MECH1

Problem Sheet 5

Work and Energy, continued

Do all problems

- 1. (This is the last problem from the previous homework) The one-dimensional potential energy function for a particle is given as $U(x) = \frac{1}{x^3} \frac{1}{x}$. Sketch U, identify and describe equilibrium points and regions of finite/infinite motion.
- 2. Given $F(x, y) = xyi + \frac{y}{x}j$ compute the work of F along the path $y = x^2$, between the origin and the point (1, 1). Is this a potential force?
- 3. A particle is moving in three dimensions along the right helix of radius R and pitch (the vertical distance between nearby loops) H. Given $F(x, y, z) = y\mathbf{i} + x\mathbf{j} + xyz\mathbf{k}$ compute the work of F along the part of the helix that starts at (R, 0, 0) and ends at (-R, 0, H/2). (Help: the helix gets parameterised as $x = R \cos t$, $y = R \sin t$, $z = \frac{H}{2\pi}t$. Why?) Is this a potential force?
- 4. Suppose a force $\mathbf{F}(\mathbf{r})$ is central. I.e. $\mathbf{F}(\mathbf{r}) = f(r)\frac{\mathbf{r}}{r}$, where r is the distance form the origin. Show that such a force is potential (i) by definition of work, showing that the integral involved between any points A and B depends only on the distances r(A) and r(B) from the origin, but not on the particular path connecting A and B; (ii) by demonstrating that, in fact, if a function of one variable U(r) is such that U'(r) = -f(r), then $\mathbf{F}(\mathbf{r}) = -\nabla U$.

Then find the potential corresponding to the gravitational interaction force

$$\boldsymbol{F}(\boldsymbol{r}) = G \frac{m_1 m_2}{r^2} \frac{\boldsymbol{r}}{r}.$$

- 5. A particle of mass m_1 moves with constant velocity v_1 and hits the resting particle of mass m_2 . After that the two particles stick together and continue to move as a single particle of mass $m_1 + m_2$. Use conservation of momentum to show that the collision resulted in the loss of kinetic energy. Calculate this loss. Discuss where the mechanical energy could go.
- 6. A ballistic pendulum is a heavy sack filled with sand of mass M, suspended on a string of length l. A bullet of mass m traveling horizontally hits the sack and gets stuck in it, whereupon the sack starts oscillating with angular amplitude α . Find the velocity of the bullet before it hits the sack.