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Abstract

Given a sample of n observations y1, . . . , yn at time points t1, . . . , tn we consider the
problem of specifying a function f̃ such that f̃

• is smooth,

• fits the data in the sense that the residuals yi − f̃(ti) satisfy the multiresolution
criterion
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2 log(n)σ 1 ≤ j ≤ k ≤ n, (1)

• is as simple as possible so that f̃ exhibits the minimum number of local extreme
values.

We analyse in particular a fast method which is based on minimising

n
∑

i=1

(yi − f(ti))
2 +

n−1
∑

i=1

λi

√

(fi+1 − fi)2 + (ti+1 − ti)2

where the λi are chosen automatically. The new method can also be applied to
density estimation.
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Fig. 1. Data from Spectroscopy taken in the analysis of a gall stone and an approx-
imation obtained from spline smoothing. Left panel: entire data set, right panel:
excerpt.

1 Nonparametric regression and modality

1.1 Introduction

Local extreme values often play an important rôle in non-parametric statistics.
Figure 1 shows data from spectroscopy and consists of measurements that were
taken in the analysis of a gall stone. Each peak corresponds to a certain type
of structure that is present in the substance being analysed and the power of
each peak measures how many structures are contained in the substance. The
chemists that were analysing this data set want an automatic procedure that
removes all the noise and keeps exactly the true peaks of the signal.

Figure 1 also displays an approximation to this data set obtained from spline
smoothing. The spline does not approximate the underlying signal very well
because the height of each peak in the spline estimate is much smaller than
the data points near the peak. At the same time the estimate contains a lot
of local extreme values that do not appear to be related to true features of
the signal. Even worse is that some of these artificial extreme values are even
more pronounced than some of the true peaks. This can be seen in the excerpt
in the right panel where the peak near t = 500 or the one just left to the true
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Fig. 2. Four smoothing methods applied to the same sample. Top left: kernel es-
timate using large bandwidth, top right: kernel estimate using local plug-in band-
widths, bottom left: taut string method with local squeezing, bottom right: minimi-
sation of total variation under multiresolution constraints

peak at t = 1500 look larger than the true peak at t = 250. This makes it
hard to distinguish true peaks from artificial peaks.

We consider in this paper the problem of non-parametric regression and our
goal is to specify a function f that fits the data and is simple in the sense
that it does not contain any spurious local extreme values. We also require
our approximations to be smooth because although even piecewise constant
approximations can be useful for exploring the structure, there exists huge
interest in smooth approximations among people who actually employ non-
parametric methods in applications. Finally we are seeking a fast algorithm
for the computation of a particular approximation.

Figure 2 shows typical problems with existing methods in nonparametric re-
gression. Four different methods were applied to the same simulated data set.
A kernel estimate using a relatively large bandwidth can be seen in the top
left panel. The computation time was very short and the approximation is
definitely smooth and simple, however it does not fit the data in the left half.
The top right panel shows another kernel estimate, this time using automatic
local plug-in bandwidths (Seifert et al., 1994). This approximation fits the
data very well and again was fast to compute. Since a Gaussian kernel was
used the function is infinitely differentiable and hence smooth. On the other
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hand there are a couple of spurious local extreme values and therefore the
estimate is not simple. The approximation in the bottom left corner is the
result of the taut string method (Davies and Kovac, 2001) which is a very fast
method producing simple approximations that fit the data, however they are
piecewise constant and therefore not smooth. Finally the last panel shows a
smooth and simple function that just fits the data. It was produced by min-
imising the total variation of the second derivative subject to multiresolution
conditions (Kovac and Meise, 2006) which gives rise to a huge linear program
that for complicated data sets can not be solved quickly.

Our approach towards approximations of the data without spurious local ex-
treme values relies on a suitable definition of adequacy and methods that
produce simple approximations. A measure of adequacy gives rise to a set of
adequate functions F , each of them representing a plausible model for the
data in the sense that the data look like a “typical” sample from the model.
In the context of nonparametric regression this set of adequacy will contain
all functions such that sums of the residuals at different scales and locations
are not larger than what we would expect from white noise. For a more precise
definition we refer to Davies (1995).

Having specified the set of adequate functions our next step is to look for
an adequate function f̃ 1 ∈ F with minimal modality. Since it is difficult to
obtain an exact solution to this problem the taut string method (Davies and
Kovac, 2001) is used instead to generate a sequence of functions with increasing
complexity, ie increasing number of local extreme values. Then f̃ 1 is chosen as
the first adequate function, ie the function with the smallest number of local
extreme values within this sequence. In a second step a smooth function f̃ 2 ∈
F with the same monotonicity behaviour as f̃ 1 is calculated. This is achieved
by minimising a functional similar to the taut string functional, but which
leads to smooth rather than piecewise constant approximations. Additional
monotonicity constraints guarantee the same monotonicity behaviour as the
taut string approximation.

1.2 Previous work

Much work has been done on the problem of nonparametric regression. Of the
different approaches we mention kernel estimation (Nadaraya 1964; Watson
1964), spline smoothing (Silverman 1985; Green and Silverman 1994), wavelets
(Donoho, Johnstone, Kerkyacharian and Picard 1995) and local polynomials
(Fan and Gijbels 1995, 1996). This paper is particularly concerned with pe-
nalised regression estimators. Again the literature is vast and still growing.
As a good starting point we recommend Huang (2003), Antoniadis and Fan
(2001) and van de Geer (2001).
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None of these methods is directly concerned with local extremes. One of the
few methods where positions of local extreme values play a crucial rôle is the
taut string method (Davies and Kovac, 2001). See also the references therein
for more work in this area.

An alternative approach to minimising the modality among all functions that
satisfy the multiresolution criterion is to minimise the total variation instead
(Kovac and Meise, 2006). This leads to a linear program that can be solved by
standard techniques. By minimising the total variation of the second derivative
and the introduction of additional monotonicity and convexity constraints it is
possible to obtain smooth and simple approximations, but the computational
burden can sometimes be large.

The remainder of this paper is organised as follows: In Section 2 we introduce
the smooth taut string functional and discuss a fast method for calculating
a minimiser of this functional. We also discuss an automatic choice of the
local smoothing parameters involved and the combination with monotonicity
constraints. In Section 3 we compare the new method with five other automatic
smoothing methods with respect to number of local extreme values and mean
squared error and discuss an application to the data from Spectroscopy. We
briefly discuss an application of the new methodology to density estimation
and two-dimensional curves in Section 4. Some short proofs are deferred to
Section 5.

2 The smooth taut string method

2.1 Nonparametric regression and the multiresolution criterion

We study the nonparametric regression problem in more detail. Given obser-
vations y1, . . . , yn ∈ R at time points t1 < t2 < · · · < tn we consider the
problem of specifying a function f such that the residuals yi − fi look like
noise and the function is as simple as possible.

More specifically we consider a set F of adequate functions

F = {f ∈ R
n : |

∑

i∈I

(yi − fi)| ≤ γI for all I ∈ I}.

Here I is a collection of index sets on which we check if the sum of the
residuals is as small as we would expect from noise. A typical choice is to take
all possible subintervals

I1 = { {j, j + 1, . . . , k} for all 1 ≤ j ≤ k ≤ n}.
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Computational complexity can be reduced by considering a smaller collection
like all intervals with dyadic end points

I2 = { {2jk + 1, . . . , 2j(k + 1)} for all 0 ≤ j ≤ blog2(n)c, k = 0, 1, . . . , d n

2j
e}.

The constants γI will usually depend only on |I|. In the case of iid normal
noise a suitable choice is to set

γI =
√

2|I| log(n)σ̃

where σ̃ is an estimate of the standard deviation derived from the data.
Throughout this article σ will be estimated by

σ̃ =
1.48√

2
Median{|y(t2) − y(t1)|, . . . , |y(tn) − y(tn−1)|}

(Davies and Kovac, 2001).

The aim of this paper is to find a smooth function f̃ ∈ F with as few local
extreme values as possible as well as a fast algorithm to calculate f̃ .

2.2 The smooth taut string functional

The taut string method is known to produce functions with small modality.
It can be viewed as a fast algorithm for minimising a functional where the
L2-norm of the residuals is penalised by the total variation of f :

T TS(f) =
n
∑

i=1

(yi − fi)
2 + λ

n−1
∑

i=1

|fi+1 − fi| = min .

The penalty term looks at fluctuations in y-direction and therefore two func-
tions have the same total variation if their local extreme values are identical.
This property of the total variation norm leads to piecewise approximations
when T (f) is minimised. A straightforward idea to obtain smoother approxi-
mations is to replace the differences between subsequent values of f by their
Euclidean distances and consider the new functional

T SM(f) =
n
∑

i=1

(yi − fi)
2 + λ

n−1
∑

i=1

√

(ti+1 − ti)2 + (fi+1 − fi)2

or more general a version that allows for localised penalty terms

T SM(f) =
n
∑

i=1

(yi − fi)
2 +

n−1
∑

i=1

λi

√

(ti+1 − ti)2 + (fi+1 − fi)2. (2)
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Unlike the original taut string functional the smooth taut string functional
is differentiable, so minimisation is theoretically possible using standard tech-
niques like steepest descent or Newton-Raphson method. Unfortunately the
speed of convergence decays rapidly and although the value of the functional
will not change a lot after some initial iterations the changes in f can be
significant.

2.3 An Algorithm

We develop in this section a fast algorithm to find the minimiser of the smooth
taut string functional T SM in 2. To make notation easier we consider the more
general functional

T (f) =
n
∑

i=1

(yi − fi)
2 +

n−1
∑

i=1

λigi(fi+1 − fi) (3)

where we assume that each of the functions gi is convex, continuously differ-
entiable and takes a global minimum in t = 0.

Before we move on to a description of the algorithm we first summarise some
important properties about solutions of (3) in a lemma:

Lemma 1 There is a unique minimiser f̃ of the functional (3) and it satisfies:

(i) For all 1 ≤ j ≤ k ≤ n

2
k
∑

i=j

(fi − yi) =



























λkg
′(fk+1 − fk) − λj−1g

′(fj − fj−1) if 1 < j ≤ k < n

λkg
′(fk+1 − fk) if 1 = j ≤ k < n

−λj−1g
′(fj − fj−1) if 1 < j ≤ k = n

0 if 1 = j, k = n.

(ii) For all k < n

f̃k+1 = f̃k + (g′

k)
−1

(

2

λk

k
∑

i=1

(f̃i − yi)

)

. (4)

(iii) Let f be some vector that satisfies the equations (4) for all k = 2, . . . , n.
If f1 > f̃1, then fk > f̃k for all k > 2 and vice versa in the case where f1 < f̃1.

The idea behind the algorithm is that once we know f̃1 we can at least theoret-
ically calculate the remaining components of f̃ quite easily. Let us assume for
the moment that the derivatives of the g′

k are all unbounded. If f̃1 was known
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Fig. 3. The solutions of (4) using f1 = 0.2017878903881263 and
f1 = 0.2017878903881264.

we could use the recursive formula (4) to calculate successively f̃2, f̃3, . . . , f̃n.
Of course, f̃1 is not usually known, but Lemma 1 makes it possible to find
it. In particular the lemma shows that

∑n
i=1(fi − yi) > 0 if f1 > f̃1 and

∑n
i=1(fi − yi) < 0 if f1 < f̃1. So we can use nested intervals to approximate f̃1

to arbitrary precision ε by using the following algorithm:

(I) Let l and u be crude initial lower and upper bounds for f̃1 like l =
y1 − 5σ and u = y1 + 5σ or even l = min(y1, . . . , yn) − 5σ and u =
max(y1, . . . , yn) + 5σ.

(II) Determine recursively a solution f of (4) with f1 = (d + u)/2.
(III) If

∑n
i=1(fi − yi) > 0, set u := f1, otherwise set l := f1.

(IV) If u − d > ε go to step (II).

Theoretically this algorithm should provide a minimiser of the functional (3)
in O(n) operations provided that the functions gj do not depend on n or at
least the complexity of the evaluation of (g′

k−1)
−1 is independent of n.

If some of the derivatives of the g′

k are bounded like in the example (2) above,
it is possible that the recursive formula (4) used in step (2) of the algorithm
does not work because the term D := 2

λk−1

∑k−1
i=1 (fi − yi) exceeds either an

upper or lower bound of g′

k−1. If it is too large, then
∑k−1

i=1 fi and hence f1 is
too large, so we need to set u := f1. Similarly we set l := f1 if D becomes too
small. With this additional step the algorithm described above should enable
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us to find the minimiser of the functional (2). In practice, however numerical
problems occur. Figure 3 shows the solution of (4) when applied to data from
a scaled version of the Heavisine signal (Donoho et al., 1995) with added
Gaussian noise for f1 = 0.2017878903881263 and f1 = 0.2017878903881264

where gi(x) =
√

1/n + x2 and λi = 30 for all i = 1, . . . , n− 1 and n = 2048. It

can clearly be seen that the recursion formula (4) is extremely sensitive with
respect to f1 and that even extremely small errors accumulate very fast.

Therefore we use simultaneous nested intervals for all data points. The idea is
that once u− l is smaller than some given precision and thus f1 is sufficiently
close to f̃1, we move to f̃2 and use nested intervals for this data point as well
and so on. Computational complexity is reduced by updating lower and upper
bounds for each data point at each step:

(I) Let l and u be vectors of crude initial lower and upper bounds for
f̃1, f̃2, . . . , f̃n like li = yi−5σ and ui = yi+5σ or even li = min(y1, . . . , yn)−
5σ and ui = max(y1, . . . , yn) + 5σ for all i = 1, . . . , n.

(II) Let k := 1.
(III) Set fj = (dj+uj)/2 for all j = 1, . . . , k. Then use the recursion formula (4)

to calculate fk+1, . . . , fn. If the evaluation of some point fl with k < l ≤ n
is not possible because the argument of (g′

l−1)
−1 is too large, then set

fj := ∞ for all j > k and similar fj := −∞ if the argument is too small.
(IV) If

∑n
i=1(fi − yi) > 0, set ui := min(fi, ui) for all i ≥ k. Otherwise set

li := max(fi, li) for all i ≥ k.
(V) If uk − dk ≤ ε set k := k + 1.

(VI) If k ≤ n go to step (II).

This algorithm was used to produce Figure 4 where the new methods was
applied to the same data set as in Figure 3. Computationally the algorithm
works very fast as shown by the following lemma.

Lemma 2 Assume that g1, . . . , gn−1 are bounded and that (g′

k)
−1 is differ-

entiable for k = 1, . . . , n − 1. Denote µn = mink,x ((g′

k)
−1)

′
(x). Then the

computational complexity is of order O(n/ log(1 + µn).

2.4 Deriving an adequate approximation – adaptive choice of λi using local
squeezing

The smooth taut string functional (2) has the potential to provide simple
and smooth approximations to data. Now we discuss how to find suitable
values for the parameters λi such that the resulting approximation satisfies
the multiresolution criterion (1) and is as simple as possible. We adapt the
local squeezing approach by Davies and Kovac (2001) and use the functional
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Fig. 4. Simultaneous nested intervals applied to the same problem as in Figure 3.

(2) to generate a sequence of functions with increasing complexity, ie increasing
number of local extreme values. The first adequate function, ie the function
with the smallest number of local extreme values within this sequence is used
as an approximation to the data.

More precisely we start with some tuning vector λ(1) having constant compo-
nents λ1

1 = λ1
2 = · · · = λ1

n where λ1 is so large that the corresponding solution
of (2) is too simple and oversmooths the data. Suppose that we have already
chosen tuning vectors λ(1), . . . , λ(s), and the corresponding fits are denoted by
f̃ (1), . . . , f̃ (s). If f̃ (s) is still inadequate for the data, we define J (s) to be the
union of all intervals {j − 1, j, . . . , k} such that {j, . . . , k} is an interval in I
violating (1) with f̃ = f̃ (s). Then for some fixed γ ∈ (0, 1), e.g. γ = 0.9, we
define

λ
(s+1)
j =







γλ
(s)
j if j ∈ J (s)

λ
(s)
j if j 6∈ J (s)

From (i) in Lemma 1 we can derive that for sufficiently large s the fit f̃ = f̃ (s)

does satisfy (1) for all I ∈ I.

The left panel of Figure 5 shows the application of this local squeezing ap-
proach to the simulated data set that we have analysed before. In this case
the new procedure performs exactly as it is supposed to do and produces a
smooth and simple function that is an adequate approximation to the data.
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Fig. 5. The smooth taut string method applied to two samples from the Heavisine
and Blocks signal. Bandwidths were obtained automatically by local squeezing.

2.5 Monotonicity constraints

The right panel of Figure 5 shows the application to a sample from the
Blocks signal which is piecewise constant. The approximation produced by
the new method exhibits several small spurious local extreme values. To get
rid of these we propose to introduce monotonicity constraints. For numbers
τ1, τ2, . . . , τn−1 ∈ {−1, 1} we consider the problem of minimising T (f) in (3)
among all f such that (fi+1 − fi)τi ≥ 0. The constraints can be derived from
the usual taut string method which is known to have the correct modality
asymptotically or alternatively from minimising the total variation subject to
multiresolution constraints (Kovac and Meise, 2006). In both cases the exis-
tence of a solution to this constrained optimisation problem is guaranteed.

The monotonicity constraints can easily be incorporated into the algorithm
developed above. The idea is based on the following property:

Lemma 3 There is a unique minimiser f̃ of the functional (3) subject to
multiresolution constraints (fi+1 − fi)τi ≥ 0 and it satisfies:
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Fig. 6. The smooth taut string method using local squeezing and monotonicity
constraints applied to two samples from the Heavisine and Blocks signal.

(i) For all k < n either

f̃k+1 =







f̃k + (g′

k)
−1
(

2
λk

∑k
i=1(f̃i − yi)

)

if τi

∑k
i=1(f̃i − yi) > 0

f̃k if τi

∑k
i=1(f̃i − yi) ≤ 0

(5)

(ii) Let f be some vector that satisfies the equations (5) for all k = 2, . . . , n. If
f1 > f̃1, then fk > f̃k for all k > 2 and vice versa in the case where f1 < f̃1.

Therefore we can calculate a solution of the constrained minimisation prob-
lem exactly as set out in Section 2.3 for the unconstrained problem. Moreover,
the local squeezing technique described above can be used to supply an ade-
quate approximation for noisy data with the specified monotonicity behaviour.
Figure 6 shows an application of this approach to the Heavisine and Blocks
signal. Whereas the approximation for the Heavisine signal is not much dif-
ferent from the approximation obtained above in Figure 5, in the case of the
piecewise constant Blocks signal the approximation exhibits much less noise
and in particular no spurious local extreme values.
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Fig. 7. Rescaled versions of standard test signals by Donoho and Johnstone.

3 Numerical examples

3.1 A simulation study

A simulation study was carried out to compare the smooth taut string method
with five other automatic smoothing methods with respect to number of local
extreme values and mean squared error. The five competitors were

• the taut string method (Davies and Kovac, 2001) using their local squeezing
technique to determine the local tube widths,

• wavelet thresholding (Donoho et al, 1995) using universal
√

2 log(n) hard
thresholds and Daubechies’ least asymmetric wavelets with five vanishing
moments,

• smoothing splines (Silverman, 1985) using all time points as knots and cross
validation to determine the smoothing parameter,

• kernel estimator with local plugin-bandwidths (Brockmann et al, 1993) eval-
uated at all time points,

• local polynomial estimator with local bandwidths determined by a direct
plug-in method (Ruppert et al, 1995).

Rescaled versions of four standard test signals by Donoho (1993) and Donoho
and Johnstone (1994) were used which can be seen in Figure 7. For each test
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Method n Doppler Heavisine Blocks Bumps

true mod: 40 true mod: 6 true mod: 9 true mod: 21

Taut string 256 17 4 9 21

Smooth string 17 4 9 21

Wavelets 26 6 60 68

Splines 57 6 71 94

Kernel estimator 41 8 57 49

Local polynomials 26 6 45 33

Taut string 512 21 6 9 21

Smooth string 21 6 9 21

Wavelets 28 10 91 90

Splines 115 8 141 212

Kernel estimator 62 10 104 95

Local polynomials 70 6 87 88

Taut string 1024 25 6 9 21

Smooth string 25 6 9 21

Wavelets 32 16 136 120

Splines 181 11 240 375

Kernel estimator 80 12 182 192

Local polynomials 124 6 172 199

Taut string 2048 28 6 9 21

Smooth string 29 6 9 21

Wavelets 38 20 172 132

Splines 244 16 391 543

Kernel estimator 96 14 306 343

Local polynomials 178 8 211 393

Taut string 4096 32 6 9 21

Smooth string 32 6 9 21

Wavelets 41 26 224 136

Splines 304 28 615 702

Kernel estimator 113 18 503 522

Local polynomials 231 24 415 487

Table 1
Median modality for six different smoothing methods, four test signals and five
different sample sizes.

signal and three different sample sizes (n = 256, 1024, 4096) 1000 samples were
generated by adding Gaussian noise with mean 0 and standard deviation 0.4.

The results are reported in Tables 1 and 2 and interesting conclusions can
be drawn from them. With respect to modality the median number of lo-
cal extreme values was determined for each signal, method and sample size.
The taut string method and the smooth taut string method attained on av-
erage the correct number in most situations except for small samples of the
Heavisine signal where the second discontinuity was not detected and for the
Doppler data where even for larger samples some very small oscillations at
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Method n Doppler Heavisine Blocks Bumps

Taut string 256 0.315 (0.00121) 0.116 (0.00047) 0.019 (0.00031) 0.142 (0.00093)

Smooth string 0.338 (0.00121) 0.078 (0.00041) 0.106 (0.00071) 0.225 (0.00112)

Wavelets 0.118 (0.00073) 0.048 (0.00028) 0.312 (0.00148) 0.266 (0.00137)

Splines 0.152 (0.00005) 0.038 (0.00014) 0.200 (0.00062) 0.464 (0.00164)

Kernel estimator 0.131 (0.00030) 0.028 (0.00015) 0.186 (0.00044) 0.744 (0.00041)

Local polynomials 0.293 (0.00052) 0.030 (0.00015) 0.355 (0.00139) 1.896 (0.00267)

Taut string 512 0.200 (0.00061) 0.082 (0.00032) 0.009 (0.00016) 0.118 (0.00046)

Smooth string 0.178 (0.00053) 0.043 (0.00021) 0.047 (0.00026) 0.134 (0.00051)

Wavelets 0.065 (0.00031) 0.029 (0.00019) 0.165 (0.00066) 0.175 (0.00065)

Splines 0.081 (0.00020) 0.208 (0.00008) 0.139 (0.00036) 0.165 (0.00047)

Kernel estimator 0.074 (0.00018) 0.019 (0.00008) 0.134 (0.00030) 0.199 (0.00041)

Local polynomials 0.107 (0.00021) 0.021 (0.00008) 0.206 (0.00034) 0.764 (0.00063)

Taut string 1024 0.132 (0.00032) 0.052 (0.00021) 0.005 (0.00010) 0.120 (0.00040)

Smooth string 0.099 (0.00024) 0.023 (0.00012) 0.027 (0.00013) 0.082 (0.00023)

Wavelets 0.039 (0.00016) 0.017 (0.00012) 0.081 (0.00027) 0.101 (0.00034)

Splines 0.051 (0.00010) 0.014 (0.00005) 0.097 (0.00016) 0.109 (0.00017)

Kernel estimator 0.052 (0.00011) 0.013 (0.00005) 0.088 (0.00016) 0.080 (0.00014)

Local polynomials 0.059 (0.00012) 0.015 (0.00005) 0.123 (0.00029) 0.261 (0.00025)

Taut string 2048 0.087 (0.00018) 0.034 (0.00012) 0.003 (0.00006) 0.089 (0.00024)

Smooth string 0.054 (0.00012) 0.012 (0.00006) 0.020 (0.00008) 0.049 (0.00015)

Wavelets 0.023 (0.00008) 0.010 (0.00006) 0.049 (0.00014) 0.054 (0.00016)

Splines 0.031 (0.00006) 0.010 (0.00003) 0.069 (0.00008) 0.065 (0.00008)

Kernel estimator 0.036 (0.00006) 0.009 (0.00003) 0.059 (0.00008) 0.051 (0.00012)

Local polynomials 0.034 (0.00007) 0.011 (0.00004) 0.098 (0.00014) 0.089 (0.00011)

Taut string 4096 0.056 (0.00011) 0.020 (0.00006) 0.002 (0.00003) 0.065 (0.00013)

Smooth string 0.029 (0.00006) 0.005 (0.00003) 0.014 (0.00005) 0.028 (0.00005)

Wavelets 0.011 (0.00003) 0.006 (0.00003) 0.031 (0.00007) 0.027 (0.00007)

Splines 0.018 (0.00003) 0.007 (0.00002) 0.047 (0.00004) 0.039 (0.00004)

Kernel estimator 0.025 (0.00004) 0.006 (0.00002) 0.038 (0.00005) 0.030 (0.00011)

Local polynomials 0.020 (0.00004) 0.007 (0.00002) 0.056 (0.00004) 0.054 (0.00006)

Table 2
Mean squared error for six different smoothing methods, four test signals and five
different sample sizes. In brackets the standard errors.

the left-hand side were not detected. However, spurious local extreme values
were only occasionally observed. In contrast all other methods produced on
average much more complicated models with spline smoothing, the only com-
petitor without a local bandwidth choice, performing worst. Larger number of
artefacts were recorded for the rough Blocks and Bumps signals than for the
smoother Heavisine and Doppler signals.

The bandwidth choices for the spline, kernel and local polynomial methods
are all aimed at minimising the mean squared error. The smooth taut string
method aims to minimise the modality instead, but attains nevertheless in
half of the 20 test beds a smaller mean squared error than these methods. In
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Fig. 8. Data from Spectroscopy. Upper panels: Usual and smooth taut string ap-
proximations. Bottom panels: Excerpts of the smooth taut string approximation.

all, but one of these 10 test beds the smooth taut string methods performs
also better than the wavelet method. The usual taut string method generates
piecewise constant approximations and therefore considerably improves the
mean squared error for the Blocks signal. For other data sets the smooth taut
string approximations usually decrease the mean squared error.

3.2 Spectroscopy data

In Figure 1 we analysed briefly data from Spectroscopy and an approximation
obtained from spline smoothing with the smoothing parameter chosen man-
ually. If the parameter is determined automatically with cross validation the
approximation becomes even more wiggly and nearly interpolates the data
leading to 2512 local extreme values. The kernel and local polynomial estima-
tors used in the simulation study above need 760 and 876 local extreme values
and the wavelet procedure leads to a modality of 284. The taut string and
smooth taut string procedures on the other only hand exhibit 82 local extreme
values and the chemists could confirm that these extreme values matched ex-
actly the true peaks. Figure 8 shows in the upper panels the approximations
obtained from the usual and smooth taut string procedures. Two excerpts of
the smooth taut string approximation are shown in the bottom panels and
demonstrate that the smooth taut string is able to produce a simple approxi-
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Fig. 9. Three histograms from the same sample, but with different bin widths.

mation in areas without any signal, but at the same time capture all the peaks
in regions with more variability in the signal.

4 Further Applications

4.1 Density estimation

Another problem in Statistics where local extreme values often play an impor-
tant rôle is density estimation. Figure 9 shows three histograms from the same
sample, but with different bin widths. The histogram in the left panel seems to
suggest that the sample is unimodal whereas the other histograms indicate the
presence of three or five modes. Like in the regression case the problem is to
decide which modes arise from the data. So given a sample x1, . . . , xn our task
is again to specify a smooth density function f which is as simple as possible,
but such that the corresponding distribution F is an adequate approximation
for the data. As in Davies and Kovac (2004) we consider adequacy measures
based on generalised Kuiper metrics dκ

ku of order κ defined by κ by

dκ
ku(F, G) = max{

κ
∑

1

|(F (bj) − F (aj)) − (G(bj) − G(aj))|} (6)

where the maximum is taken over all aj, bj with

a1 ≤ b1 ≤ a2 ≤ b2 · · · ≤ aκ ≤ bκ.

Since the distribution of dκ
ku(Fn, F ) is independent of F for continuous F ,

it makes sense to denote the α−quantile by qu(n, α, dκ
ku). Then an adequate

approximation to the sample x1, . . . , xn is a density f whose distribution F
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Smooth taut string method
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Fig. 10. Histogram of a sample from the claw distribution with two kernel estimates
for two different bandwidths in the left and middle panel and smooth taut string
approximations in the right panels. The dotted line displays in each plot the true
claw density.

satisfies

dk
ku(En, F ) ≤ qu(n, α, dκ

ku).

where En is the empirical distribution.

Again a version of the taut string method can be used to generate a sequence
of approximations with increasing complexity. Although not explicitly men-
tioned in Davies and Kovac (2004) the taut string approximations for density
estimation can be regarded as a minimiser of a functional

T (f) =
n−1
∑

i=1

(xi+1 − xi)
(

(xi+1 − xi)fi −
1

n − 1

)2

+
n−1
∑

i=1

λigi(fi+1 − fi)

where gi(x) = |x|. Again by choosing gi(x) =
√

(xi+1 − xi)2 + x2 we obtain
smooth solutions and can run the same algorithm as set out above for the
regression case.

The sample that was used in Figure 9 consists of 500 observations from the
claw distribution which has been studied by Marron and Wand (1992) and
several other authors. The claw density is shown as dotted lines in each of the
three panels of Figure 10. In the left panel a kernel estimate is displayed as
well. Although difficult to see the kernel estimate has exactly five modes at
positions approximately -3.1, -2.3, -0.6, 0 and 0.5. Any smaller bandwidth will
enlarge the artefacts at -3.1 and -2.3. In particular for bandwidths that allow
the fingers of the claw density to be approximated reasonably well, at the same
time a number of artificial extrema at the tails are produced. This problem
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Fig. 11. Spiral with added two-dimensional Gaussian noise. Left panel shows the
true spiral, right panel shows approximation derived from two-dimensional smooth
taut string functional.

is illustrated in the middle panel of Figure 10. and has been studied in more
detail by Davies and Kovac (2004). The smooth taut string approximation on
the other hand attains exactly the correct modality and is displayed in the
right panel of Figure 10.

4.2 Two-dimensional curves

The left panel of Figure 11 shows a spiral with added two-dimensional Gaus-
sian noise. This setting provides another interesting application of the smooth
taut string method. We assume that two-dimensional observations (xi, yi) are
made at time points ti and are looking for a function f = (fx, fy) such that the
two-dimensional residuals (xi − fx(ti), yi − fy(ti)) look like noise. A straight-
forward idea to provide approximations in this situation is to consider the
functional

T (f) =
n
∑

i=1

(yi − f y
i )2 +

n
∑

i=1

(xi − fx
i )2

+
n−1
∑

i=1

λi

√

(f y
i+1 − f y

i )2 + (fx
i+1 − fx

i )2
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The right panel of Figure 11 shows an approximation derived from this func-
tional.

5 Proofs

5.1 Proof of Lemma 1

Since T is convex and differentiable, there exists a unique minimum. Denote

the minimiser by f̃ . Then ∂T (f̃)

∂f̃i

= 0 for all i = 1, . . . , n. By adding the partial

derivatives with respect to fj, . . . , fk we obtain (i). The special case with j = 1
and solving for fk+1 yields (ii). Let f be some vector that satisfies the equations
(4) and fi > f̃i for all i = 1, . . . , j, then in particular

∑j
i=1(fi−yi) >

∑j
i=1(f̃i−

yi). This together with (ii) show (iii) since g′ is monotonically increasing.

5.2 Proof of Lemma 3

For k < n define a direction vector ε by εi = 1{i ≤ k}, i = 1, . . . , n and
consider the function h(t) = T (f̃ + tε). Then

h′(0) = 2
k
∑

i=1

(fi − yi) − λkg
′

k(f̃k+1 − f̃k).

To ease notation we assume that τk = 1, thus f̃k+1 ≥ f̃k.

We consider the case first where
∑k

i=1(f̃i − yi) ≤ 0. Assume that f̃k+1 > f̃k,
then h′(0) < 0. Then for sufficiently small γ > 0 and all t ∈ (0, γ) the vectors
f̃ + tε would still satisfy the monotonicity constraints and h(t) < h(0), thus
f̃ would not minimise T . Thus f̃k+1 = f̃k.

If on the other hand
∑k

i=1(f̃i−yi) > 0, but f̃k+1−f̃k < (g′

k)
−1
(

2
λk

∑k
i=1(f̃i − yi)

)

,

then h′(0) > 0. Since f̃ + tε satisfies the monotonicity constraints for all t ≤ 0,
we could again find some q < 0 such that h(q) < h(0). Similarly we conclude

in the case where f̃k+1 − f̃k > (g′

k)
−1
(

2
λk

∑k
i=1(f̃i − yi)

)

. This proves (i).

For (ii) assume that fi ≥ f̃i for all i = 1, . . . , k. If τk = 1 and
∑k

i=1(f̃i−yi) > 0,
then because of

∑k
i=1(fi − yi) ≥ ∑k

i=1(f̃i − yi) and monotonicity of g′ also
fk+1 > f̃k+1. If τk = 1 and

∑k
i=1(f̃i − yi) ≤ 0, then fk+1 ≥ fk ≥ f̃k = f̃k+1. If

τk = −1 and τk

∑k
i=1(fi − yi) > 0, then also τk

∑k
i=1(f̃i − yi) > 0 and therefore

again because of monotonicity of g′ we find that fk+1 > f̃k+1. Finally if τk = −1
and τk

∑k
i=1(fi − yi) ≤ 0 we conclude that fk+1 = fk > f̃k ≥ f̃k+1.
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5.3 Proof of Lemma 2

The computational complexity of the algorithm depends on how often the
recursion formula (4) is applied. These applications can be divided into two
groups distinguishing between those corresponding to choices of k and fk with
|fk − f̃k| > ε/2 and |fk − f̃k| ≤ ε/2. We will see that there are O(n) combina-
tions of the first type, but that for each combination the number of applications
of (4) is bounded by some Ln = O(1/ log(1+µn)). The second case occurs for
every value of k only up to once. Moreover if it does occur for some k = k̃ and
if recursion formula (4) is applied for M > Ln times, then there are no further
applications of (4) with |fk − f̃k| ≤ ε/2 for k = k̃, k̃ + 1, . . . , k̃ + M − Ln. So
the computational complexity of applying (4) in the second case is again of
order O(nLn).

More precisely assume that f̃1, f̃2, . . . , f̃k−1 have already been calculated for
some k and that fk > f̃k + ε/2. Then using a Taylor expansion and Lemma
1 we see that for all j > k such that fj can be calculated using the recursion
formula (4)

fj − f̃j ≥ fj−1 − f̃j−1 +





2

λj−1

j−1
∑

i=k

(fi − f̃i)





(

(g′

j−1)
−1
)

′





2

λj−1

j−1
∑

i=1

(f̃i − y)





≥ (fj−1 − f̃j−1)(1 + Cµn)

for some C > 0. Applying this idea several times we see that fj − f̃j ≥
ε
2
(1 + Cµn)

j−k and therefore the recursion formula (4) stops after at most Ln

operations where Ln = O(1/ log(1 + Cµn).

The number of executions of steps (III) and (IV) of the algorithm for a par-
ticular k is bounded by a global constant M that does not depend on k like
M = log2((max(u) − min(l))/ε) where u and l are the crude initial bounds.
Thus the number of applications of (4) corresponding to choices of k and fk

with |fk − f̃k| > ε/2 is bounded by LnMn.

If on the other hand 0 ≤ fk − f̃k ≤ ε/2 for some k and fk and (4) gets
applied N > Ln times, then 0 ≤ fj − f̃j ≤ ε/2 for all j = k, k + 1, . . . , M :=
k + N − Ln − 1. Step (IV) of the algorithm will then move the upper bounds
uk, uk+1, . . . , uM so closely to f̃k, f̃k+1, . . . , f̃M that in subsequent iterations for
k ≤ M the starting value fk always satisfies |fk − f̃k| < −ε/2. We conclude
similarly in the case where fk − f̃k ≤ ε/2 and see that the total number of
applications of (4) corresponding to choices of k and fk with |fk − f̃k| ≤ ε/2
is bounded by Lnn.
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6 Conclusions

We have introduced the smooth taut string method that provides smooth and
simple approximations in the context of non-parametric regression without
spurious local extreme values. At the same time the new method enjoys a
small mean squared error when compared to other smoothing methods in
particular when the underlying signal is rough.

Software to this article is made available as part of the ftnonpar package for
R.
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