phase is to threshold the DWT taking into account the heteroscedasticity of the coefficients,
and to invert to find the estimate itself. Simulated examples indicate that a good approach is
to use a threshold for each coefficient proportional to its standard deviation, and to use the
SURE (Stein unbiased risk estimate) approach to determine the constant of proportionality.

Theoretical support is provided by Johnstone and Silverman (1997).

The performance of the approach is investigated in Section 5, mostly by exact risk cal-
culations rather than simulation. The use of the method in a robust procedure is set out and
discussed in Section 6. In Section 7, we consider the application of our approach to het-
eroscedastic and correlated data. Finally, some suggestions of possible avenues for future
research are given in Section 8. Software for our methodology is available from the home

page of the first author.
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2. CALCULATION OF THE VARIANCES OF WAVELET COEFFICIENTS

2.1. Linear filters and the DWT algorithm. We first review elementary aspects of filters
and wavelets, partly to fix notation. Linear filters defined by sequences ;fwith finitely many

nonzero elements are denoted

(fx)k = Z fi—kZi.

If z is a finite vector, the definition of Fz depends on the treatment at the boundaries; com-
mon choices are periodic continuation, reflection at the boundaries, or the boundary wavelet

construction of Cohen et al. (1993).

The binary decimation operator Dy chooses every even member of a sequence:

(D()CL')]' = szj.

Assume that v is a finite-support mother wavelet of order m, with corresponding scaling
function ¢. Standard references for wavelets include Meyer (1992), Daubechies (1992) and
Chui (1992). The wavelet functions v, defined by
form an orthonormal basis of L2(RR), and are orthogonal to polynomials of degree up to m.

There is a sequence (hy,) such that

$z) =) hp(2z—k) and ¥(z) =) gup(2x — k).

keZ keZ

where g, = (—1)*h,_,. Because ¢ has bounded support, Ay is zero outside the range 0 <
k < N for some integer N; denote by G and # the linear filters defined by (g) and (hx)

respectively.
To carry out the DWT, let ¢/ = y. Recursively for j = J —1,...,0, define

(2) d =DyHd™ and & = DG

Let n; denote the length of the vectors ¢/ and d’. For periodic boundary conditions, n; = 2.

The coefficients & 1, ..., d°, c® make up the DWT of the data y. Regarding these as a single
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vector w, we write w = Wy where W is an orthogonal matrix in the periodic case. The
algorithm described allows w to be found in O(N2”) operations. We denote by H; and G;

the n;_1 X n; matrices such that ¢/~! = H;¢ and &~ = G;d.

2.2. An algorithm for the computation of the variances of wavelet coefficients. Consider
the DWT of a vector § of length 27 whose elements have general covariance matrix . We
now set out an algorithm for finding the variances of all the wavelet coefficients w. In the

case where X is a band matrix, the number of operations will be linear in the length of .

Let 27 denote the variance matrix of ¢/ and 7 that of d7. Then £/ = X by definition.
From the recursion (2), foreachj=J—-1,J —2,...,0,

(3) = Hj+12j+1(Hj+1)T and - Gj+12j+1(Gj+1)T.

This gives not only the variances o, = iik of the individual wavelet coefficients d,, but
also the covariance structure of the wavelet coefficients at each level.

A key aspect of our algorithm is the use of sparsity in the recursions (3). Each row of H;_,
and G is zero except in at most NV consecutive positions. Writing the first recursion of (3)

in the two stages

(4) A=HTY and ¥ = HITTAT,

it follows that the total complexity of the algorithm is O(N227) even for a general matrix 3.
If 3 is a band matrix, then considerable additional economies are possible, as we show in the
next section.

Vannucci and Corradi (1999) have, independently, expressed the recursion (3) in terms
of the two-dimensional discrete wavelet transform of the matrix ¥+, They thereby obtain
an algorithm with complexity quadratic in the length of g; this is then used to develop a
methodology for Bayesian wavelet shrinkage with priors that allow correlation among the

wavelet coefficients.
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2.3. Computational complexity for bandlimited variance matrices. For simplicity, only
the periodic boundary condition case is considered in detail. Symmetric boundary conditions
and boundary wavelets are slightly more complicated technically and notationally, but the
resulting computational complexity is of the same order. Define the bandwidth b; to be the
smallest integer such that E{,m = 0foralli,m € {0,...,n;—1} withb; < |i — m| < n;—b,,
so that the bandwidth of a diagonal matrix is 0. For each j, we show that any band structure

of ;. is inherited by 3;. It will follow that the complexity of the proposed algorithm is

O(27b), where b = max(by, N) and by is the bandwidth of X7,

By symmetry, 7 has at most (b; 4+ 1)n; entries that have to be calculated. Treating sums

in the indices modulo 7, the first sum in (3) can be reduced to

N—-1
J o _ } : j+1
Ei,m - hkhlz2i+k,2m+l'
k,1=0

Every term in the sum is zero if |¢ —m| modulo 27 is greater than (b;.1 + N —1)/2, and hence
bj < (bj1+N—1)/2.

By induction on decreasing j, b; < b, as required. By a similar argument using the second

recursion of (3), the bandwidth of 7 is subject to the same bound.

In practice further economy is possible; before calculating ¥/ and %7, we determine the
actual bandwidth b,,, of X7*1, and hence a tighter bound than & on b;. Considering the re-
cursion in the form (4), each column of %71 has nonzero elements in at most 1 + 2b;,,
positions, so the nonzero elements of A can be found in O(N{1+2b;.,}27) operations. Each
row of A then has nonzero elements in at most NV + 2b;.., positions, so the complexity of the
calculation of 37 is O({N? + Nb;}27) = O(Nb27). Summing over j shows that the overall
complexity of the algorithm is O(Nb27). If N is large then some economy may be possible

by the use of the fast Fourier transform to perform the convolutions, but we shall not pursue

this possibility.
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3. PREPROCESSING UNEQUALLY TIME-SPACED DATA

3.1. Relaxing the basic assumptions. The standard wavelet approach to the non-parametric
regression problem (1) requires n to be a power of two, and the ¢; to be equally spaced. One
method of relaxing the first requirement is to extend the given data set to length 2/, by pe-
riodic extension or symmetric reflection (Smith and Eddins 1990). Though slightly artificial,
this simple technique usually works well. Another approach (Kwong and Tang, 1994 , Taswell
and McGill, 1994) is to construct alternatives to the fast DWT that deal with sets of arbitrary

length. These techniques are of particular interest in image compression.

Relaxing the equal spacing in time raises more problems. One could use only the ranks of
the ¢; and apply the usual threshold routines direct to the y;, yielding an estimate of f at the
points ¢;. Unfortunately, wavelet representations of irregularly spaced function evaluations
are not in general as economical as they are if the time structure is regular; the unevenness
of the ¢; means that regularity properties of a function f are not necessarily inherited by the
vector of values f(¢;). As a consequence, the mean square error can be relatively high, as
we will see in Section 5.5; see also Cai and Brown (1998). The poor performance of this

procedure in Figure 1 may also be a result of this effect.

Lenarduzzi (1997) also notes that this method does not yield ‘graphically pleasant’ results,
and suggests a modification involving spline interpolation on a small subset of time points.
The coefficients cut off by the thresholding function are replaced by the wavelet coefficients
of the spline. Her approach does not yield an economical wavelet expansion of the function
estimate. Cai and Brown (1998) assume that the empirical distribution of the time points
approximates to a distribution with density g;. They give a theoretical analysis of a method
that uses a related transformation of the time domain, but essentially weights the original data
to take account of this. Antoniadis and Pham (1998) make similar assumptions, and use of
wavelet estimates of fg, and g;. Their approach does not seem to have the properties which
are expected of wavelet shrinkage estimators in the equally spaced case, but gives results very

similar to linear estimators such as ordinary kernel estimators and spline smoothers.
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3.2. Mapping unequally spaced data to a regular grid. Our method is simple and is easily
combined with other developments in wavelets such as translation-invariant wavelet trans-
forms and wavelet packets. In addition it is easily generalized to the case where the original
data y; are themselves correlated or heteroscedastic. The basic approach is to interpolate the
given data onto a regular grid, keeping track of the effect on the correlation structure. This is
in contrast to Hall and Turlach (1997) who make the additional assumption that the design
points are drawn from a random distribution, and then use an overall bound on the variance of

the wavelet coefficients. We begin by choosing a finest resolution level J, usually the smallest

integer such that n < 27,

Define the grid points¢, = (k + 3)277 where k € {0,...,27 — 1}. We calculate the
gridded values 7, by applying a linear transformation R to the original data: § = Ry. One
possibility is to obtain ¢, by linear interpolation of the original data, but in general this will

not make use of all the original data points. Instead, we used the following procedure: For
each subinterval I, = [k2~7, (k + 1)27] linear regression was applied to the observations
that lie in this subinterval. If there was no observation in I, left of £, then the nearest data
point to the left was also included in the linear regression. The right-hand side was treated
analogously. Finally, the regression line was evaluated at #;. Other grid transformations could
be considered, such as higher-order local polynomial regression or interpolation. A detailed
comparison between different gridding methods is left as a subject for future research.

The vector g has length a power of two, so can be dealt with by standard DWT methods.
If the original observations y are uncorrelated with variance o2, then the covariance matrix X

of g is given by
Y =o0”-RR".

The matrix RR” is a band matrix, because, for any & and [, the linear interpolation scheme
we have set out ensures that g, and g, are uncorrelated if at least two of the original time
points ¢, lie in the interval [(k + 1)277,1277]. The bandwidth of RR” will essentially depend

on the largest gap in the ¢;.
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We can now carry out a DWT of the sequence g to obtain coefficients 4 The algorithm

set out in Section 2.2 will allow us to find the variances and within-level covariances of all

these coefficients. If the variance o2 is not known, then the same algorithm starting with the

matrix RRT will yield the variances and covariances up to an unknown common factor.

The extension to more general distributions of the original observations is straightforward.
If the v have variance matrix Xy, then ¥ = RYy RT. If ¥y is a diagonal matrix with unequal
entries, then the bandwidth of X will be the same as in the homoscedastic case. If Xy is a more
general band matrix, then X will still be a band matrix with a somewhat larger bandwidth.
The detailed development of these cases is a topic for future research; one issue is of course
the specification or estimation of a suitable matrix >3 in the general case. However, we will

see in Section 7 two promising examples with heteroscedastic and correlated data.

4, THRESHOLDING HETEROSCEDASTIC WAVELET COEFFICIENTS

4.1. The general approach. Assume that f is the 27-vector of values f (%) and that @y, is
the DWT of f. Suppose that we have an array di of observations of the @, corrupted by

heteroscedastic noise, and that we know the variances (o2)? of the d?, at least up to a constant.
Typically these coefficients and variances will have been obtained from homoscedastic but
irregularly spaced data as described in Section 3.2. The standard approach within the wavelet
literature is to threshold the coefficients in some way, and then to invert the DWT to complete
the estimation of f. In general, we apply a thresholding function 7 to each wavelet coefficient
yielding «@;;, = 1(d’, 7;%). The inverse DWT then gives the estimate f = W4 for f. Here 7

is either the soft thresholding function ns or the hard thresholding function 7y:
ns(dg, 7) = sgn(dy)(|df| — )+ i (dj,7) = dj, - I{|d}| > 7}.

4.2. Universal thresholding. A natural approach, undergirded by theoretical work of John-
stone and Silverman (1997), is to choose each threshold 7, proportional to its standard devi-
ation o ;. However, the noise level o is usually unknown. Generalizing Donoho et al. (1995),

to take account of the unequal variances, ¢ can be estimated by the median absolute deviation
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of the normalized coefficients c;j‘l/1 /~1-1% divided by 0.6745. Also, some of the y;_4 &, and
the corresponding d; ~" may be zero, for example when all grid points that have influence on

the coefficient ¢ ' lie between two original observations, because of the property of van-
ishing moments and the linear interpolation that is used in the grid transform. Therefore we

disregard coefficients that are numerically equal to zero. We then set
G = G

for all  and &, and consider thresholds of the form

(5) Tik = OjkT

for some suitably chosen 7. Setting = = /2logn then gives the the universal threshold or
VisuShrink approach; this does not aim to minimize the mean square error, but tries to produce

reconstructions that are ‘noise-free’, at least in the wavelet domain.

4.3. An unbiased risk approach. Another possible method for threshold selection, based
on Stein (1981), was introduced to wavelet methodology as SureShrink by Donoho and John-
stone (1995). Let w* denote the vector of wavelet coefficients obtained by interpolating the
values f(t;) to the regular grid ;. By a simple extension of the argument given in Section
2.3.2 of Johnstone and Silverman (1997), the quantity
S(r) = 2[6]2'19 + min{(df;){ Tj2k} - 26-32‘kl{|d£| < 7}
7.k

may be used as an estimate of the risk ||@ — w*||?, for soft thresholding for the thresholds
T;x = 70,1, defined in (5). Neglecting errors in the estimation of the g;;, this is an unbiased
estimate of the risk. There is also an approximation involved in replacing the wavelet trans-
form of the true grid values of the signal by the values w*. Because of these approximations,
we regard the unbiased risk property of the criterion S(7) as heuristic rather than rigorous

justification for its use. In minimizing S(7), we follow previous authors and restrict attention

to 7 in the range [0, /2 log n|.
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5. PERFORMANCE OF THE THRESHOLDING METHODS

5.1. Exact risk formulae. Let f and f be the vectors of the values and estimates of f on

the grid ¢; of 27 equally-spaced points at which f is to be estimated, and let f* be the vector

of the true values f(¢;) at the n original data points. Let @ = W and & = WF. By the

orthogonality of the DWT, the mean square error satisfies
A~ ~ ~ . 2
27 MSE(f, f) = |If = fI13 = |l — |3 = (9sHOVR(F™ + &) b 78] —

where 7;;, are the individual thresholds, and jj is a ‘cut-off-level’, below which no thresholding
is carried out. We consider here soft thresholding only. Hard thresholding can be analyzed

similarly (Kovac, 1999).

Let w* be the DWT of the sequence R f*. The individual coefficient VWR(f*+¢)) jx, is nor-
mally distributed with mean w7, and variance o, that can be calculated with the algorithms

introduced above. To explore the mean square error, we define

p(7;5 b, pia, 0) = E(pr — ns(X, 7))?

where X is a normally distributed random variable with mean p, and variance 2. We then

have
_ J—1 27
(6) E{MSE(f, /)} =277> Y p(7jn; hjk, wiy, oji)-
j=jo k=0

To carry out an exact risk calculation for any particular function and time sequence, the vec-

tors f and Rf* are calculated, and their wavelet transforms substituted into (6). The function
p can be evaluated from its definition by making use of properties of the normal distribution,
generalizing results for iy = ps given by Donoho and Johnstone (1994) and Abramovich and

Silverman (1998) to obtain

(75 o, 1) = pi + (2p1 — pa — 7)p(—p2 — 7) — (2111 — pa + 7) (2 — 7)

+ {1+ (74 e = )” = g} O(—ppp = 7) {1+ (7 + 1 — p2)* — 3P (2 — 7).
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FIGURE 2. The risk for the test functions and VisuShrink on regular grids.
Also shown as dashed lines is the “unbiased” risk which represents the amount
of error which is caused by the actual thresholding step and does not contain
the bias which is caused by the grid transform. The risk and the number of

data points are plotted on logarithmic scales.

5.2. Regular grids of arbitrary length. We first consider exact risk formulae for our method

13

where the ¢; are regularly placed but the number of points is not necessarily a power of two,

using our algorithm to map the data to a grid of length 27 and using standard DWT im-

plementations. Our exact risk formula was applied to rescaled versions of the standard test

signals of Donoho (1993) and Donoho and Johnstone (1994). For each n in {17, ...,2048},

calculations were performed for n time points equally spaced in [0, 1], and the size 27 of

the grid (£;) was chosen to be the smallest power of two not less than n. The noise level o

was chosen as 0.35 and the threshold chosen with VisuShrink, assuming the variances to be

known. Daubechies’” wavelet with two vanishing moments, periodic boundary conditions and

a cut-off-point j, of 3 were used. The results are plotted as solid lines in Figure 2. It can be

seen that the expected mean square error decays very fast; note the use of logarithmic scales



14 ARNE KOVAC, BERNARD W. SILVERMAN

on both axes. The risk does not decrease monotonically and the variation with n is different

among the four test signals.

To investigate the behavior further, we calculated the modified risk

E27|If = Rf*3,

the expected mean square error obtained by supposing the interpolation of f(¢) from the orig-
inal observations to the grid to be exact. This is plotted as the dashed lines in the figure. The
modified risk is much smoother than the total risk, so indeed the variation can be considered
as being due to the bias in the wavelet coefficients caused by the grid transform. For powers
of two both curves take the same value, because the grid transform is then the identity func-

tion and causes no bias at all—hence the downward blips in the exact risk for these values of

n.

The Blocks signal is sensitive to small changes in the time structure for all values of n
because it has a large number of discontinuities. The risk for the Bumps signal depends
strongly on how well its peaks can be approximated. For small numbers »n; and n, the quality
of this approximation can be very different, even if n, and n, are close together, but for larger
ny and ny the continuity of the function ensures that the approximations are similar. Finally,

the low values for powers of two for the Blocks signal are also caused by the absence of bias.

Both risk functions exhibit steps near powers of two. These are caused by the dependence
of the thresholds on the number of grid points; they increase each time n crosses a power of
two. To check this, a separate calculation was carried out using a fixed threshold for all values

of n. The basic shape is preserved, but the jumps near powers of two were eliminated.

5.3. Ideal thresholds. When comparing different choices for the thresholds it is interesting
to consider the minimal risk that can be obtained with any thresholds for a specific function f.
Such ideal thresholds are not available in practice, because the signal is unknown, but they do
give a reference point against which a practical threshold choice can be judged. We consider

ideal noise-proportional thresholds restricted to the special form 7;, = 70;;. For known f,
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FIGURE 3. The risk for the Heavisine data and noise level 0.35 for three
threshold choices on a regular grid of size n. The dashed and solid lines show

the risk for the VisuShrink threshold choice and the ideal noise-proportional
thresholds respectively. The dotted curve represents a threshold choice where
the VisuShrink threshold is divided by 3.

these thresholds can be found to desired accuracy by a numerical minimization of our exact
risk formula.

For four different noise levels (¢ = 0.05,0.15,0.25,0.35) and for the same test signals
as in Section 5.1 we calculated the minimum risk for n regularly spaced time points with n
taking all values between 17 and 2048. The solid lines in figure 3 show the results for the
Heavisine data and o = 0.35. The results for the other data sets and noise levels do not look
substantially different.

It is well known that the optimal thresholds are usually much smaller than those specified
by the VisuShrink method. We calculated the ratio of the VisuShrink threshold to the ideal
thresholds for all 32512 test cases (four noise levels, four signals, 2032 values for n) and got
a median of 3.4 and the mean 3.9. The 15%-quantile was 2.6 while the 85%-quantile was 4.7.
This suggests a simple rule of thumb, to use the VisuShrink thresholds divided by 3. Figure 3
shows the resulting MSE which is very close to the MSE for ideal noise-proportional thresh-
olds. The good behavior of this approach is confirmed in a different context by a simulation

study which we present in Section 5.5, where we also analyze the SureShrink method.
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FIGURE 4. The expected MSE for the four test signals and ¢ = 0.35 for
three threshold choices on irregular time structures of size n. The time points
were independently drawn from a Beta(2, 2) distribution. The average of the
exact risk over 20 replications is shown. Dashed and solid lines: risk for Visu-
Shrink and ideal thresholds of the form 70, ; dotted curve: risk for reduced
Visushrink thresholds.

5.4. Irregular time structures of arbitrary length. We now turn to the case where the
time structure is no longer regular. For a range of values of n we simulated 20 different
time structures as samples of size n from a Beta(2,2) distribution. For each time structure
the exact MSE of a signal f and a fixed noise level o was calculated, and the average over
realizations was found. As in the previous section, this procedure was carried out for ideal

and VisuShrink thresholds as well as for the reduced VisuShrink thresholds. The results are

plotted for o = 0.35 in Figure 4. The curves are much smoother than in Figure 2 and Figure 3,
because the time structure is no longer fixed for given n. The slight irregularity in the curves
seems to be due to sampling variation in the generation of the time points. The reduced

VisuShrink thresholds still perform almost identically to the ideal thresholds.
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Signal  Time Data IRREGSURE IRREGVIS3 RANKSURE IRREGVIS  RANKVIS
Doppler  B(1,1) 1030 (.00034) .034 (.00041) .035 (.00046) 118 (.00132) .105 (.00100)
B(2,2) 073 (.00289) .072(.00230) .077 (.00199) .156 (.00198) .156 (.00201)
B(3,3) 173 (.00791) .154 (.00595) .177 (.00647) .225(.00390) .292 (.00653)
B(4,4) 317 (.01350) .278(.01034) .335(.01277) .324 (.00689) .509 (.01325)
Heavisine B(1,1) .014 (.00031) .016 (.00030) .015 (.00024) .039 (.00047) .032 (.00047)
B(2,2) 018 (.00051) .019 (.00047) .028 (.00120) .051(.00108) .079 (.00247)
B(3,3) 045 (.00375) .043 (.00295) .088 (.00500) .084 (.00266) .238 (.00872)
B(4,4) 184 (.01432) 152 (.01156) .226(.01195) .149 (.00626) .472 (.01225)
Blocks  B(1,1) .064 (.00157) .066 (.00152) .063 (.00159) .159 (.00176) .137 (.00222)
B(2,2) 064 (.00155) .066 (.00156) .061(.00145) .172(.00202) .141 (.00226)
B(3,3) 091 (.00343) .098 (.00364) .085 (.00350) .239 (.00471) .179 (.00458)
B(4,4) 138 (.00772) 153 (.00811) .131(.00741) .352(.00885) .246 (.00819)
Bumps  B(1,1) .070 (.00324) .078 (.00354) .077 (.00379) .222 (.00511) .218 (.00636)
B(2,2) 103 (.00588) .111(.00617) .110(.00685) .268 (.00769) .260 (.00957)
B(3,3) 160 (.00938) .171(.00982) .166 (.01061) .352(.01088) .320 (.01236)
B(4,4) 1340 (.02109) 358 (.01982) .352 (.02064) .558 (.01793) .523 (.02152)

TABLE 1. Comparison of the average Mean Square Error for five different
thresholding techniques, as described in the text. For each model, 2048 time
points were chosen randomly from four different Beta distributions. For each
thresholding technique, signal, and model for the time structure, the average
of the MSE over 50 replications was calculated. The noise was white noise

with o = 0.35.

5.5. Simulation comparison for randomly placed time points. Finally, we report in Table
1 a simulation study in S-Plus to compare the MSE of five techniques for estimating a func-
tion. The three methods already considered in this section are included in the comparison, as
well as two approaches based only on the ranks of the ¢;, as described in Section 3.1. The

methods are as follows:

IRREGSURE: Transform the data to a grid and DWT; soft threshold using noise-proportional
SureShrink thresholds; apply inverse DWT.

IRREGVIS: Same as IRREGSURE, but use noise-proportional thresholds o /2 log n.

IRREGVIS3: As IRREGVIS, but use thresholds 30;41/2log n.

RANKSURE: Apply standard SureShrink wavelet procedure to the data, taking only the
ranks of the t; into account; perform the grid transform to get an estimate on a grid.

RANKVIS: Perform VisuShrink on the data, again taking only the time order into ac-

count, and follow by the grid transform.
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The methods based on VisuShrink cannot be expected to perform very well, because this
threshold choice does not even attempt to obtain a low MSE. Except for the Blocks signal,
IRREGSURE always performs better than RANKSURE. The simple IRREGVIS3 method

also exhibits a small MSE which is in 5 cases even smaller than the MSE for IRREGSURE.
For the Blocks data, RANKSURE always attains the smallest MSE. As we pointed out above,

wavelet decompositions of smooth functions that are sampled on an irregular grid are usually
not as economical as in the equally spaced setting, and the poor performance of RANKSURE
on the Heavisine data confirms this. However, for the piecewise constant Blocks signal, sam-
ples on irregular grids have the same general properties as those on a regular grid, and so it is

not surprising that RANKSURE performs well.

6. ROBUST WAVELET REGRESSION

Donoho (1993) pointed out that standard thresholding techniques do not work very well if
some of the observations may be considered to be outliers or when the noise follows a distri-
bution with heavy tails. In the case of equally-spaced time points, two suggestions have been
made for this problem. Bruce et al. (1994) use an alternative discrete wavelet transform of
the data. At each level, the sequence Hc'*+1! is preprocessed before the decimation step Dy is
carried out to obtain ¢?. The algorithm performs in O(n) and is included with the S+Wavelets
toolkit that is available from MathSoft. Donoho and Yu (1997) construct a nonlinear mul-
tiresolution analysis based on a triadic grid; the present version of their method is restricted
to n = 37 data points for some integer J. The computational time required for their method
is O(nlogyn).

We propose a more direct ‘quick and dirty’ approach more closely related to classical
robustness methods. It is equally applicable to regularly or irregularly spaced data. We iden-
tify outliers, remove them from the data, and apply wavelet thresholding to the remaining
data points. Classical thresholding cannot be used in such an approach, because the result-
ing data will not be equally spaced even if the original data were. Instead, our procedure for

irregularly-spaced data can be used, and this is illustrated within a particular example.
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FIGURE 5. Balloon data with two wavelet estimators. Left panel: classical
wavelet thresholding with VisuShrink thresholds. Right panes: Thresholding
techniques for unequally spaced data applied after removing outliers.

Figure 5 shows data analyzed previously by Davies and Gather (1994). They are taken from

a balloon which took measurements of radiation from the sun. The measurement device was

occasionally cut off from the sun, causing individual outliers and large outlier patches. For
this analysis we subsampled the data by working with every 20th data point only, reducing the
sample size from 4984 to 250. When applied directly to these data, the VisuShrink method of
Section 4.1 produces ugly curves like the one shown in the left panel of Figure 5. The curve
exhibits several high frequency phenomena due to outliers. These have survived even the use

of the VisuShrink threshold.

To remove the outliers and extreme observations, the following procedure was carried out:

1. The variance of the data was estimated from the median absolute deviation of the dif-
ferences d; = (yi;11 — vi)/2, giving the estimate 62, say. This corresponds to the usual
variance estimation via a wavelet decomposition using the Haar basis.

2. For each data point the local median was calculated over a window containing the point
itself and its five left and right neighbors. If the difference between data point and me-
dian was greater than 1.96 64, the point was removed.

3. The VisuShrink algorithm of Section 4.1 was applied to the modified data set, using a

wavelet basis with four vanishing moments and extremal phase. The variances of the
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wavelet coefficients g; , were determined under the assumption that the nondeleted data

points were independent with variance 2.

In Step 1, it would not be advisable to base the variance estimation on a higher-order
wavelet basis expansion than the Haar basis, because the filters G and H would have wider
support, so more wavelet coefficients would be contaminated by the outliers. Experiments
showed that a re-estimation of the variance in Step 3 from the cleaned data set will typically

underestimate the noise level, and so is not to be recommended.

The results can be seen in the right panel of Figure 5. Note that the abrupt changes in slope

in the curve are well modeled, but the spurious high frequency effects have been removed.

7. HETEROSCEDASTIC AND CORRELATED DATA

7.1. Heteroscedastic data. A common problem in nonparametric regression is the handling
of data with non-constant variance. Intuitively one should apply heavier smoothing in re-
gions where the variance is larger, and an estimate of the local variance of the data will allow
our methodology to be used. Our variance calculation algorithm will determine appropriate
adjustments to the thresholds in different parts of the wavelet table. Rather than being com-
pletely prescriptive, we present a possible approach in the context of the example discussed in
Section 1.2. In a similar situation Silverman (1985) used an iterative method to give estimates

of the local variance and hence an improved estimate of the whole curve.

To give a noniterative wavelet-based method, we adopt an approach similar to suggestions
of von Sachs and MacGibbon (1997) and Neumann and von Sachs (1997). For each i =
1,...,n — 1 the difference d; = (y;11 — v;)/v/2 Was calculated, and ascribed to the point
r; = (tix1 + t;)/2. The estimated standard deviation &; of the i-th data point was based on
the median of the absolute values of d; over a small window of width 0.2 around each point.
These values for the variances of the individual data were then plugged into the derivation
of the initial covariance of the gridded data. Using VisuShrink noise-proportional thresholds

then gives the bottom right panel of Figure 1.
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In this example, the individual variances were estimated from the data themselves. The
basic methodology is equally applicable if the variances are known, or can be estimated from

external considerations.

7.2. Correlated data. Another obvious use of our algorithm is for data with known covari-
ance structure, whether stationary or nonstationary. A simple example of such data is the
synthetic ion channel gating data described in Johnstone and Silverman (1997). These data,
due to Eisenberg and Levis (see Eisenberg, 1994) are designed to represent the challenges
posed by real ion channel gating data. The true signal is a step function taking values 0 and
1, corresponding to closings and openings of single membrane channels in cells. These are
not simulated data in the usual statistical sense, but are synthetic data carefully constructed

by practitioners with direct experience of the collection and analysis of real data.

It is reasonable to suppose that the variance structure of the data is stationary and known; in
constructing their synthetic data, Eisenberg and Levis used known properties of real labora-
tory data and filtering instrumentation. Working from a very long ‘noise’ sequence provided
by the authors, we estimated the noise variance to be 0.8 and the autocorrelations to be 0.31,
—0.36, —0.26, —0.08 at lags 1 to 4 respectively, and zero for larger lags. A section of the data
is plotted in Figure 4 of Johnstone and Silverman (1997); the standard deviation of the noise

is nearly 1, and it is difficult to detect the changes in overall level by eye.

The segment of the first 2048 data values was examined in more detail. VisuShrink noise-
proportional thresholding was applied to the DWT of the data at levels 7 and above. The
variances of the wavelet coefficients were calculated as described in Section 2, using the

estimated autocorrelations to construct the covariance matrix of the data. The Daubechies

extremal phase wavelet of order 6 was used. As a final step, the estimated function was
rounded to the nearest integer, which was always 0 or 1. Figure 6 shows the “true’ signal and
the estimate obtained. The number of discrepancies between the true signal and the estimate
IS 54 out of 2048, a 2.6% error rate which is far better than any performance obtained by

Johnstone and Silverman (1997) for a standard wavelet transform. Note that the pattern of
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FIGURE 6. Upper panel: The ‘true’ signal synthesized by Eisenberg and
Levis, plotted for time points 1 to 2048. Lower panel: Estimate obtained by
noise- proportional thresholding at levels 7 and above, as described in the text.

transitions between 0 and 1 is well estimated; the only effects missed are three sojourns in

state 0, each of length 2.

Johnstone and Silverman (1997) obtained considerable improvements by the use of a
translation-invariant method (Coifman and Donoho, 1995; Nason and Silverman, 1995). This
essentially constructs estimates for every position of the wavelet grid, and then averages. For
this case we tried a translation-invariant prescription using periodic boundary conditions, a
primary resolution level of 7, and thresholds proportional to standard deviation. If the Visu-
Shrink constant of proportionality is used, the results are not as good as in the simple wavelet
transform case. However if these thresholds are divided by 2, the misclassification rate im-
proves to 47 out of 2048, which actually surpasses Johnstone and Silverman’s best error rate,
but only by a small margin. A smaller threshold is desirable because of the smoothing effect

of the averaging step in the recovery part of the translation-invariant procedure.
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8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

We have set out an algorithm for finding the variances and within-level covariances of
the wavelet transform starting from a rather general covariance structure. Several possible
applications of this method have been considered, but obviously there are many avenues that

we have not explored.

A range of ideas including irregular data, nonstationary dependence, correlated data and
robust methods have been considered, for the main part, separately from one another, and an
interesting area of investigation is a synthesis between them. Conceptually, it is fairly obvious
how one would proceed, but the combination of the different aspects may well need care in

practice.

We have almost entirely concentrated on the variances of the individual wavelet coeffi-
cients, while the algorithm itself also yields a great deal of information about covariance.
Even though the wavelet transform often has a decorrelating effect (see, for example, John-
stone and Silverman, 1997, Section 2.2) it would be interesting to devise ways of processing
the coefficients in a way that uses knowledge of the correlation structure. This may well
be more burdensome computationally, but would possibly produce more accurate statistical
estimates.

Finally, we have concentrated on the one-dimensional case, but wavelets are of growing
importance in the analysis of image data. The basic principles of our method can be easily
extended to deal with two-dimensional wavelet transforms of data showing short-range cor-
relation. Of course, the operational details will depend on the specific field of application, but

the need for efficient algorithms is likely to be even more crucial than in the one-dimensional

case.
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