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2 The paper considers the problem of nonparametric regression with
emphasis on controlling the number of local extremes. Two methods, the
run method and the taut-string-multiresolution method, are introduced
and analysed on standard test beds. It is shown that the number and
locations of local extreme values are consistently estimated. Rates of con-
vergence are proved for both methods. The run method converges slowly
but can withstand blocks as well as a high proportion of isolated outliers.
The rate of convergence of the taut-string-multiresolution method is al-
most optimal. The method is extremely sensitive and can detect very low
power peaks.

Section 1 contains an introduction with special reference to the number
of local extreme values. The run method is described in Section 2 and
the taut-string-multiresolution method in Section 3. Low power peaks are
considered in Section 4. Section 5 contains a comparison with other meth-
ods and Section 6 a short conclusion. The proofs are given in Section 7

and the taut string algorithm is described in the appendix.

1. Introduction
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1.1. Approzimating data and procedures Consider a data set (t;,y(t;)),i =

1,...,nin [0,1] x R and a family of nonparametric regression models

(1.1) Y(t) = f(t) +e(®), 0<t<1,

indexed by f and . We always assume that the ¢; are strictly ordered, 0 < t; < t3 <
... < t, < 1. Nonparametric regression is concerned with specifying models, that is,
specifying functions f and noise € such that typical data sets (¢;,Y (¢;)),e =1,...,n
generated under the model “look like” the given data set (t;,y(t;)),s = 1,...,n
(Donoho 1988; Davies 1995). Such models will be regarded as adequate approxima-
tions to the data. They are obtained by manipulating or, more formally, applying
a functional to the data and so define a statistical procedure (Tukey 1993). Two
such procedures, the run procedure and the taut-string-multiresolution procedure,
are considered in this paper. Both are based on a decomposition of the data of the

form

(1.2) y(ti) = falti) +ra(ts)-

which is a special case of the general Tukey decomposition

(1.3) Data = Signal + Noise.

In general Signal and Noise in (1.3) can be separated by assuming that the signal
is simple and the noise complex. We measure the simplicity of a function f on [0, 1]
by the number of local extreme values in the open interval (0,1). This is not the
standard definition of simplicity which usually refers to some form of smoothness.
Complexity is related to randomness and we use a stochastically based concept
of noise defined in terms of independently distributed random variables. The two

procedures we consider depend on two different definitions of approximation to



white noise. The first is based on Bernoulli sequences and can be written as

(1.4) max_run(sgn(ry (¢1)), - - ., sgn(r, (t))) < pn

where sgn(r,,(t;)) denotes the sign of the residual r,,(¢;) and p,, is some given num-
ber. In other words, the residuals r,(¢;) may be adequately approximated by white
noise or, more informally, look like white noise if (1.4) holds. The default value we

suggest is
pn = [log, n — 1.47]

which is justified below. The second definition of approximation is based on Gaus-
sian white noise. Suppose for the moment that n = 2™ is a power of two. The

multiresolution coefficients w; , are defined by

(k+1)27
(15) Wik = Q_j/Z Z Tn(tz)

i=k27 41

The residuals may be adequately approximated by Gaussian white noise if

(1.6) lwjk| < ony/2.51l0gn

where o, is some measure of the scale of the residuals r,,(¢;). The default functional

we use is

(1.7) On = %Medianﬂy(tz) ()] () — Yt )]}

This is the same as hard thresholding for wavelets except that we use the factor
2.5 instead of the usual 2. This is for the simple pragmatic reason that 2.5 seems

to give better results.

The nonparametric regression procedures we study may now be formulated as
follows:

The run problem
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Determine the smallest integer ky, for which there exists a function f, on [0,1] with
ky, local extreme values and such that the residuals r,,(t;) satisfy the run condition
(1.4).

The multiresolution problem

Determine the smallest integer k,, for which there exists a function fy, on [0,1] with
kn, local extreme values and such that the residuals r,(t;) satisfy the multiresolution

condition (1.6).

Both problems are well defined for any given data set. We give a complete
solution of the run problem and make a laudable attempt at the multiresolution
problem. The difficulty with the multiresolution problem is that of obtaining
suitable approximating functions f,, with no unnecessary local extreme values. The

method we use is that of the taut string which will be described below.

The approach given in this paper is neither Bayesian nor frequentist. It makes no
assumption that the data are generated by a random mechanism. Indeed they may
well be deterministic. We take the point of view that models are approximations
to data. In particular we make no reference to “true” regression functions for real
data as we do not think that these exist in the sense that, say, elephants exist. By
formulating the problem in terms of approximation we avoid the embarrassment
of using the word “true”, whether in inverted commas or not. We refer to Davies
(1995). Readers who do not like this may forget this paragraph, move on to the
next section and assume or “know” that all data sets derive from some real existing

“true but unknown” regression function f, whatever that might mean.



1.2. Test beds Statistical procedures can be evaluated using real data sets and
under the well controlled conditions of a stochastic model or test bed. Tukey uses
the word “challenge” (Morgenthaler and Tukey 1991) in this context. The test beds

we use are data sets generated by stochastic models of the form

where the £(¢;) are generally but not always taken to be independently and iden-
tically distributed random variables. On test beds one can talk about estimating
functions. They have the advantage of allowing a direct comparison of the func-
tion f used to generate the data with functions f,, yielded by the procedures. The
comparisons are often visual, indeed these may be the most convincing ones, but
can include, as we shall do so, statements on consistency and rates of convergence.
Traditional confidence sets are also possible on test beds but these are of a one sided
nature (Donoho 1988). For any given sample size n it is possible to perturb f in
such a way that it has an arbitrarily large number of local extremes without these
being visible in the data. For this reason it is not possible to give a finite upper
bound for the number of local extreme values of the function f. When considering

rates of convergence we use the supremum norm

lf = fall = sup |f(t) = fal®)]-
0<t<1

For certain test beds it can be shown that optimal rates of convergence exist. We

show that the run based procedure has a slow rate of convergence namely O(lolgol#)

whilst the taut-string-multiresolution procedure has the optimal rate of convergence

of O((128m)1/3),



1.3. Smoothness Smoothness is not a consideration in this paper. Techniques
for smoothing under shape and deviation constraints have been developed by Met-

zner (1997), Davies and Lowendick (1999) and Majidi (2000).

1.4. Previous work Much work has been done on the problem of nonparametric
regression. Of the different approaches we mention kernel estimation (Nadaraya
1964; Watson 1964), penalized likelihood (Silverman 1985; Green and Silverman
1994), wavelets (Donoho, Johnstone, Kerkyacharian and Picard 1995) and local
polynomials (Fan and Gijbels 1995, 1996). None of these methods is directly
concerned with local extremes but research has been done which explicitly takes
the shape of the regression function into account. Mammen (1991) uses monotone
least squares fits between local extrema whilst Mammen and Thomas-Agnan
(1998), Mammen, Marron, Turlach and Wand (1998), Delecroix, Simioni and
Thomas-Agnan (1995) and Ramsay (1998) modify classical estimators such as
spline smoothers and kernel estimators to deal with monotonicity or convexity
constraints. None of these papers is directly concerned with estimating the number
or the positions of the local extreme values. Work in this direction has been done by
Diimbgen (1998b) who applies linear rank tests to locate local extrema. Hengartner
and Stark (1995) use the Kolmogoroff ball centred at the empirical distribution
function to obtain nonparametric confidence bounds for shape restricted densities.
Chaudhuri and Marron (1997) assess the significance of zero crossings of derivatives
and use their results to provide a graphical device for displaying the significance the
local extremes. Another approach is that of mode testing. We refer to Good and
Gaskins (1980), Silverman (1986), Hartigan and Hartigan (1985), Fisher, Mammen
and Marron (1994). The positions of the local extreme values are considered by

Minotte (1997) using a procedure which decides for each mode in a mode tree
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(Minotte and Scott 1993) whether it is significant or not. Méachler (1995) presents
an approach using a roughness penalty to penalize points of inflection. The taut
string method was used by Davies (1995) in the context of density estimation;
there are connections with the excess mass approach of Miiller and Sawitzki (1991).
Further work in this direction is due to Polonik (1995a, 1995b, 1999). Other articles
on shape restricted densities and regression functions are Groeneboom (1985) ,
Hartigan (1987), Robertson (1967), Sager (1979, 1982, 1986) and Wegman (1970).
Order restricted inference is considered in Barlow, Bartholomew, Bremner and
Brunk (1972) and Robertson, Wright and Dykstra (1988) . Finally in an article
which appeared whilst the present paper was under revision Polzehl and Spokoiny

(2000) give a method based on adaptive local means.

The run method (Davies 1995; Metzner, 1997) may be seen as the inversion of
the run test for testing the independence of a sequence of observations. It yields
the minimum number of local extremes consistent with the observations as well as
approximation intervals for their location. Diimbgen (1998a, 1998b) inverts other
tests and obtains better convergence rates on standard test beds but at the cost of

greater computational complexity.

Taut strings are well understood in the context of fitting an isotone function. The
greatest convex minorant of the integrated data is a taut string and its derivative
is precisely the least squares isotone approximation (Barlow et al. 1972; Leurgans
1982). The idea of using taut strings for densities goes back to Hartigan and Harti-
gan (1985) who derived a test for the unimodality of a density. In Davies (1995) it
was explicitly used to calculate approximate densities. It was first used in the gen-
eral nonparametric regression problem by Mammen and van de Geer (1997). They

showed that the taut string is a special case of a penalized least squares functional



where the penalty is based on the total deviation norm. The derivative of the taut

string has the smallest number of local extremes of all functions whose integral lies

in the supremum ball. Davies (2000) gives an application of the string method to

spectral density functions.

2. The run method

2.1. General description We illustrate the general method of solving the run

problem of Section 1.1 using the data shown in Figure 1 with a maximum allowable

run length p, = 2. To ease the notation we set t; = 1.

10
o
o

Fia. 1.

30

An artificial data set to illustrate the run procedure.

Consider a function f, which is initially nonincreasing. The value of f,(3) cannot

exceed max{y(1),y(2),y(3)} as otherwise the first three residuals would be negative



giving rise to a run of length 3. This gives the upper bound

(2.9) fn(3) < max{y(1),y(2),y(3)}.

No nontrivial upper bounds are available for f,(1) and f,(2). Similarly a lower

bound for f,(1) is given by

fn(1) 2 min{y(1),y(2),y(3)}-

As the function is taken to be initially nonincreasing the above argument extended

to each point gives rise to a sequence u(j) of upper bounds defined by

(2.10) u(j) = min{u(j — 1), max{y(j — 2),y(j — 1),y(j)}}

with u(1) = u(2) = oo. To see this we note that the reasoning which lead to (2.9)

gives

(2.11) fn(3) < max{y(j —2),y(j —1),5(j)}-

On the other hand if u(j — 1) is an upper bound for f,(j — 1) then

(2.12) fa(@) <G —1) Su(G-1).

Combining (2.11) and (2.12) leads to (2.10). The corresponding lower bounds I(j)

are given by

(2.13) 1) = max{l(j + 1), min{y(j),y(j + 1),y(j + 2)}}.

If at some point ¢ the lower bound /(i) exceeds the upper bound u(z) then it is not
possible for the function f,, to be nonincreasing on 1, ...,7+2 and for the maximum
run length not to exceed 2. Thus at the latest at the point ¢ + 1 we must switch from
a nonincreasing to a nondecreasing function. It turns out that it is not necessary
to calculate the lower bounds in order to determine the point at which the switch

must be made. The point ¢ + 2 is also the first point at which the last three values
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y(i),y(i + 1) and y(i + 2) lie above the upper bounds (i), u(i + 1) and u(i + 2)
respectively. This can be shown by backward induction. The result can be seen in
the upper panel of Figure 2. The values of y at the points 14,15 and 16 lie above
the upper bounds. Thus at the latest at the point 15 a switch must be made to a
nondecreasing function. This is done as follows. We set 1(14) = [(15) = —o0 and

calculate lower bounds for the nondecreasing section by

1) = max{l(j — 1), min{y(j - 2),y(Gj —1),y(H)}}, Jj=16,...

The lower bounds are calculated until either the end of the data set is reached or
at some point the last three y-values lie below the corresponding lower bounds. If
the latter contingency occurs a switch is made to a nonincreasing function and the
upper bounds are calculated as before. For the data shown in Figure 1 the switch
must be made at the latest at the point 28 as can be seen from the upper panel of
Figure 2. The results obtained are the following. If we start with a nonincreasing
function and limit the allowable run length to 2 then at least two local extremes are
required. The first, a local minimum, must be attained at a point ¢ with 4 < 15. The
second, a local maximum, must be attained at a point j with 7 < 28. The process
described here is called “stretching to the right” in Davies (1995). Starting with a
nondecreasing function leads to one extra local maximum: in general that initial
behaviour is chosen which minimizes the number of local extremes. The opposite
process, stretching to the left, starts with the last point of the data set and moves
to the left calculating the bounds in the same manner. The result is shown in the
lower panel of Figure 2. The number of local extremes is the same, in this case
two, and the lower bounds for the positions of the local extremes are 8 and 15. The
combined result for the data of Figure 1 is that the local minimum must be attained

in the interval [8,15] and the local maximum in the interval [22,28]. In an interval
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bounding the position of a local minimum there is no nontrivial lower bound for
the function without further specification of the location of the local minimum.
Similarly, in an interval bounding the position of a local maximum there is no
nontrivial upper bound for the function. At points where only one lower bound has
been calculated (either from stretching to the right or to the left), this defines the
lower bound. At points where two lower bounds have been calculated the minimum
is taken. The upper bound is calculated in the corresponding manner. The final
bounds are shown in Figure 3. The outliers at the points 7,16 and 17 are seen not
to have lead to additional local extremes. A more detailed analysis of the effect of
outliers is given below.

The results so far show that restricting the maximal run length to 2 forces any
regression function to have at least two local extreme values. If f, is a function
with two local extreme values and whose residuals have a maximum run length
of 2 then the function must initially be nonincreasing, the local minimum must
be attained in the interval [8,15] and the local maximum in the interval [22,28].

Furthermore the function must lie between the bounds at all data points.

It is easy to show that not every function with the correct monotonicity behaviour
and lying between the bounds satisfies the run condition. The construction of a
function with only two local extreme values and which satisfies the run condition
is not completely trivial. Suppose that it is possible, as indeed it is, to define a
nonincreasing function which satisfies the run condition with p,, = 2 on the interval
[1,15]. The last two residuals are of necessity positive as 15 is an upper bound for the
position of the local minimum. To prevent a run of length 3 the next residual must
be negative and the function must therefore have a value exceeding y(16) = 12. It

is clear that this choice of f, will lead to four local extreme values. To construct
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Fi1G. 2. The data set of Figure 1 together with the bounds from stretching to the right (upper

panel) and stretching to the left (lower panel)
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a function with only two local extreme values we proceed as follows. We take the
upper bound 15 for the position of the first local extreme value. The upper and
lower bounds u and ! as defined by (2.10) and (2.13) respectively are calculated for
the section [1,15] of the data. The lower bound is best calculated from right to left

with initial values [(14) = I(15) = —oo. The first 2 values are defined to be

fn(1) = fn(2) = max{y(1),y(2)}

and the others are defined as follows. If the first ¢ values of f,, have been defined the
value at ¢+ 1 is defined as follows. If f,,(7) < u(i+1) then we set f,(i+ 1) = f,(4).
If fn(i) > u(i + 1) we define f, as follows. If y(i + 1) > (¢ + 1) then we set
fn(@+1) =1(+1). If not we backtrack and determine the first j to the left of 1 + 1

such that y(j) > I(j). That is
j=max{m:m <i+1,y(m)>1l(m)}.

We then set f,(m) = I(j) for j < m < i+ 1. At the latest we must switch to
a nondecreasing function at the point 15. We do this as follows. We consider the
upper bound of the position of the next local extreme value. For the present data
the is the point 28. We now calculate the lower and upper bounds for the section

of the data on [14, 28]. The first two values of the function are defined by

fn(14) = fn(15) = min{y(14),y(15)}.

The function is now defined as on the first section but with the roles of the lower
and upper bounds interchanged. The function f, is continued as a constant until
the first time it drops below the lower bound. At this point a switch is made to the
upper bound but only if the value of the observation at this point does not exceed
the upper bound. If not we backtrack to that first point where the upper bound

exceeds the y-value. This process is continued in the obvious manner until the end
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of the data set is reached. The function so defined satisfies the run condition, has
the correct monotonicity behaviour and lies between the upper and lower bounds
over the whole range. It is shown in Figure 3. This construction is due to Davies
(1995) and Metzner (1997). The latter contains further details and variations on

the run procedure.

15
1

10
1

40

F1G. 3. Final bounds for a run length of 2 together with a function satisfying the run condition

and lying between the bounds.

The general recurrence equations for calculating the upper and lower bounds for

a given run length p,, are as follows:

min{u, (i — 1), max{y(j),7 — pn < j <i}}, nonincreasing
(2.14) up(i) = fn t " H
min{u, (i + 1), max{y(j),i < j < i+ pn}}, nondecreasing.

max{l,(: + 1), min{y(y),¢ < j <1+ pp}}, nonincreasing
015 i) < 4 Bl D min{u() 3

max{l, (i — 1), min{y(j),% — pn < j < i}}, nondecreasing.

Combining these results gives the following theorem.
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THEOREM 1.  For a given data set (t;,y(t;)),i = 1,...,n and a given mazimal

run length p, for the residuals

(i) = y(ts) — fu(ts)

the lower and upper bounds described above specify the minimum number k, of local

extreme values a function must have so that the residuals satisfy the run condition.

Furthermore there exist functions with k,, local extreme values whose residuals satisfy

the run condition. Any function with k, local extreme values whose residuals satisfy

the run condition must lie between the bounds over the whole range. The local extreme
l

values of any such function must also be attained in the k,, intervals [t;,t7],1 <i <

k., determined by the stretching to the right and left procedures.

The run procedure is easy to apply and requires only the specification of the
maximal run length. To give a default value for the allowable run length p, we
consider a sequence of i.i.d. Bernoulli random variables taking the values 1 and —1
each with probability 1/2. We denote by R,, the length of the longest subsequence
which is composed entirely of 1s or —1s. For any given «,0 < a < 1, we denote the

a-quantile of R, by qu(n, a, R,,) that is

qu(n,a, R,) = min{m : P(R, < m) > a}.
For large n we have the simple approximation
(2.16) pn = qu(n,a, R,) =~ [logyan — 2 — log, (— log(a))]-

which can be deduced from the results given in Section XIIL7 of Feller (1968)
or shown directly. The default choice of run length is (2.16) with @ = 0.5 which

represents a form of median for the number of local extreme values. In this case

(2.17) pn = qu(n, 0.5, R,) ~ [log, n — 1.47].
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Nonparametric regression is an infinite dimensional problem. This is one reason
why the bounds [/, and wu,, are relatively wide and why the intervals [t,¢7],i =
1,...,k,, are relatively long. Another is the use of a rather crude measure of ap-
proximation to white noise, namely the run length. The effects can be seen in the

upper panel of Figure 4 which shows 1000 points of a sine curve contaminated with

Cauchy noise as in (2.18)
(2.18) y(t) = 10sin(¢) +(t), e(t) ii.d. standard Cauchy.

The bounds are based on a run length p, = 9 which is the default value given
by (2.17) and result in k, = 2 local extreme values. One method of obtaining
narrower bounds is to decrease the run length whilst maintaining just two local
extreme values. For the sine curve the run length can be reduced to p,, = 6 without
introducing any further local extremes. The lower panel of Figure 4 shows these
new bounds.

The bounding intervals based on a run length of p, = 9 are [141,376] for the
local maximum and [600, 878] for the local minimum. The corresponding intervals
for the run length p, = 6 are [178,340] and [630, 823] respectively. These hold for
any function which satisfies the run condition. It is however possible to specify
points within these intervals near which the function is required to have a local
extreme value. The data of Figure 1 show that it may not be possible to have local
extremes at exactly these points and still fulfil the run condition. A modification
of the construction given above of a function within the bounds which satisfies the
run condition shows the following. Given any points #{ in the intervals [t!, 7] there
exists a function satisfying the run condition with exactly k, local extremes which
are attained at points differing from the prescribed t§ by at most the run length.

Different choices lead to different functions. This can be interpreted as an attempt
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FiGc. 4. 1000 data points generated under (2.18). Upper panel shows bounds with default run
length pp, = 9 given by (2.17). Lower panel shows bounds with minimal run length p, = 6

consistent with two local extremes.
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to visualize the variability of the set of adequate functions. One obvious choice for
the points t{ is the centres of the intervals. The top panel of Figure 5 shows the
result of doing this for the Cauchy sine data using a run length of p,, = 6. The local
extreme points are required to be near the centres of the intervals [178,340] and
[630,823] namely 259 and 726. The lower panel of Figure 5 shows the bounds when

the local extremes are required to be near 180 (maximum) and 820 (minimum).

If a specific approximating function for the data is required there are several al-
ternatives. One method is to calculate the bounds either with or without minimizing
the run length and with or without specifying the positions of the local extremes.
From this a specific function which satisfies the run condition and lies between these
bounds can be obtained from the algorithm described above. The upper panel of
Figure 6 shows this function together with the underlying sine curve. It is based on
the bounds shown in the upper panel of Figure 5. Although bounds are constructed
using the run criterion the statistician is not obliged to consider only functions
which satisfy it. The simplest manner of obtaining a function is to take the average
of the lower and upper bounds. The lower panel of Figure 6 shows the average of
the bounds of the upper panel of Figure 5 together with the approximating sine

curve.

That no nontrivial bounds are available at the local extreme values or at the start
and finish of the data set is related to the ability of the run method to withstand
outliers. We analyse the situation for a block of outliers. If the observation before
the block of outliers lies below the upper bound then the method can withstand
a block of large positive outliers of length equal to the run length. If however the
last s observations before the block of outliers lie above the upper bound then

only a block of length p,, — s of arbitrarily large positive outliers can be tolerated.
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Fi1G. 5. The upper panel shows bounds with run length p, = 6, a local mazimum near 259
and a local minitmum near 726. The lower panel shows bounds with run length p, = 6, a local

mazimum near 180 and a local minimum near 820.
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Fi1G. 6. The upper panel shows a function satisfying the run condition with pn, = 6 and lying
between the bounds of the upper panel of Figure 5. The lower panel shows the average of the

bounds of the upper panel of Figure 5. The underlying sine curve is shown in both panels.
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Similar considerations apply to the lower bounds. Figure 7 shows Gaussian noise
with 9 outliers in the centre. The upper panel shows that they are ignored if the
run length is p, = 10 (upper panel) but detected if the run length is p, = 9 (lower
panel). The reason is that the observation just before the block of outliers lies above

the upper bound.

2.2. Behaviour on test beds We consider a data set generated on a test bed of
the form (1.8). Let K¢ denote the number of local extreme values determined by
the run procedure using the a-quantile of the length of the longest run (2.16). The

following theorem holds.

THEOREM 2.  Consider data generated on the test bed (1.8) where the function
f has k local extremes and the errors e(t) are independently distributed with P(e(t) <

0) = P(e(t) > 0) = 1. Then

Pk > K7) > a.

The residuals e(¢) fulfil the run condition with probability at least a and from
Theorem 1 it follows that at least K local extreme values are required if the run
length of the residuals is not to exceed qu(n, a, R,).

As mentioned in Section 1.2 this form of result is best possible for fixed n. If
however the sample size increases and the design points ¢;,1 < ¢ < n, become dense
in [0,1] then the procedure will determine the correct number of local extremes for
sufficiently large n. The precise statement is contained in the next theorem where we
assume t; = %, 1 < i < n. The theorem shows that f can be consistently estimated
and gives a rate of convergence. As the rate of convergence applies to the bounds
it holds for any function f, lying within the bounds as long as it has the same

monotonicity behaviour as the bounds. It is not necessary for the function to give
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Fi1Gc. 7. The upper panel shows the bounds for n = 1000 and run length p, = 10 with Gaussian
noise and a block of 9 outliers in the centre. The lower panel shows the effect of reducing the

run length to pn = 9.
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rise to residuals which satisfy the run condition. In particular the rate of convergence
holds for the function defined to be the mean of the bounds. The intervals which
contain the local extremes will be denoted by If(n,a),i = 1,..., K% and their

midpoints by t{(n,a),i =1,..., K%. The following theorem holds

THEOREM 3.  Consider the test bed (1.8) where

o f has a bounded continuous first derivative fV and ezactly k local extreme

values at the points 0 < tf < ... <t; <1
o fM(t) =0 only fort € {t,...,t5}

o the (t) are independently and identically distributed, have median zero and a

continuously differentiable distribution function in a neighbourhood of zero.
Then the following hold:
(a) For all§ >0

liminf P{KS =k} N {lrgzaéck |If (n,0)| < 0}

n—oo

e —te
N {max |ti(n,0) — ;| <0}) > a.

(b) For a sequence of functions f, within the bounds and with the same mono-
tonicity behaviour as the bounds the locations of the extreme values of the f,

converge in probability to those of f.

(c) There exists a constant b > 0 such that for any sequence of functions f, as in

(b)

lim P( s |f(t) — falt)] < bk’glﬂ) —1

n00 (1] 70 (1) >6} logn

for all § > 0.
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(d) There exists a constant b > 0 such that

. . loglogn
lim P f ) —ft)>b—="") =1
oo ({t:|f(gl(t)25} un(t) = F(0) 2 logn )

and

lim P( inf  f(t) — In(t) > bloglﬂ) =1
n—oo  \ {t:|f()(t)|>6} logn

for all § > 0.

3. The taut-string-multiresolution method

3.1. Multiresolution and local averages The multiresolution problem of Section
1.1 is based on the white noise approximation defined by (1.5), (1.6) and (1.7). If
the sample size n is not a power of 2 then the interval [(k27 + 1)/n, (k + 1)27 /n]
of (1.5) can be replaced by [(k2/ + 1)/n, min{(k + 1)27/n,1}]. This is legitimate
because of the subadditivity of probability measures. An alternative is to use the
techniques of Kovac and Silverman (2000).

The w; 1 can be replaced by discrete wavelet coeflicients or, more generally, co-
efficients generated by any multiresolution scheme. Prior knowledge of the shape
of the peaks to be detected can be incorporated into the shape of the mulitreso-
lution functions. The advantages multiresolution schemes are that they work well
in practice, that they result in almost optimal rates of convergence on appropriate
test beds and that the calculations are of order n. The bound (1.6) can be replaced

by the more general bound

(3.19) on/Tlogn

with o, again given by (1.7). The idea behind the bound (3.19) is that for a se-

quence of random variables Z, Z5 ... with a common subgaussian distribution (see
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Theorem 6 below)

lim P( max |Z;] < +/7logn) =1

n—0o0 i=1,...,n

for some 7 > 0. This follows from the tail estimate
(3.20) P(|Zi| > x) < cexp(—2”/7)

for some 7 > 0 which continues to hold for sums Z = L. "7 Z; of i.i.d. random
Vn 241
variables. The multiresolution coefficients are of this form and so we may use a

threshold of the form (3.19).

3.2. Strings and bounds Although the multiresolution problem of Section 1.1
is well posed the difficulty is that, in contrast to the run problem, there is no im-
mediate connection between the number of local extremes on the one hand and the
multiresolution definition of white noise approximation on the other. To overcome
this is we use an unrelated method, the taut string, to produce candidate func-

tions f¥ with k local extreme values and then to take the smallest k for which the

SORIONID

approximate white noise. The success of this approach depends entirely on the

residuals

efficacy of the taut string method to provide such candidate functions.

The left panel of Figure 8 shows a small simulated data set y ( ) i =1,...,n:

i
n
the right panel the integrated process y; defined by

(3.21) yn(%):%iy(%) j=0,...,n.

i=1

Integrated or summed processes will always be distinguished by a superscript °.

Consider the lower [, and upper bound u,, for y;, defined by

(3.22) ln=yp — < (lower bound)

/n
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F1G. 8. Integrating the data. The left panel shows a small simulated data set and the right panel

their partial sums.

Taut String
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F1G. 9. A taut string between two bounds
. C
(3.23) Up =Y, + W (upper bound)
n

for some C' > 0. Consider a piece of string attached with one end at the point
(0,0) and the other at the point (1,y5(1)) and constrained to lie between [,, and
Up. Suppose that the string is now pulled until it is taut. It defines a function s,
on [0,1]. This is shown in Figure 9. We shall use the derivative of the taut string

as an approximation to the data as shown in Figure 10
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Taut String Estimate
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F1G. 10. The derivative of the taut string of Figure 9 together with the data.

The string can be defined analytically as that function sg, on [0, 1] with with the

smallest length
1
length(s;) = / 14 s (t)2dt.
0
which satisfies

(324)  53(0) =0, s3(1)=yy(1), In(t) <s3(t) Sunlt), 0<tE<1L

n

It can be shown that s? also has the smallest total variation under the side condi-

tions (3.24). That is s° minimizes

(3.25) TV(s) = / 1 |52 (1) dt.
0

subject to (3.24). In practice the restrictions (3.24) only hold at a finite number
of points i/n,i = 0,...,n. The calculation of the ensuing string can be performed
quickly and the complexity of the algorithm is O(n). The algorithm we use is
explained in the Appendix. The description of the taut string in the finite case is
the following (see also Mammen and van de Geer 1997). The points at which the
string coincides with either the lower or upper boundary are called knots. Between

knots the function is linear. Between two knots x; and z; where the string touches
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the upper bound u,, and between which it does not touch the lower bound [,, the
string is the largest convex minorant of the upper bound w,,. Similarly if the knots
are ones where the string touches the lower bound /,, and between which it does
not touch the upper bound u,, then it is the smallest concave majorant of the lower
bound [,,. At points where the string switches from the upper bound u,, to the lower
bound /,, the derivative s, = sfl(l) has a local maximum. At points where the string
switches from the lower bound /,, to the upper bound u, the derivative s,, has a

local minimum.

It is clear from the description of the taut string that its derivative s, has the
smallest number of local extremes amongst all functions g, whose integral g, (z) =
f; gn(t)dt satisfies the conditions (3.24). It is precisely this property which makes
the taut sring so efficacious in controlling the number of local extremes. It is possible
that the chosen initial and final conditions of (3.24) may themselves cause additional
local extremes. This can be overcome by attatching the ends of string either to the
upper or to the lower boundary at the start and at the end. Those of the four
strings whose derivative has the smallest of local extremes minizies the number of
local extremes of all functions whose integral lies within the bounds. Diimbgen has
pointed out to us that the effect of the initial conditions disappears in the limit.
The advantage of the string defined by (3.24) is that end effects are reduced. We
therefore use it in the examples although the theorems are stated in terms of the

string which minimizes the number of local extremes.

Bounds of the form (3.22) and (3.23) will be referred to as a tube with centre y2

and radius % : it will be denoted by T (y;’“ %) ,

(3.26) 7 (5, =) = o sla <9 S un).
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Other bounds derived from local squeezing will be used later. As already mentioned
the derivative s,(C) of the taut string sg(C) is used as a candidate regression
function. As s2(C) is piecewise linear s, (C) is piecewise constant. It is perhaps
worth mentioning some properties of the derivative s,(C). Consider two knots of
the string at the points % < % where the taut string touches the upper bound w,
and are such that the string does not touch the lower bound between the two knots.

The derivative s, (C) is then the least squares monotone increasing approximation

to the y-values between the knots. In other words the s, (C) (%) ,m=1,...,J solve
J m 2
minimize Z (y (g) - am) subject to a; < ... < aj.

i

(see Barlow et al. 1972). On sections where the string is the smallest concave majo-
rant of the lower bound [,, the derivative s, of the string solves the corresponding
problem where the values are nonincreasing. This implies the following. Between
two successive knots either both on the upper bound or both on the lower bound
the derivative is the mean of the observations between the knots. Between knots
defining a local minimum or maximum the derivative is again the mean of the ob-
servations but increased or decreased respectively by the diameter of the tube at
that point (see also Proposition 8 of Mammen and van de Geer 1997). Compared

to the data local maxima will tend to be too small and local minima too large.

3.3. Previous work The first use of the taut string method in statistics would
seem to be due to Barlow et al. (1972). Hartigan and Hartigan (1985) were the
first to use it in connection with modality, it being an integral part of their dip
test for unimodality. It was explicitly used by Davies (1995) to construct k-modal

densities. Mammen and van de Geer (1997) extended its use to the nonparametric
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regression problem but do not mention the connection with the number of local

extreme values.

3.4. Behaviour on test beds The next three theorems are concerned with the
asymptotic behaviour of the taut string on the test bed (1.8). In particular it is
shown to have an optimal rate of convergence away from the local extremes. The
first theorem corresponds to Theorem 2 for the run procedure. We denote the
number of local extremes of the derivative of the taut string in the supremum tube
with upper and lower bounds given by (3.22) and (3.23) by K¢'. Theorems 4, 5 and 6
refer to the taut string which minimizes the number of local extremes. Diimgen has
proved that the theorems continue to hold with sutiable modifications, for example
replacing the Brownian motion on [0, 1] of Theorem 4 by the Browninan Bridge on

[0, 1], if the initial conditions (3.24) are imposed.

THEOREM 4.  Consider the test bed (1.8) but where the errors £(t) are indepen-

dently and identically distributed with mean 0 and finite variance 0. Then

lim P(k>K%) =H (9) .

n— 00 g
where H denotes the distribution of supg<,<q |[W(t)| where W denotes a standard

Wiener process.

It is worth pointing out that the rate of convergence in Theorem 4 does not
depend on the function f of the test bed but only on the rate of convergence of the

partial sums

1 I j
Ve (t) = 7n ;5 (5)
to a Wiener process. To make the theorem applicable without knowledge of the

variance o2 an estimate of it is required. We use (1.7).
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The taut string based on the radius C'/+/n will be denoted by S2 = S2(C) with
derivative S, = S,(C). We write If(n,C),1 < i < K¢, for the intervals where
S, attains it local extreme values and denote the midpoints of these intervals by
7¢(n,C),1 < i < KS. The next theorem corresponds to Theorem 3(a) for the run

procedure.

THEOREM 5.  Consider the test bed (1.8) where [ satisfies the conditions of
Theorem 3 and where the errors £(t) are identically and independently distributed

with mean 0 and finite variance c2. Then for all § > 0

. . C _ e e _ z€ —
lim_ T PUKS = k0 {ua 1160, €)) < 630 {mass 1 1, €) — 5] < 1) = 1.

C—00 n—00

We note that the rate of convergence to the correct number of local extremes
depends much more heavily on the function f than the rate of convergence in
Theorem 4. It is for this reason that we state Theorem 5 separately.

In the following the length of an interval I will be denoted by |I|.

THEOREM 6.  Consider the test bed (1.8) where f satisfies the conditions of

Theorem 3 and additionally
e f has a bounded second derivative 2 which is nonzero at the k local extremes,

e the errors £(t) are independently and identically distributed subgaussian ran-

dom variables i.e. Eexp()\e(t)) < exp(cA?) for all X for some ¢ > 0.
Then

(a) lim lim Pt € I{(n,C),1 <i<k)=1.

C—00 n—oo

ORAP A ) | 5
(24C)1/3

(b) Hme o0 limp_so0 P (1 —§< O <1 4 5) = 1for all § > 0.
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(c) Let x; and z;11 denote successive knots which are either both on the upper or

both on the lower bound. Then there exists an A > 0 such that

C—00n—o0 n

1/3
lim lim P (mfdx(xi_H _-'Ei)|f(1)($i)|2/3 <A (logn) ) 1

(d) There exists an A > 0 such that

1/3
lim_lim P (Sup 1050 _ (e >:1

C—00 n—00 teA, |f(1) (t)|1/3 n

1/3 1/3
where A, = [A (lﬁi—") ,1—A (liiﬂ) N\UZIf(n,C).
(e) There exists a constant A > 0 such that

: : |f(t) Sn(t)| 2/3,—1/3
LA LA A R =
lim nhm P (tsellli | £(2) (t)|1/3 AC*°n 1

where B, = UYI¢(n,C).

The definition of subgaussian given above implies that the mean is zero (see
Kahane 1968, page 62, Exercise 10). We note that (d) implies that S, is optimal at
points ¢ with |f()(¢)] > & > 0. At points ¢t with f(1)(¢) = 0 its rate of convergence is

n~1/3 compared with the optimal rate of n=2/% (Leurgans 1982). As the length of the

—~1/6 -1/5

interval is n as against the optimal n this cannot be alleviated by replacing
Sn(t) for t € UFIf(n,C) by the mean of the y—values. Nevertheless the change
of boundaries at local extremes does alter the behaviour of the multiresolution
coefficients described in the following section.

Donoho et al. (1995) consider four sets of simulated data, the Blocks data, the
Bumps data, the Heavisine data and the Doppler data. They were also analysed
by Fan and Gijbels (1995), (1996). Figure 11 shows the taut string method to

the Blocks signal contaminated with Gaussian white noise. The tube radius is

1.1490 /+/n. The choice C' = 1.149 corresponds to the 0.5 quantile of the maxi-
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Fic. 11. The Blocks signal. The signal was contaminated with white noise and afterwards the

taut string approzimation calculated using the C/+/n tube with C = 1.149.

mum of the absolute value of a standard Brownian motion on [0, 1] (see Freedman

1971, (34) Proposition, page 27).

3.5. Strings and multiresolution As stated above the derivative of the taut
string tends to be too small at local maxima and too large at local minima. A
simple analysis shows that this effect alone will cause some of the multiresolution
coefficients of the residuals to exceed the bound as n — oo regardless of the value
of 7 in (3.19). The problem may be rectified to some extent by the simple expedient
of replacing S, by S, where S, is constant between knots where it is equal to the
mean of the y—values between the knots. The integrated S, will be denoted by 5’;.
Tt may be seen that S9 coincides with Y;° at the knots and is linear in between. This

alteration does not effect the number of local extremes but it improves the rate of
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Fi1G. 12. These figures show the application of the taut string methods to the Bumps signal. In
the left panel the tube radius is 1.1490/+/n and the lines at the bottom indicate regions where
maultiresolution coefficients are too large. The right panel shows the global squeezing procedure

where the tube is squeezed until all multiresolution coefficients are below the threshold value.
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convergence at local extremes. The behaviour of the multiresolution coefficients for

candidate functions based on S, is covered by the next theorem.

THEOREM 7.  Suppose the assumptions of Theorem 6 hold and consider the

multiresolution coefficients of the residuals of Sy, i.e.

(j+1)2°

s 3 (r(2) -5 ().

m:j2"+1

with supports [j2¢ + 1, (j + 1)2¢]. Then for each constant A > 0 there exists a 7 > 0

such that the following hold:

(a) All multiresolution coefficients W; ; taken from intervals whose support is of

length at most A(logn/n)/? are eventually smaller than the bound (3.19).

(b) All multiresolution coefficients W, ; the endpoints of whose supports do not lie

in UFI¢(n, C) are eventually smaller than the bound (3.19).

(c) At each local extremum t¢ of f there exists an interval JE(n,C) D If(n,C)
of length at most O <$) for which the following holds. All multiresolution
coefficients W; j with one endpoint in If (n, C) for some i and the other outside

of the corresponding Jf(n,C) are eventually smaller than the bound (3.19).

(d) For each interval I (n,C) of (b) there exists a multiresolution coefficient W ;
with support in If (n, C) and whose absolute value eventually exceeds the thresh-

old (8.19) whatever the value of T.

Theorem 7 shows that for an appropriate choice of 7 in (3.19) all multiresolution
coefficients will eventually be below the threshold (3.19) apart from some in shrink-
ing intervals which contain the local extreme points of the function f. Furthermore
there are multiresolution coefficients which will eventually exceed the bound (3.19)

whatever the choice of 7. In other words, the suboptimal rate of convergence at local
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extremes will be detected by the multiresolution analysis of the residuals. Figure 12
shows the application of the taut string method to the Bumps data of Donoho et
al. (1995). The left panel shows the intervals where the multiresolution coefficients
of the residuals exceed the threshold (3.19). The right panel shows the effect of
squeezing globally until all multiresolution coefficients are below the threshold. It
results in several spurious local extreme values. In the next section we describe how

local squeezing may be used to eliminate the spurious local extremes.

3.6. Local squeezing and multiresolution The results of the last section show
that although the taut string is locally adaptive (Mammen and van de Geer 1997)
it is not sufficiently so. Furthermore, as the Bumps data in Figure 12 show, the

problem cannot be solved by decreasing the radius of the tube globally. The cal-

culations used in the proof of Theorem 6 show that if the radius is of order n=3/5

—1/2

instead of n then the length of the interval which contains a local extreme value

is of order (logn/ n)l/ % and the rate of convergence is of order (logn/ n)2/ ®. This is

almost optimal and calculations show that all multiresolution coefficients will now
be smaller than the bound (3.19). However a global radius of order n=3/% for the

tube will eventually give rise to spurious local extremes. This may be countered

-1/5

by decreasing the radius of the tube only in an n -neighbourhood of those local

1/2

extremes found with the tube radius Cn~'/%. As it stands this is not feasible as the

taut string with radius n~'/2 locates the local extremes only with an accuracy of
order n~1/6. One possibility is to decrease the radius of the tube on the intervals

~1/6

of order n which contain the local extreme points. For subgaussian random

variables with variance o2 we have

1 : j \
=12 < _
1<iSlim—-1 /m le (m) > o) | <aexp(—c)?)
J:
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for all A > 0 for some constants a and c. Translating this inequality into one for the

integrated process Y, gives the following

e (s 2 (5) + 80 (1)) <am) 21~ e
where
(3.28) a=r (1) -v2(3)-
n n
and
(3.29) y(n,m) = /\\/Tm

The inequality (3.27) implies that with high probability depending on X the inte-

grated process f° lies in the locally squeezed tube
(3.30) Ty + 48,7, 1) ={g:max |V () + A — g(t)] <~}

with A = A, given by (3.28), v = y(n,m) given by (3.29) and I = I(l,m,n) =
[L Bm-11 Tn other words local squeezing on the interval I is accomplished by

shifting the integrated process Y,2 by an amount A on I and then using the modified

lower and upper bounds
L)=Yt)+A—vyand up(t,I) =Y, (t) + A+~

for t € I. The size of the shift A is not known in advance; (3.27) and (3.28) say that
for some shift, namely that given by (3.28), the integrated process f° lies in the
locally squeezed tube with high probability. This means that A should be chosen
to minimize the number of local extreme values of the derivative of the taut string
through the modified tube. This may be accomplished by calculating the taut string
over a grid of the possible values of A.

The effect of local squeezing on an interval where the derivative of the taut

string has a local extreme value may be analysed by setting m = m, = cn5/®
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(Theorem 6 (b)) in (3.27). This results in v, = Ay/en~7/'2. The radius of the

7/12 compared with the optimal radius of n=3/5. The proportional

tube is now n~
difference is n~1/%°, Repeating this procedure will always improve the asymptotic
rate of convergence but no finite number of steps will result in the optimal radius
of n=3/5. Suppose however we know the points where f takes on its local extreme
values. Under these circumstances it possible to squeeze the tube locally at the
local extremes over intervals which contain ¢n®/3 points. The result is described
by (3.27) with v, = Ay/cn~3/5. The taut string through the modified tube will
behave asymptotically as before but will have an improved and indeed optimal rate
of convergence at the local extreme values of f. If this is taken into account then
the proof of Theorem 7 shows that all multiresolution coefficients will now be set
to zero. The problem is that we cannot at the moment locate the local extremes

of f with the required accuracy. We now show how this can be done, at least in

principle, using a multiresolution analysis of the residuals.

We consider the taut string using a tube of radius Cn~'/? and the modified
derivative S,,. As shown above this will, in the limit, result in the correct number
of local extremes and all the extreme points will lie in the corresponding intervals

~1/6  Furthermore all multiresolution coef-

of S, whose lengths will be of order n
ficients will be smaller than the bound (3.19) apart from some whose support is
strictly contained in shrinking neighbourhoods of the local extreme points. We now
gradually squeeze the tube locally at the intervals where S,, has local extreme val-

ues. This is continued until all the multiresolution coefficients of the residuals drop

below the threshold (3.19).

We show firstly that this process will not terminate too soon i.e. before the opti-

mal rate of convergence is obtained. To demonstrate this we consider a function g
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defined on [0, 1] and a sequence of piecewise constant functions g, used to approxi-
mate g. The change of notation is to emphasize that the following arguments relate
only to the approximation of g by the piecewise constant functions g,,. We assume

the following;:
(i) g has a finite number of local extreme values in (0, 1).
(ii) g has a first derivative g(*) which is zero only at the local extremes.

(iii) ¢ has a continuous second derivative g(*) which is nonzero at the local ex-

tremes.

(iv) gn is piecewise constant and with the same monotonicity behaviour as g on

each interval.

(v) if g has alocal extreme at t. then g, is constant on an interval which contains

1/5
te and is of length at least ¢ (1"%) for some constant ¢ > 0.

The condition (iv) means that if g is monotone on an interval I then so is g, and
with the same form of monotonicity. The converse need not hold.

Suppose now that the multiresolution coefficients of the differences g — g,, are
all smaller than the bound (3.19). We consider what implications this has for the
maximal deviation of g, from g. Consider firstly a point ¢ with d,, = |g(t) — gn(t)|
and where g and g,, are nondecreasing with g(!)(t) > 0. We write d,, = |g(t) — gn(t)|
and suppose that g(t) > g,(t). The other case is treated similarly. Let the interval
I,, of length A, be the support of some multiresolution coefficient with I,, C [t —

dn/g™M(t),t]. The multiresolution coefficient is

\/% /In (9(u) = gn(u))du > %)5;‘/29(1) (t).
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If this coefficient does not exceed the threshold (3.19) then

Tlogn

1ys/2,(1)
<

which gives

A, < 47logn 1/3'
ngM (t)?

As there exists some multiresolution coefficient with A, > d,,/(2¢g™)(t)) this implies

dn (4Tlogn)1/3

2000 < \ng® (1)?
or
1/3 (Tlogn 1/3
(331) < PP (TE)

At the local extremes of the function g we can no longer exploit the assumption (iv)
but use instead the assumption (v). Let g have a local extreme value at t. and set
dpn, = |g(te) — gn(te)|. The function g is locally quadratic at ¢, and arguments similar
to the ones just used show the following. If none of the multiresolution coefficients

with support close to the local extreme point ¢, exceed the threshold (3.19) then

7'10gn)2/5

(3.32) jdu] < 2192 (8)]"° ( n
We now apply the above results to the nonparametric regression problem. The

residuals are
rn(t) =Y (t) = fal(t) = f(t) — fa(t) +£(t).

On setting g = f and g, = f,,- We note firstly that if the £(¢) are i.i.d. subgaussian
then their contribution to the multiresolution coefficients will lie below the threshold
for some value of 7. If f,, and f satisfy the assumptions (i) to (v) above and if all
the multiresolution coefficients of the residuals r, do not exceed the threshold it

follows that multiresolution coefficients of the differences f — f,, will also lie below
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the threshold. This implies that the rate of convergence of the f, to f will be
optimal away from the local extremes in the sense of uniform convergence. At
the local extremes themselves the rate of convergence will be at least (1"%)2/

as against the optimal rate of n=2/5. Let now f, = S, where S, denotes the
modified taut string through the tube which is now locally squeezed at the local
extremes with m,, = C(logn)'/n*/% in (3.6). The proof of Theorem 7 shows that
all multiresolution coefficients of the residuals will now be below the threshold.
This implies the following. Suppose we start with a tube of radius C'/+/n and then
gradually locally squeeze the tube at the local extremes of S,,. As the lengths of the
intervals where S, has its local extreme values are initially of order n%/6 (Theorem
6 ) we see that this process will eventually lead to local squeezing over intervals
containing m,, = C(logn)'/®n*/® observations. At this point all multiresolution
coefficients will be below the threshold. This implies that if we stop squeezing at
the local extremes of S,, as soon as all multiresolution coefficients drop below the
threshold then g = f and g, = S, will satisfy the conditions (i) to (v) above.
The resulting rate of uniform convergence will be (lﬂiﬂ)l/3 away from the local
extreme values of f. At the local extreme values of f the rate of convergence will
be (1"%)2/5. We have therefore shown that in principle local squeezing based
on a multiresolution analysis of the residuals results in almost optimal rates of
convergence at the local extreme values. In practice local squeezing must be done
by an algorithm and to complete the proof it must be shown that the algorithm
attains what is in principle possible. We do not pursue this any further and we
simply describe the algorithm we use without a proof that it is asymptotically

correct. In practice it works very well.
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3.7. A practical implementation Local squeezing is described by (3.30) and re-
quires the specification of the shift A, the radius of the tube v and the interval 1.
The intervals on which local squeezing is performed are determined by the multires-
olution analysis of the residuals. As mentioned in in the discussion of local squeezing
given above the choice of shift A seems not to be critical and is set to zero. Finally
the radius of the tube v must be specified and this is critical. It is implemented by
reducing the radius of the tube locally by a constant factor p,0 < p < 1. If p is
small, say p = 0.5, then the procedure terminates quickly as all multiresolution co-
efficients soon drop below the threshold. This occasionally leads to too many local
extreme values. If p is nearly 1, say p = 0.95, then the calculations require more
time but this choice of p has in our experience not lead to superfluous local extreme
values. The following simple procedure turned out to be very reliable and was used

for all the examples.

Firstly, the scale of the noise is calculated using (1.7). The next step is to choose
a large initial global tube radius 79. A reasonable choice is such that the straight
line connecting (0,0) and (1,y5(1)) lies inside the tube. An alternative is to use
Theorem 4 and use an initial tube radius yo = C/4/n where C' is set to 2.242, the
0.95-quantile of the distribution of the maximum of a Brownian motion. Given the

initial radius the taut string is calculated as described in the appendix.

We use the modified version §, of the derivative s, as described just before

Theorem 7. If all multiresolution coefficients of the residuals 7, (1) =y (%) -5, (%)

are smaller than the bound (3.19) the algorithm terminates. If not we define local

tube radii 7} (i = 0,...,n) by 7} = pyo if a multiresolution coefficient which

depends on y; or y;41 exceeds the bound (3.19) and by 7} = 7o elsewhere. The
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FiG. 13. Local squeezing and the Bumps data. The left panel shows the final upper and lower
bounds together with the taut string. The Bumps data and the derivative of the taut string are

plotted in the right panel.
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tube is squeezed centrally i.e. A = 0. The squeezing factor p is set to 0.95. A new
candidate function is finally defined by the result of the taut string procedure.
The algorithm proceeds by calculating the multiresolution analysis of the new
residuals. If again some coefficients are still too large further squeezing is applied by
reducing the tube radius in the relevant intervals by a factor of p until eventually
all coefficients are below the threshold. As indicated in Section 3.1 the value of 7

we use is 2.5.

3.8. Examples The effect of local squeezing on the bounds is shown in Figure
13. Displayed are the final bounds for the Bumps signal of Figure 12 in the left panel

and the reconstruction in the right panel. This should be compared with Figure 12.

4. Low power peaks Most work on nonparametric regression and density
problems evaluates procedures in terms of rates of convergence on test beds of
the form (1.8). The distribution of the errors ¢(t) is specified and the regression
function f is kept fixed whilst the number n of observations is increased. In this
situation there exist optimal rates of convergence (Khas’minski 1978; Ibragimov
and Khas’sminski, 1980; Stone, 1982). As shown the taut string method based on
a ball of radius Cn—1/2 attains the optimal rate away from the local extremes for
functions with a specified number of local extremes. The run method falls well short
with a rate of convergence of order (loglogn)/logn. In spite of this the run based
procedure can give better results than an optimal taut string method based on a
tube of constant radius. To investigate this phenomenon we consider a different
form of test bed. Let f be a continuous function with k& peaks. We consider an
interval [an, by] which does not contain a peak and graft a peak onto the function

f- The height of the peak is h, and we denote the new function by f™. The power
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Fi1G. 14. A regression function corrupted with Gaussian noise and the reconstructions based on
n = 2048 observations. The left panel shows the effect of globally squeezing until the peak near

0.5 s detected. The right panel shows the result of the local squeezing procedure.
of the peak is defined to be

(4.33) Pn=/01|f—f"|=/azn |f = £

Consider now the asymptotic test bed

(4.34) Yo = f" (%) +€n,i

with P, = o (n™'/2) and lim,_,oo hy = occ. For large C the tube T(f"°,C) will
contain f° with large probability. As f has k local extremes so will the taut string
through the ball. From this it follows that Theorems 5 and 6 will continue to hold
for the asymptotic test bed (4.34). In other words the taut string method will fail
to identify the peak at [an, b,]. Similar considerations apply to kernel estimation.
If the optimal global window is used a low powered peak will not be detected if

P, =0 (n71/%).
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In the case of the run method on the test bed (4.34) the peak will be detected if

(bn — an)

lim inf ~ > 1.
log, n

If

(bn — an)

liminf <1.
logy 1

it will not be detected. Figure 7 shows this effect.

The local squeezing method using local averages will clearly identify the peak
of f™. Indeed the method will pick up a signal confined to one single observation
as long h, > B+/logn where B depends on f and the bound parameter 7. This
is demonstrated by Figure 14 where a very low power peak defined by a single

observation is detected without introducing any spurious peaks.

5. Examples and comparisons

5.1. Artificial data Figure 15 shows the results of applying the taut-string-
multiresolution procedure to the data sets of Donoho et al. (1994). The Doppler
signal is displayed in the upper left corner. Local squeezing detects the oscillations
near the origin very well without introducing spurious extreme values at other
positions. The main feature of the Heavisine signal in the upper right panel is the
presence of discontinuities near 1/3 and 2/3. The taut string reproduces them, again
without introducing spurious extreme values elsewhere. The Blocks data signal is
piecewise constant so it is not surprising that the taut string performs very well.
Indeed the reconstruction can hardly be distinguished from the original signal.
Finally the Bumps data can be compared with Figure 12. Local squeezing has

identified all the relevant peaks without introducing spurious ones.
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Fi1Gg. 15. Four noisy test signals and their reconstructions using the taut string procedure with

local squeezing.
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5.2. Real data Figure 16 shows the results of a spectroscopical analysis of a
gall stone. The chemists involved informed us that for this particular data all the
peaks found were real ones and no spurious peaks were introduced. We note that
between peaks the reconstruction is almost constant. This data set, although real,

is not much different to the Bumps data sets of Figure 13.

5.3. Comparison with other methods Comparison with other methods is always
difficult especially when the aims may be different. This paper is concerned with
the number of local extremes and only secondly with rates of convergence and not
at all with L? errors. Other methods are concerned with smoothness and rates of
convergence in spaces of smooth functions. The problem of comparison is made more
difficult by the lack of available software. We therefore restrict the comparisons to
wavelets for which standard software is available. Even here many options are open
such as the choice of the wavelet and the threshold level. The left panel of Figure
17 shows the block data and the wavelet reconstruction. The Haar wavelet was
used which is presumably the best for this data. Nevertheless pseudo Gibbs effects
are apparent and lead to 47 local extreme values. The corresponding result for the
taut-string-multiresolution method is shown in the right panel of Figure 17. It gives

the correct number of local extremes namely 9.

6. Conclusion We have introduced two methods for obtaining regression
functions whilst keeping the number of local extremes under control. Each method
has advantages and disadvantages. The run method can be calculated quickly
in O(n) operations and it has certain desirable robustness properties. It can
withstand many isolated outliers and can also be tuned to detect blocks of out-

liers of a specified length. The disadvantage is a slow rate of convergence. The
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Fic. 17. Wavelet Thresholding and local squeezing. Both methods were applied to the Blocks
data. Wavelet Thresholding tends to produce pseudo Gibbs effects near discontinuities leading to
47 local extreme values. The taut string method with local squeezing attains the correct modality

of 9.
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taut-string-multiresolution method has a complexity of O(nlogn) and has almost
optimal rates of convergence on standard test beds. It is extremely sensitive being
able to identify peaks of very low power. This very sensitivity makes it susceptible
to outliers. Implementations are available from our home page at

http://www.stat-math.uni-essen.de.
We are indebted to Lutz Diimbgen and Martin Léwendick for useful comments.
We would also like to thank two anonymous referees and in particular an Associate

Editor whose comments resulted in an increase in accuracy and clarity.
7. Proofs

7.1. Proof of Theorem 8 To prove (c) we analyse the behaviour of the upper

bound u, () = un(-, @) defined by (2.14). We have from (2.17)
an = qu(n,a, Ry,) =logyn + O(1).
Let

n
T, = max e(t; g=1,....|—]|.
b (i-1)gn+1<j<ign (&), T [qnw

If F denotes the common distribution function of the & (%) then the common dis-

tribution function of the I'; is F'9». We set a,, = M] and define

(log, n)?
1
0; = min v, i=1,.. | 2" |
(i—=1)an+1<j<ian loglogn

The common distribution function of the ©; is 1 — (1 — F9 ). On using F(z) =
1 + az for small z with a > 0 it follows that

bloglogn b
P (612 "HEE™ ) — Ofexp(-cllogn)”)

where ¢ > 0 and where b may be chosen so that b’ > 0. For this choice of b we have

( bloglogn
max j >
1<i<|log n/loglogn] - logn

) =0 ((log n) exp(—C(IOg”)b,)) :
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The upper bound u,, is nonincreasing and we firstly analyse its behaviour on an
interval where f where f(1)(t) > § > 0. Without loss of generality we set I = [0, %]

The above estimates show that

Aloglogn ‘ loglogn

(7.35) un) < F(0) + B = R

The corresponding result for the lower bound /,, is

J Aloglogn j loglogn
. > FlE) - =L 2R
(7.36) int) > f (n) logn t n logn

As both the upper and lower bounds are nonincreasing (7.35) and (7.36) imply

A loglogn

loglogn
logn '

(7.37) e

£ 27 (L) -4

As f(M(t) > & > 0 on this interval we have

loglogn
logn °

(7.38) %SA
It follows that if the bounds have the wrong monotonic behaviour this will be
detected at latest on an interval of length O <l—°15()1?°i—") where the constant depends
on the size of the derivative of f on the interval.

The case where the bounds have the same monotonic behaviour as f is as follows.
Because of the construction of the intervals it is clear that f will remain below the
upper bound and above the lower bound with probability at least @. On combining
these two results we see the monotonic behaviour of the bounds which minimizes
the number of local extreme values will coincide with the monotonic behaviour of f
with probability at least « as n tends to infinity. In other words the number of local
extreme values will be determined correctly for large n with probability at least
a. The reasoning also shows that the lengths of the intervals If (n, @) tend to zero
with n and that the midpoints converge to the local extreme points of f. Finally

the reasoning which lead to (7.35) and (7.36) implies the rate of convergence of (b)

of the theorem.
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To prove (d) of the theorem it is sufficient to consider the upper bound on a

stretch where f is monotone decreasing. On writing ¢t = % and h = % we have
(7.39) up(t) = min{un(t — h), M(@),...,M@E —j+ 1)}

where

M(m):max{Y(%),...,Y(m;qn>}.

As Y (t) = f(t) + (t) and f is non-increasing it follows that
M(m) > f(t) + A(m)

where

(7.40) A(m) :max{s (%) N (%)}

On substituting this into (7.39) we obtain

un(t) > minfun(t — ), f(£) + AG—j+1),..., F(t) + AG)}.
As f(t —h) < up(t—h) and f(t —h) = f(t) = hfD(t)(1 + o(1)) this implies
(7.41)  un(t) > f(t) +min{—hfO @)1 +0(1)),AG —j+1),...,A®)}.

We have

logl loel qn
P(A(m)z M) :1_p(A(m) < M) :1_F<M)
logn logn logn

which implies

log1 1 log1 n
p A(m)zbogogn o1 _+abogogn
logn 2 logn

2ablogl
~1— 270 exp @w)

logn

1
>1- - exp(3abloglogn)
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for large n. From this it follows
i A bloglogn J blozl
P Up—ijy1 {A(m) < “logn < Eexp(3a oglogn).

If we set j = f"—li)o%g—"] and choose b so that 3ab < 1 it follows that h = _1010:”"

and

logl logl
P min  A(m)> 208108) 5o loglosn )
i—j1<m<i logn (logn)t/2
On using this in (7.41) it follows that

. loglogn bloglogn
> _ (@)
n(0) > £(0) + min { -0 E 05, DIOE

with b > 0 and f)(¢) < 0. This completes the proof of for the upper bound on
stretches where f is monotone decreasing. The other cases follow by appropriate

changes of sign. O

7.2. Proof of Theorem 4 The assumptions of the theorem imply that the inte-

grated error process

converges weakly to a Wiener process on [0, 1]:
Vned, = oW
where W denotes the standard Wiener process. In particular we have

i P (oo Vies )] < 2) =P ((max (0] < 2) =1 (2).

n—00 0<t<1 g

It follows that on the test bed (1.8)

i P (o 50 - f01 < ) =1 (£).

n=300 0<t<1 Vvn o
As n tends to infinity the probability that the function f lies in the tube

T(Y;2,C/y/n) tends to H (£). As the taut string minimizes the number of local
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extremes in T'(Y,?,C/y/n) we see that

lim P(KS <k)=H (9) )

n—00 g

7.3. Proof of Theorem 5 We note that for f satisfying the assumptions of the

theorem

inf su °(t) —g°(t)| >0
geMk_WStglIf () —9°@)]

where M denotes the set of functions on [0, 1] with at most j local extremes. This

implies

lim P(KS <k)=0 forall C>0.

n—oo

In the other direction Theorem 4 implies

lim lim P(K$ <k)=1.

C'—00 n—o0

and hence

lim lim P(KS =k)=1.

C—o0on—o0
The other claims are proved similarly. If the lengths of the intervals If (n, C) do not

converge in probability to to zero then

max Sy (t) — f(t)]

telf(n,C)
does not converge in probability to zero and this carries over to the integrated
functions. A similar argument applies to the convergence of the location of the

local extreme points. O

7.4. Proof of Theorem 6 The proof of Theorem 6 relies on the modulus of

continuity of the integrated process €7 as expressed by

(7.42) limP ( sup Vnlen(t + h) —ep(t)] < Ay/—dlog 5) =1

00 0<t,t+h<1,h<d
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for some A > (. This follows from the subgaussian form of the ¢(t). This will be
used for § = &, of the form (logn)*n~? with & > 0 and B > 0 in which case we
have

(7.43) lim P( sup  Vnlep(t+h) —en(t)] < AV =4, logén) =1.

n—0o0 0<t,t+h<1,h<6,

The proofs given below require that the taut string through the tube of radius
C/+/n has the correct shape i.e. it has the same number of local extremes as f. In
order for this to happen in probability as n tends to infinity we have to let C tend
to infinity. The order is first n to infinity and then C' to infinity. As the distribution
of the maximum of a Brownian motion on the interval [0, 1] behaves exactly like
the tails of the standard normal distribution the probabilities tend very quickly to
one as C increases. In practice C = 30, with o, a robust scale functional such as

(1.7) is a large value of C.

The proofs can probably be best understood by taking a probability space
(Q,F,P) and considering a sequence of events Q°(C,n) which are chosen as the

need arises but which satisfy

lim lim P(Q°(C,n)) = 1.

C—00 n—o0

We can for example put

O (Con) ={w: o Y2 (@) — fo()] < %}-

Then clearly

lim lim P(QY(C,n)) = 1.

C—00n—o0
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From Theorem 5 it follows that there exists a sequence (d,,){° tending to zero such

that

lim lim P(Q*(C,n)) =1

C—00 n—o00

where
3 ={w: K% = e e — e
Q°(C,n) ={w: K, = k,lrélzasxk |If (n, C)| < 6"’1121?;{19 |78 (n, C) — t5] < dn}-
Similarly for another given sequence (J,,){° tending to zero we may define

D (4,n) = {w: sup Vnled(t + h) — el (t)] < Av/—dnlogdn}.

0<t,t-+h<1,h <6
For some appropriate A > 0 we have lim,, o, P(Q23(n)) = 1. Such choices are made

according to our m needs and finally we set
QC,n) = QYC,n) NQ*(C,n)N...NnQA™(C,n).

For all w € Q9(C, n) all relevant properties hold such as, for example, S, having the
same monotonicity behaviour as f. The terms O and o used below can be translated
into inequalities will hold for each n and for all w € Q°(C, n).

Proof of (a):
Suppose Sy is initially convex. Then Sy is the largest convex minorant of Y,°+C'/+/n
until it reaches the left endpoint ¢ (n,C) of I{(n,C) = (t(n,C),t7(n,C)). Then
with hg = t7(n,C) — t{ (n,C) we have

Y2 (#h(n, C) + ) = Yy (¢ (n, C)) — 22
h

(7.44) ho = argmaxy<p<s

for arbitrarily small § as n tends to infinity. On writing # (n,C) = t§ — k we may
rewrite (7.44) to obtain

Vot — o h) = Y205 - n) — 22
h() = argmaXOShS(; h .
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A Taylor expansion together with the modulus of continuity of €2, gives

ho = axgmnasy gy~ gh(3n = WS+ 0(1) — 2o (1+0(1)).

This implies

(7.45) —é(:sm = 2ho) fP (#$)(1 + o(1)) = —\/25—0}%(1 +0(1))

and as £ (t¢) < 0 we may conclude 3k < 2hg(1+0(1)) which implies ¢ < t}(n, C).

In the other direction we have

Y2 (t(n,C)) = Yo (ti(n,C) — h) - 22
h(] = argmaXOShS(s h .
On writing 7 (n, C') = t§ + k* we obtain
1 2C
—2(3K* — (2) (42 -
(7.46) 6 (3™ = 2ho) f(£5)(1 + o(1)) NI (1+0(1)).

This implies 3x < 2ho(1+0(1)) and hence ¢ > ! (n, C') so that t§ lies in the interval
[t (n,C),#](n,C)] as was to be proved.

Proof of (b):
On adding (7.45) and (7.46) we obtain

—(3(k + K%)= 2ho) A (#9)(1 + (1)) = —}i—%(l +o(1))

and as k + k* = hg this implies
ho ~ (240) 3| £ (a5) "8,

Proof of (c):
It is sufficient to consider z; and z» and to suppose that f° and S, are both convex
on (z1,z2). On writing #1 = 41/n and z3 = (i1 + 11)/n we see that [; is the local
argmin of

Yy (z1 +
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A Taylor series expansion gives

Ye(z1 4+ 1) = Y2 (21)

= @) + 5V @)

S~

uniformly in ¢ and 1,1 < I < n®/1°_ say. On setting
L= alfO ()| (ogn)/?

we have

Yo (z1 + 1) = Vi (n1)

)
L

1/3
> flo) + qalf e (250

n

A 1 1/3
—%|f(1)(a:1)|1/3 (ﬂ)

n

2/3
+OQ#WMH4B(%?> ).

From (b) of the theorem | f()(z;)| > An=1/6 for C > Cy and consequently the term

2/3
oOﬂ“@nr“3C%?) )

may be neglected. This implies that for a sufficiently large

)‘Kﬂﬁ)>f@n+§mﬂ”@nﬂ30%£>”5
- n

Yoz +

S~

(7.47)

S~

The lower bound

PP (R R AC

1/3
wan+aﬂ”mnw3cgﬁ) '

L n
n

is obtained analogously. On putting a = a7 in (7.47) and a = ay in (7.48) with

a1 = 4as with as sufficiently large it follows that the local minimum is attained at
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a point 1 + % with

L _o <|f(1)(x1)|_2/3 (k’ﬂ)l/3> _
n n

This proves (c) of the theorem.
Proof of (d):
We consider first the case where t = x; is a knot which does not delimit the position

of a local extreme value of S;,. We take Sy to be convex at z;. We have

YR (wi+ L) — Vo (wi
5.0 < YolE D) = ¥ole)

3|~

A Taylor expansion of order two combined with (7.42) gives for
| = Af(l) (.’L’i)_2/3n2/3 (logn)1/3

logn 1/3
. .

(7.49) Sus) < £(as) + AlFD (@) (

Using

a similar argument gives

logn 1/3
n

Sp(zi) > f(x;) — Alf(l)(l'z')|1/3 (

which when combined with (7.49) gives

ogn 1/3
|f(z;) — Sn(z:)] = O (If(”(a:z-)|1/3 (i) )

n
at all knots x; which do not delimit a local extreme value of S,,. For a point ¢ not

in [A (1%51—")1/3 ,1—A (1%‘1—")1/3]\Uf:11{3(n,0) we have

|£(8) = Sn(®)] = £ () = Sn(:)]

< |f(@i) = Sn(@a)| + | f(t) — fl=i)|

logn 1/3
n

< 1f() — Sulz)] + ALFD @)} O ()| (
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(1) (4\[1/3 logn 13
< A[f(8)] -

where we have used

sup
2 <t<zit1

FO)

for all intervals [z;,z;4+1] which do not delimit a local extreme value. This follows

from (b) of the theorem.
Proof of (e):
This follows as in the other cases but using the next term of the Taylor expansion

as f(M)(t) = 0 for some point in the interval. O

7.5. Proof of Theorem 7 Proof of (a):

The multiresolution coefficient w; ; is given by

(= L7 <y,;> () -5 (") e (B2 (W))

To show that all multiresolution coefficients of the noise are smaller than the
bound (3.19) for some 7 > 0 it is sufficient to show that each coefficient w;y, is at
most o+/7logn. This in turn follows from the inequality

logn

(7.51) |V (1) = S5 (t1) = (V7 (t3) = S5 (8))| < A/ [ty — ]

n
where (t;,t;) is one of the pairs (k29 — 29=1)/n, k27 /n), (k27 /n, (k29 + 291)/n).

We have
Ve — S =eb+ f°— 50

and on using the modulus of continuity of v/ne? as given by (7.42) we obtain for
any points ¢; and t; with |¢; —¢;| > 1/n

logn

V2 (t1) — S5 (1) — (V7 (ta) — S5 (t:))] < A/ [ty — ]

n

+HfO(t) = Sate) = (F°(t:) = S (ta)].
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(7.52)

& ~
() = Sp(te) — (£°(t:) = S5(t:))] = | 5 (f(8) = Sa(t))di]
< [t = ti| sup [ £() — S (2)|

(¢) and (d) of Theorem 6 imply

) ) 1/3
|72 (tm) = 87 (tm) = (£°(t:) = S3(t))] < Altm — til (105">

1
<AVt =t oen

n

if

logn 1/3
(7.53) ti—ti] <A ( - ) .

Thus (7.51) holds for all intervals satisfying (7.53).

Proof of (b):
This follows from (a) and and Theorem 6 (c).

Proof of (c):
Consider a multiresolution coeflicient whose support is [t1, t2] with ¢1 € If(n,C) and
to & I¢(n, C) for some i. the other outside of the same interval. Let z; be the right
endpoint of If (n, C). It follows from the definition of S that [V.°(t)—S2(t)| < C/+/n

for all ¢t € If(n, C). In particular we have

V2 () = 82(21) — (V2(tr) — §5(t0))] < 3—%

This is also the worst case for the other point ¢ and the result is the inequality

° _ 8o _(yo _ go £
Y20 - S50 — (75 (0) = 50| <
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The multiresolution coefficient will satisfy (7.51) if

16C?
Tlogn

to —t1 >

as was to be shown.

Proof of (d):
Consider a multiresolution coefficient whose support is contained in If(n, c) with
length h > 1|If(n,C)|. From Theorem 6 we have h ~ cin™1/6 and |f(t) — 3,(t)| >
can~1/3 for some constants ¢; > 0 and ¢ > 0. Without loss of generality we may
assume that f(t) — 5, (t) > con~ /% on the support of the multireslution coefficient.
This implies that the absolute value of the multiresolution coefficient is at least

esn~ /2 for some ¢3 > 0 which eventually exceeds the bound

[Thl
T :gn 504n_7/12\/7'logn

whatever the value of 7. [

8. Appendix: the taut string algorithm We give a short description of
the taut string algorithm. Without loss of generality we suppose the data points
are (i,4(4)),% = 0,...,n. Let | and u denote the lower and upper bounds for the

integrated process y° given by

k

> y@), 0<k<n

yo(k) = %

i=1
We assume that the endpoints of the string are fixed i.e. [(0) = «(0) and I(n) = u(n).
Starting from the point (0,1(0)) and for given ¢ the greatest convex minorant sz; of
the upper bound (j,u(j)),j = 0,...,4 and the smallest concave majorant sv; of the
lower bound (j,1(5)),j = 1, ..., are both calculated. The greatest convex minorant
sx; may be calculated as follows (see also Barlow et al. 1972). Suppose sz; has been

calculated. It is defined by knots (k(j),u(k(5))),1 < j < K (i) where it touches the
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Fic. 18. Ezample of the taut string method. Moving from the left to the right, the greatest
convexr minorants of the upper bounds and the smallest concave majorant of the lower bounds up
to the current position are calculated until both curves intersect. The leftmost knot is added to

the taut string.
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upper bound and it is linear in between. The first and last points are knots. The line
joining (i+1,u(i+1)) is now included as a knot. If the resulting linear interpolation
is convex then this is sz;y1. If not then the knot to the left of (i + 1,u(i + 1)) is
permanently eliminated. If the resulting linear interpolation is convex this is sz; 1.
If it is not convex then again the knot to the left of (i + 1,u(i + 1)) is eliminated.
This process is continued until a convex interpolation is attained and this defines
sz;41. This algorithm has complexity O(i) for calculating all the functions sz; and
svj 0 < j < 4. It is clear that the taut string must lie between the sz; and sv;.
The functions sz; and sv; are linear between the knots where they touch the upper
and lower bounds respectively. After sz; and sv; have been calculated it is checked

whether

(8.54) szi (0+) > solV (0+4)

)

holds where sz; ’(0+) and svgl) (0+) denote respectively the right hand derivatives
at 0 of sz; and sv;. These are nothing more than the gradients of the first sections
of the functions sz; and sv;. If (8.54) holds then sz;y1 and sv;41 are calculated.
This process is continued until for some 4 (8.54) does not hold. At this point the
leftmost knot of the set of knots of both the sx; and sv; is determined whereby the
very first knot (0,u(0)) is not counted. This leftmost knot is the first knot of the
taut string and we denote it by (k1, s(k1)). It may be either a knot from the upper

bound or from the lower bound. Figure 18 demonstrates this procedure.

The process is now repeated. The origin is moved to the point (k;,0) with trans-
lated upper bounds (j,u(k1 + j)), j =0,...n — ki and lower bounds (j,1(k1 + 7)),
j =0,...n — ky. Starting from the point (0, s(k1)) the greatest convex minorant

of the upper bounds and the smallest concave majorant of the lower bounds are
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calculated as before. The important point to notice is that these calculations have
already been done for the first ¢ — k; points. If the first knot of the string is on the
upper bound i.e. (ki, s(k1)) = (k1,u(k1)) then the convex minorant for the section
0 < j <i— ky of the translated bounds coinicides with the translation of convex
minorant already calculated. The concave majorant is simply the straight line
joining (0, s(k1)) and (i —k1,1(%)). A corresponding statement holds if the first knot

is on the lower bound. It is this which makes the calculation of the taut string O(n).

The calculations just described are continued until the last point is reached. The

taut string is now determined by linear interpolation between its knots.
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