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1 On principles. Introduction

If one studies natural phenomena, it is important to try to understand the underlying principles. These would
ideally not only enable one to explain the range of familiar phenomena but may predict new phenomena or at least
explain new phenomena when they are discovered. The method of principles was founded by Newton (1643–1727).
Einstein (1879–1955) was a great master of the method of principles.

Principles of physics are not a matter of logical explanation. Their confirmation is experience only – they are
based on reality, or experimental facts which so far have had no evidence to the contrary. To this end, ”experiment”
and ”reality” are herein tautological. Practically, however, these are not the principles themselves – as there aren’t
so many – but their logical consequences that are observed in a vast variety of physical experiments and in general
reality.

Here are the examples of physical principles. The relativity principle – there are no observational consequences
of absolute motion, see footnote 6 below, is a meta-principle which establishes a class of subjects, or observers, who
are to embark on the study of natural phenomena and get the same results of identical independently performed
physical experiments. These are closely related to Newton’s first law, the most philosophically mysterious one of
three. See Section 3.2.

Another meta-principle: physics works by way of fundamental constants (such as, say the mass of electron, the
Gravitational constant, etc.) fundamental quantities (such as, say mass, energy, momentum) and laws, which can
be expressed as the relations between these fundamental quantities and constant.

Experience, or information that we possess is always limited, and so may be the scope of principles. Principles,
discovered so far apply with limited precision only. Until now, the key trend in physics was expansion and extension
of the principles’ scope. When new phenomena are discovered, it may happen that old principles cannot account
for them and have to be abandoned or extended. Abandonment would indicate that the principles were somewhat
false (although they may have used logically consistent mathematics). An ideal physicist is always in quest for an
experiment that would invalidate his favorite theory. But even if this happens and the theory goes busted, yet the
principles can be extended to embrace a new, more mature theory – this is hopefully an indication that one is on
the right track. This happened in the beginning of the XX century when in order to apply classical Newtonian
mechanics to the microworld on sub-atomic length scales (. 10−8cm) and, respectively, the fast world of speeds
comparable with the speed of light in vacuum c ≈ 300, 000 km/s, its principles had to be revised to embrace
quantum mechanics and relativity theory. Throughout the revision some ideas and models that had outlived
themselves, such as luminiferous ether1 had to be dropped. New fundamental constants (c,h – Plank’s constant)
had to be added. However, the main concepts of Classical mechanics (such as mass, energy, momentum, etc.)
not only survived, but after being properly examined and extended ended up being understood more thoroughly,
provided more evidence in support of the depth and validity of these concepts, as well as the method of principles.
Both quantum and relativistic mechanics have Newtonian mechanics as its limit case (of large sizes and slow
speeds). Within its range, Classical mechanics is most widely used, and if, in fact, one attempted to study the
problem of, say, snooker ball movements using the full might of relativistic quantum mechanics, he would be
hopelessly lost.

Many physicists have believed and many believe that some day, and soon, all fundamental principles of physics
will have been discovered and understood in terms of Grand Unification. This has not happened so far. Even if
it does happen, new principles will probably be required for progress in other natural sciences, dealing with more
complex phenomena, such as chemistry and, above all, biology. However, today’s vast array of experimental data
in all natural sciences makes it very unlikely that some day the notions of, say, momentum and energy will have
to be abandoned completely and replaced by totally different ones.

0Maths, University of Bristol, m.rudnev@bris.ac.uk, www.maths.bris.ac.uk/∼maxmr/mech1.html
1As physics studies natural phenomena, it is impossible to understand it without having some basic knowledge about them. A

student, therefore, is expected to know and be interested in basic facts of physical reality: the Earth moves around the Sun along an
elliptic orbit which is close to a circle, an airplane flies due to the lift force that arises as it moves through air and is due to the shape
of the wing, etc. If some notions, like luminiferous ether above sound unfamiliar, Wikipedia provides a quick and reasonably reliable
reference to these.
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Physical theory is derived from the principles by means of mathematics. Physical expression is unthinkable
without mathematics, which provides abstract models to physical objects: a moving particle becomes a point,
a ray of light a straight line, etc. Physical principles become axioms in the mathematical theory which is then
developed to derive their logical consequences as theorems. However, pure mathematics itself is an abstract
and logically closed and consistent discipline: it may not happen that new evidence comes to life and renders
a mathematical theorem which is true today false tomorrow (unless the proof was false from the beginning ...
hopefully false proofs are quickly identified, usually by their authors). So all the theorems that follow from
abstract mathematical modeling of empirical physical principles are 100% true mathematically, while physically
they are only meaningful within the scope of validity of the principles involved. It shall be mentioned that any
mathematical theory is limited by the variety of purely logical connections that exist between its concepts. Hence,
a considerable extension of physical principles would usually stimulate the development of new mathematics that
would be adequate to describe it. For instance, real variables’ calculus does not suffice as adequate mathematical
machinery for quantum mechanics. Similarly, today’s theoretical physics requires and stimulates development of
very advanced mathematical techniques.

However, many fundamental questions in pure maths may have no meaning in physics. Such is, for instance,
the concept of an irrational number. The proofs that π is irrational (Lambert, 1761) and transcendental (von
Lindemann, 1882) are regarded as important milestones in maths. In physics, however, it makes no sense to ask
whether Plank’s constant h ≈ 6.63× 10−34 joule/s is rational or irrational in a given system of units, because any
measurement of its value inevitably involves error. This is not an equipment flaw, but a physical law: there are no
precise measurements. Nor there is evidence as to whether rationality or irrationality of dimensionless constants,
such as the fine structure constant α = e2

2hcε0
≈ 1/137, (e ≈ 1.6× 10−19 coulombs is the charge of the electron and

ε0 is dielectric permitivity of vacuum) is of any physical consequence. In the same vein, defining, e.g. density of
water as the derivative

ρ =
dm

dV

when dV is the volume of an “infinitesimally” small ball and dm the mass of water therein, one is, in fact, dealing
with finite, however small, quantities dV and dm. Indeed, it is not at all clear what dm means if the diameter of
the volume dV becomes smaller than the actual size of the water molecule. What’s more, the molecules are in fact
in the state of constant motion, and so to ensure that ρ does not depend on time in some possibly very difficult
way, one has to ensure that dV is large enough, so the number of molecules contained therein is approximately
constant. So dV shall realistically be rather large physically but small enough mathematically, so that one can
take limits. The “physical” density is therefore

ρ =
∆m

∆V
,

where the volume ∆V is small enough, but no too small. Fortunately, it happens that in the mathematical model
dealing with the above macroscopic notion of water density, the functions involved are smooth enough, so that the
“mathematical limit” dm

dV equals approximately, but with extremely high accuracy, to the “physical limit” ∆m
∆V .

That is why the issue of scales and orders of magnitude is extremely important in physics.
In general, the question of an adequate mathematical model for a physical phenomenon is fundamental and

often difficult, apart from purely mathematical difficulties within the model. On the other hand, physics can
often content itself with mathematical statements that a pure mathematician would find not strict enough. As
physics always has to deal with approximate values of its quantities, it often makes sense to use mathematical
approximation and simply ignore all the mathematical subtlety that lies beyond this approximation.2

Another instance of occasional principal differences between physicist’s and mathematician’s viewpoints is the
question of long-term stability of complex systems. An example of such is the Solar system, and the question

2For instance, the relativistic phenomenon of light aberration consists in the fact that a ray of light in the xy-plane forming an
angle α with the x axis from the point of view of observer O who holds the flashlight will form a different angle α′ from the point of
view of observer O′ who is moving uniformly along the x axis with velocity v. By using the Taylor expansions where terms containing
the second and higher derivatives have been dropped, one can show that special relativity theory predicts that |α′ − α| ∼ v

c
sin α

(which shows that O and O′ indeed agree upon the direction of the x-axis where sin α = 0 but disagree on the direction of the y-axis,
where sin α = 1). From a physicist’s point of view, as long as v is reasonably small, the above formula can be treated as precise, simply
because the relative error involved has the magnitude ∼ v2/c2, which may be well beyond resolution of the angular measurements
involved.

Relativity theory is not taught systematically in this course, but allusions to its principles and some phenomena are being made
throughout.
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is, roughly speaking, whether the influence of other planets, small with respect to the influence of the Sun, will
have a serious long-term cumulative effect on the Earth’s orbit, so as to make it unbounded. This would not
happen had each planet interacted with the Sun only, in isolation from other planets, in which case their motion
is described by Kepler’s laws which are some 400 years old. But in reality the motions of each individual planet
affects others, if only just a tiny bit. The question is: may these tiny effects accumulate over the years to cause a
catastrophe? The natural physical parameter to measure the perturbation caused by all other planets is the ratio
of their total mass to the mass of the Sun, which is ∼ 10−3. Mathematically, the problem falls into the realm
of perturbation theory of Dynamical systems and is wide open. The fact is, very few actual problems enable a
complete mathematical resolution. Most of the time, given a system of, say differential equations describing a
particular mechanical system, mathematics fails to provide a mere formula that would just enable one to write
down the solution.

Complex dynamical systems are known to be extremely unstable: their two arbitrarily close initial states may
end up evolving over very long times by eventually utterly different scenarios. Even if the mathematical problem
becomes solved, the Yes/No answer to the question of stability depends on the exact positions and velocities
of the Earth, as well as all the other planets in the Solar system at a given moment of time. These positions,
however, cannot ever be known exactly, and moreover, in the process of measurement, which involves some kind of
interaction with the measuring device, will change. There are other serious obstacles: 10−3 still appears to be way
too large for a value of a “mathematically valid” perturbation parameter for the mathematical theory to work.
On the other hand, if the perturbation were small enough, the characteristic times over which a structural change
may take place can be proved to be exponential in some inverse power of the perturbation parameter. These
times would exceed the age of the Universe, and it is therefore unlikely that the mathematical model considering
only non-relativistic gravity between the Sun and the planets as an isolated system can be adequate on such time
scales.

Mechanics appeared as the earliest branch of physics. Mechanics studies motion and equilibrium of physical
bodies. By motion its simplest form is meant: motion in mechanics is change of position relative to other bodies.
Newton in his Principia (first published in 1687) was the first to formulate the system of principles of mechanics,
and although he had many great predecessors, such as Archimedes (circa 287–212 b.c.), Kepler (1571–1630),
Galileo (1564–1642), Huygens (1629–1695) and others, Newton is regarded as a founder of modern physics (and,
as a matter of fact, a co-founder of differential-integrable calculus, which provides a natural mathematical language
to express Newton’s laws and their consequences). For 200 years after Newton, in spite of the industrial revolution
of the XIX century, principles of Newtonian mechanics “worked” in all areas of human endeavor and needed not
to be revised. The revisions came only in the beginning of the XX century and concerned atomic length scales and
speeds comparable to the speed of light, which before the end of the XIX century had been simply out of reach.
Mechanics of fast moving objects is called relativistic and its main principle is that no body can be accelerated
to move faster than the speed of light in vacuum. That is, there is a limit speed, with which, in particular, any
signal or any interaction can travel. In cosmic rays and modern accelerators particles move with speeds that are
only by fractions of a millimeter per second smaller than c. Accelerators have been designed in accordance with
principles of relativistic mechanics, and the fact that they work is a solid proof of its validity as a principle model
of the world, at least within of out today’s reach.

In addition to dealing with non-relativistic motions, Classical mechanics deals with macroscopic objects, namely
those whose size is big enough to ignore the uncertainty relation discovered by Heisenberg (1901–1976). It states
that if one makes a simultaneous measurement of any particle’s position x and momentum p, the uncertainties δx
and δp of measurement will always be such that

δx · δp & h,

the Plank constant. This is not a matter of how good the measuring equipment is, but is rather the fact that
the two quantities, the position and momentum, cannot be in principle known with precision simultaneously, and
making more precise the knowledge of one inevitably obscures the knowledge of the other. Thus, the central
notion of Classical mechanics of a trajectory (where one is expected to know both the position and velocity at
any time) is, in fact, an approximation. This approximation works well for bodies that are large enough, but
for small bodies, whose size characteristic size x is small (while δx should not exceed the characteristic size)
Classical mechanics is inapplicable.3 Heisenberg’s principle was necessary to explain the results of the whole

3Indeed, if one decides to talk about a trajectory of an electron in the hydrogen atom, then the error δx should be at most the
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family of experiments whose outcomes did not make sense from the classical mechanics point of view. To embrace
this principle, mathematical theory had to be extended to quantum mechanics, where a state of a particle is
being characterised by a wave function – a vector in an infinite-dimensional Hilbert space – rather than a three-
dimensional radius-vector r = (x, y, z). The mathematics involved goes beyond differential calculus, and instead
of ordinary differential equations expressing the laws of classical mechanics, the laws of quantum mechanics are
expressed vial partial differential equations. Quantum mechanics has classical mechanics as its limit case when one
may regard h as zero. Considering rather small numerical value of h, there is no wonder that classical mechanics
is so precise in its applications to real life, which include cars, airplanes, and missiles.

However, in both cases fundamental notions of Newtonian mechanics, such as energy, momentum, angular
momentum, etc. not only were not abandoned, but after having found their clear extensions (which in the “big
and slow” classical limit boil down to their classical definitions) have become foundation for relativistic and
quantum mechanics.

2 Kinematics

Kinematics studies motion of particles regardless of its cause. The venue for kinematics is space-time, i.e. an
event, an instant of reality, is characterised by where and when it has occurred. The main object for kinematics is
a particle – a point in space which has no size, and whose radius-vector r is a function of time t, or the point moves
along its trajectory. Kinematics is concerned with the most basic question – how does one describe a trajectory?

2.1 Space, time, and frames of reference

Motion in mechanics is understood as change of position of a mechanical body in space over time, relative to other
bodies. A rail passenger opens a book in London, reads it until the train arrives in Bristol whereupon he closes
it. The events of the book being open and closed happen at the same place – in his hands – from the passenger’s
point of view. On the other hand, the former event takes place in London and the latter one in Bristol. Hence, the
statement that two events occur at the same place is meaningless until the frame of reference, relative to which
the statement is being made, has been specified. And according to Galileo’s relativity principle, there is no reason
to believe that there is anything physically special about someone reading a book on a train London to Bristol
versus doing this in London or in Bristol.

Construction of a frame of reference begins with specifying the reference point O, or the origin, together
with three different directions from it. It is convenient to make the three directions mutually perpendicular.
Mathematically, these directions, or coordinate axes (x, y, z) are identified by unit vectors (i, j,k), and a position
of any point in the resulting Euclidean three-dimensional vector space is now

r = xi + yj + zk.

The fact that space is Euclidean, i.e. that it satisfies the axioms of Euclidean geometry, is another principle
that cannot be proved, but so far on length scales from sub-atomic to Metagalaxy it has been verified with
high precision. (General relativity generalises Euclidean geometry to Riemannian geometry where space acquires
curvature. Riemannian geometry is nevertheless based on the same set of fundamental concepts as Euclidean
geometry, such as length, angle between, ant parallel translation of vectors.)

The origin O of one coordinate system can be translated to any other point O′ and a new coordinate system
thereby obtained will be equally adequate. Besides, the frame of reference can be rotated around the origin,
preserving the rigidity of mutual alignment of the three unit direction vectors, and there is no preferred direction
for, say the x-axis. In addition, one has freedom in identifying the direction of the z-axis “up” or “down” after
the directions of the x and y axes have been specified. If the direction of the z-axis is determined from the
direction of the x, y axes by the right-hand-rule, then the coordinate system is called right, otherwise left. By

atom size, which is some 10−10m. On the other hand, p = mv, with m ≈ 9.11× 10−31kg. The uncertainty principle than tells

δv & 6.64× 10−34

9.11× 10−31 · 10−10
≈ 7× 106 m/s,

which is in excess of the speed of the electron in the atom known to be about 106m/s. On the other hand, for the velocity of a ball of
mass 1g the same calculation yields the uncertainty δv ≈ 10−20m/s, which is clearly negligible.
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default, right-hand coordinate systems are used, but it is only because most of the people are right-handed, plus
the kinematics of the Earth, Moon and Sun, wherein lie the origins of calendars, i.e. clocks and motions, is in a
sense right-handed as well.

A rotation of a coordinate system whereupon the unit directions, or basis (e1,e2,e3), turn into (e′1, e
′
2, e

′
3)

can be described as follows. Given any vector a, whose coordinates equal (a1, a2, a3) relative to the “old” basis
(e1,e2,e3), its coordinates (a′1, a

′
2, a

′
3) with respect to the “new” basis (e′1, e

′
2, e

′
3) will be given by the dot products

a · e′1, a · e′2, a · e′3, respectively, since all e’s are unit vectors. Since a = a1e1 + a2e2 + a3e3, one gets:

a′1 = r11a1 + r12a2 + r13a3,
a′2 = r21a1 + r22a2 + r23a3,
a′2 = r31a1 + r32a2 + r33a3,

(1)

where
rij = e′i · ej = cos αij , i, j = 1, 2, 3,

where αij is the angle between the directions of the ith new (primed) and jth old (non-prime) axis. Using matrix
notation 


a′1
a′2
a′3


 = R




a1

a2

a3


 ,

where R is the 3×3 matrix whose entries are rij . Observe the following property of R. If one takes its transpose RT ,
i.e replaces rows of R by its columns, the entries of RT at the position ij are now the cosines of the angles between
the directions of the ith old axis and jth new axis. This corresponds to “rotating backwards”, i.e. expressing




a1

a2

a3


 = RT




a′1
a′2
a′3


 .

Combining the two expressions we see that



a1

a2

a3


 = RT R




a1

a2

a3


 ,

and as this is true for any triple of real numbers (a1, a2, a3) it means that RT R = Id, the identity matrix, whose
entries are 1 on the main diagonal (when i = j) and 0 otherwise. This means that

R−1 = RT ,

and matrices with such properties are called orthogonal, in particular, their determinant must equal to 1.

Physically, the statement “consider the frame of reference” with origin O and coordinate directions (i, j,k)
means that one assumes the principal possibility of first and foremost defining straight lines. “Physical” straight
lines are provided by rays of light. It is confirmed experimentally that rays of light in vacuum indeed are “straight”,
that is satisfy the axioms and theorems of Euclidean geometry with high precision. (In the atmosphere, due to
changes in the refraction coefficient, which is the ratio ca

c , ca ≤ c being the speed of light in the atmosphere, light
rays are no longer straight. But the way they curve can be described and calculated, using principles of Euclidean
geometry.) Furthermore, one assumes the ability to measure the distance to any point in space, as well as the
angle that the direction to that point forms with the coordinate axes – elementary trigonometry will then produce
the point’s coordinates.

Then there is a question of what length is. If there is a straight line and a “standard” rod, whose length
is, say, one meter, then one can coordinatise this line using the rod. The French originated the meter in the
1790s as one/ten-millionth of the distance from the equator to the north pole along a meridian through Paris. It
is realistically represented by the distance between two marks on an iron bar kept in Paris. The International
Bureau of Weights and Measures, created in 1875, upgraded the bar to one made of 90 percent platinum/10
percent iridium alloy.
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In 1960 the meter was redefined as 1,650,763.73 wavelengths of orange-red light, in a vacuum, produced by
burning the element krypton (Kr-86). More recently (1984), the Geneva Conference on Weights and Measures
has defined the meter as the distance light travels, in a vacuum, in 1/299,792,458 seconds with time measured by
a cesium-133 atomic clock which emits pulses of radiation at very rapid, regular intervals. This takes us to the
notion of time.

The last piece of conceptual equipment one needs to complete construction of a frame of reference is the
clock. It is an empirical fact that has never been violated: stating that something occurred at place r and time t
describes an event unambiguously. Mathematically, an event is a point with four “coordinates” (x, y, z, t) in the
four-dimensional space-time continuum. Yet despite in the (x, y, z) space the notion of angle is well defined, one
should not think that there is a particular angle between, say, the x and t axes.

Physically, a clock is any repeated periodic process that one uses to measure time. It is clear what “periodic”
means mathematically, and physically it is desirable that the clock was highly “uniform” and reliable. In relativistic
mechanics, which postulates the existence of the world constant c =speed of light in vacuum, as the maximum
speed with which interaction or any signal can travel, a uniform clock can be defined unambiguously as follows.
An observer as O places a mirror at some point A different from O so that a ray of light sent from O to A will
be reflected back to A. As soon as the signal returns to O, the “experiment” is repeated. The sequence of events
of departure/arrival of the signal are all equally separated in time. Any other physical process can be tested as
periodic with respect to the above “light clock”, and if it is periodic, the process can be used as a clock. In the
past, most reliable clocks were astronomical, based on periodicity of Earth’s movement with respect to distant
stars. Today’s most precise, i.e. “most periodic” clocks are the atomic cesium-133 ones.

The next question is that of how two events occurring at different space loci can be rendered as simultaneous.
Classical physics regards time as absolute, and therefore the answer as to whether two events occur at the same
time is straightforward and the same for every classical observer. But why should time be absolute if space is
not? For a long time there was no evidence that simultaneity is devoid of absolute meaning, it was nt until the
end of the XIX century that the industrial revolution enabled measuring devices enable to detect consequences of
relativity of simultaneity experimentally.

The question of simultaneity is equivalent to the question of how to synchronise clocks. Indeed, if one wants
to describe a trajectory r(t), one shall be able to know the time t at the location r. So hypothetically one can
imagine that there is an identical clock, namely a clock based ont eh same physical principle, say a cesium-133
clock whatever drives it, ticking at every point of space. Each clock measures time intervals in the same way, but
all the clocks may be showing different times. If information could travel infinitely fast, it would be possible to
send a signal from the origin to all clocks, instructing them to set the time equal to 1pm ten minutes after receiving
the signal. The signal would reach all the clocks immediately, and ten minutes from then synchronisation would
be a done deal.

But if there is a fundamental limit as to how quickly information can travel, in terms of c, then the above way
is unacceptable. The only conceptual way to postulate simultaneity of two events is as follows. Suppose A,B are
points on the x axis, symmetric with respect to the origin O, A being to the right. There is an instantaneous flash
at O, and light from it reaches the points A and B simultaneously. Let us now consider another observer O′ who
moves in the positive direction of the x axis, relative to O in such a way that when the flash occurs O and O′

coincide. Form the point of view of O′, the point A is approaching, while the point B is receding. But the speed
of light, the world’s fundamental constant on which all the observers must agree, is still equal to c. So for O the
signal will come to A first, and then to B: the two events are not simultaneous. This definition is not ad hoc: it
involves an experimentally very well confirmed principle that there exists a fundamental physical constant equal
to the maximum speed of sending information (which therefore must be the same for all observers, moving or not,
in the same fashion as h or e are) and a logical construction.4

Similarly, the notion of size becomes relative. More precisely, suppose we have a horizontal rod moving along
4An interesting “paradox” that can be derived (this is a version of the so-called pole and barn paradox). Suppose, O′ sees the

following drama: A receives the signal first and shoots B dead before B receives anything. Consider another observer O′′ who is
moving in the negative x-direction. From his point of view the signal comes to B before it comes to A. Suppose, at the moment
when B receives the signal, O′′ sees B shoot A dead, before A gets the signal. How could then A shoot B dead if he was dead before
having a chance to fire a shot? The answer is, of course – in order for the above drama to unravel, the bullet would have to travel
with the speed at least 2c, which is impossible. This construction implies that a possibility of “crossing the light barrier” would entail
controversy in terms of the notions of cause and effect. On the other hand, one expects that the judgement on whether the event X
caused the event Y must be the same for all observers. The existence of the maximum speed then implies that two events that have
large spatial and small temporal separation cannot possibly have causal connection between each other.
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the x axis. There is no difficulty measuring the length l0 of the rod in the reference frame associated with the
point O′ in the middle of the rod, where the latter rests. However, regarding the observer at O, measuring the
length of a rod would require marking the positions of the left and right ends of the moving rod simultaneously.
As simultaneous for O and O′ are different notions, the outcome l of length measurement by O will generally be
different from l0. There is only so much to the platinum-iridium meter!

Having discussed the issues of what a frame of reference is, it is now time to assume that we have it: we
have separated the four-dimensional space-time into space and time and are now capable of determining with high
accuracy spatial and temporal coordinates of events, using Euclidean geometry and synchronised clocks. Let us
now consider a moving body. Suppose the size of the body, yet way within the “big” range for quantum-mechanical
effects to be negligible, is on the other hand small enough, so that the body’s position can be modeled by a single
point in the abstract mathematical space R3. Such a body is called a material point. Clearly, whether or not a
physical body can be regarded as a material point depends on a concrete problem considered: the Earth can be
regarded as a point if one studies its motion around the Sum; one has to pay tribute to the non-zero size of the
Earth considering its interaction with the Moon causing the tides, and finally, there is no meaning to thinking of
the Earth as a point studying its axial rotation.

Note, however, that a more complicated physical body can always be regarded as a family of interacting
material points.

2.2 Trajectory, velocity, acceleration, curvature.

We start out with some fixed frame of reference (O, i, j, k, t) and now study the motion of a material point, or
particle P , i.e the dependence of its position ~OP with respect to the origin, as it changes in time. The vector-
function

~OP (t) = r(t) = x(t)i + y(t)j + z(t)k

is called the trajectory of P . We often write just r = (x, y, z) as long as the vectors i, j, k have been fixed once
and for all.

The first and second derivatives of the function r(t) are called the velocity and acceleration, respectively:

v(t) =
dr(t)

dt
= ẋ(t)i + ẏ(t)j + ż(t)k, a(t) =

dv(t)
dt

=
d2r(t)

dt2
= ẍ(t)i + ÿ(t)j + z̈(t)k.

Time derivatives will be denoted by dots, rather than primes. Observe that the above formula looks simple enough
due to the fact that the vectors i, j, k have been fixed, independent of time. Also observe that as r is a vector,
then v and a are vectors as well, because v = lim∆t→0

∆r
∆t is obtained in the limit by multiplying a vector ∆r by

a real 1
∆t , and a is obtained similarly from v.

In view of this, one can define relative velocity and acceleration as follows. If r1(t) is the trajectory of a particle
P1, and r2(t) is the trajectory of a particle P2, then the position of P2 relative to P1 is the vector

r21(t) = r2(t)− r1(t),

and relative velocity and acceleration are the quantities

v21(t) = ṙ21(t) = ṙ2(t)− ṙ1(t), a21(t) = v̇21(t).

Geometrically, the velocity vector v is directed tangent to the trajectory at the point r(t).5

Similar to the trajectory r(t) one might plot the vector-function v(t) as well. The curve thereby obtained
is called hodograph. The acceleration a plays the same role for the hodograph as v plays for the trajectory, in
particular a is tangent to the hodograph.

The quantities r, v, a are vectors, and their addition is done by the parallelogram rule, as this is the case with
radius-vectors in Euclidean space. Here is a subtle point, however. If one associates a different frame of reference

5Strictly speaking, v = dr
dt

is a definition of a tangent vector to a curve, and only curves that are smooth enough possess tangent
vectors. The notion of the tangent vector already becomes ambiguous for a broken line at those points where different segments meet.
The coast of Britain is a continuous curve; however it is so jagged, or non-smooth, that is impossible to define a tangent line, except
approximately, and, in fact, taking into account all the minuscule twists and turns of the coastal line would make its length grow to
infinity.
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with P1, then the velocity v′2 of P2 in that latter frame of reference is equal to v21(t) only within the limits of
classical mechanics, as in general the time t in the stationary frame whose origin is O and the time t′ in the moving
frame, whose origin is P1 are different form one another, and by definition v′ = dr21

dt′ , not with respect to dt. E.g.
if both P1 and P2 move along the x-axis in opposite directions with speeds c/2, then v21 = c, and this does not
contradict anything, because the particles move in different directions independently. On the other hand, invoking
a formula, representing velocity addition law in special relativity yields v′ = 4

5c. So, if one associates an observer
with the moving particle P1, the latter sees the distance between P2 and P1 change at the rate 4

5c, rather than c,
according to the stationary observer at O. Needless to say, this is because t 6= t′.

2.2.1 Uniform motion and motion with constant acceleration

The simplest motion is the uniform motion when a = 0, i.e. v = v0 = const. So, there are three independent
first-order differential equations: dx

dt = vx, dy
dt = vy, dz

dt = vz, with constant right-hand sides. The solutions are
x(t) = x0 + vxt, y(t) = y0 + vyt, z(t) = x0 + vxt, or simply

r(t) = r0 + v0t,

where r0 = (x0, y0, z0) is the initial position Clearly, the trajectory is a straight line. If this is the case, one may
wish to choose the x axis so that it is directed along v0, in which case the motion is simply x(t) = x0 + v0t, while
y = z = 0.

Nearly as simple is motion with constant acceleration a = const. In this case the differential equations are
d2x
dt2 = ax, same independently for y and z, and the solution

r(t) = r0 + v0t +
1
2
t2a,

where v0 is the initial velocity. One can always choose the origin, so that the plane defined by the vectors v0, a
becomes the xy-plane. Furthermore, the y-axis can be chosen, so that a is collinear with it. So, the trajectory
always lies in the plane z = 0, and is described by the system of two equations:

x = x0 + vxt, y = y0 + vyt +
at2

2
,

where a is the length of a.
This is a parabola: without loss of generality let x0 = y0 = 0, then

t = x/vx, y = vyx/vx +
ax2

2v2
x

.

The latter two formulas are all that one needs to deal with numerous free fall problems, where a = ±g, the free
fall acceleration, and the sign ± depends on whether the y axis is directed down or up. (This is part of kinematics,
because one essentially does not need the second Newton’s law F = ma or gravity to account for it: it was Galileo
who discovered that all bodies in vacuum fall with the same acceleration g. Observe that Newton’s formula for
the force |F | ∼ m1m2/r2

12 of gravitational attraction of two bodies with masses m1, m2 at a distance r12 does not
explain the nature of gravity.)

2.2.2 Natural parameter, curvature, torsion

How does one describe a curve, path in three dimension? Imagine that there is a test particle moving along the
curve, whatever causes the motion. Let us use the position, velocity, and acceleration of this particle to describe
the curve. The ambiguity of such a description that as long as a test particle moves along a give path, its speed
is irrelevant. So, it would be nice to have a “standard” particle, whose speed is always equal 1. This is the basis
for using the “natural parameter” s to describe the inner geometric properties of the curve, rather than time t.

We have, and will use the notations v, a for the absolute values, or magnitudes |v|, |a| (elsewhere these can be
denoted as ‖v‖, ‖a‖) alias Euclidean lengths of the vectors v,a, respectively (the absolute value of the velocity
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is referred to as speed). E.g. v = |v| =
√

v2
x + v2

y + v2
z . The distance s12, traveled by the material point between

times t1 and t2 can be then computed by the formula

s12 =
∫ t2

t1

v(t)dt =
∫ t2

t1

√
ẋ2(t) + ẏ2(t) + ż2(t)dt.

Indeed, the distance traveled over an infinitesimal time dt is

ds = vdt,

and

s12 =
∫ t2

t1

ds.

Assuming that the trajectory “begins”, say at t = 0, the distance traveled by the point is

s(t) =
∫ t

0

v(t)dt,

and as long as the particle keeps moving, this is clearly an increasing function of t. Therefore, t and s are in
one-to-one correspondence and it is in principle possible to express unambiguously t = t(s), and describe the
trajectory as

r = r(t(s)),

as a function of s. Such a description is called natural, because it refers to a particular curve in space only in terms
of the curve’s metric properties, i.e. its length, regardless of any particle moving along this curve as trajectory.
Equivalently, t = s if a particle moving along the curve always has unit speed. Calling the derivative

τ =
dr

ds
,

we observe that the magnitude of τ is always 1. Indeed, |dr| = ds: the absolute value of dr is the dis-
tance. So, τ is a unit tangent vector to the trajectory: what changes along the trajectory is only the di-
rection of τ . The figure illustrates this and the forthcoming concepts of the normal and binormal vectors.
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Plotting the dependence τ (s) would yield a curve drawn on the unit sphere. A short chord to such a curve
is almost perpendicular to the radius of the sphere, connecting its centre with the chord’s endpoint, the angle
limits to 90 degrees as the chord gets shorter. Therefore the derivative dτ

ds is a vector which is perpendicular to τ .
Similarly, and this will be used a lot,

If u(t) is any vector-function, such that |u(t)| = const., then u(t) · du(t)
dt

= 0, for all t.

The direction of the vector dτ
ds will be determined as follows. The direction of τ is determined as the limit

direction of some sequence of chords ∆r1,∆r2, ∆r3, . . . , to the trajectory that all begin at the same point r(t)
and get shorter and shorter. In the figure ∆r1 = ~AC, ∆r2 = ~AB. Assuming that ∆r1 and ∆r2 are not parallel
(i.e., the trajectory r(t) is not a straight line), let T1 be the triangle determined by the vectors ∆r1 and ∆r2 (the
triangle ABC in the figure). Similarly, let T2 be the triangle determined by the vectors ∆r2 and ∆r3, and so
on. Each triangle Ti determines a plane. The existence of the limit plane defined by the sequence of the triangles
Ti s equivalent to the existence of the limit dτ

ds . The limit plane is called the osculating plane to the trajectory
r(t) at a given point. The osculating plane clearly contains τ . The unit vector in the osculating plane, which
is perpendicular to τ and points inside the trajectory is now well defined. It is denoted as n and is called the
principal normal vector to the trajectory.

If the osculating plane does not change along the curve, then it contains the curve itself, and the curve is called
plane. In the latter case, one can always assume that the osculating plane is given as z = 0, and will only need
two coordinates x, y to describe the curve. Otherwise, the curve is said to have a twist.

In any case, we have
dτ

ds
= Kn, (2)

for some real number K. This number is called curvature at a point P on the curve, and the quantity K−1 is
called the radius of curvature. This is the definition of curvature.

Example – curvature of a circle. Computing curvature and torsion is not easy, due to a generally hard problem
of determining the parameter change. s(t) and t(s). The idea, given a curve, is to mentally design a “test particle”
following the curve in time in the easiest possible way, and then eliminate t in favour of the natural parameter s.

Consider the example when the trajectory r(t) is geometrically a circle of radius r. Of course, it is reasonable
to try to describe the the circle via uniform circular motion along it. I.e., consider a particle, moving around the
circle, so that its position on the circle is given by the angle α, and α̇ = ω, the angular velocity. The velocity
vector v is tangent to the circle. Over the time dt the particle travels the distance ds = rdα = ωrdt along the
circle, therefore the speed v = ωr and

v = ωrτ ,

where τ is the unit tangent vector to the circle. If ω = const., i.e. the angular acceleration ω̇ is zero, then the
motion is periodic with period T = 2π

ω and frequency ν = ω
2π (ω is the angular velocity, reflecting how quickly

the angle will change by 1 radian; the frequency ν shows how quickly the complete circle, i.e 2π radians will be
traveled, so ν = ω/2π). The hodograph if a circle of radius ωr. The acceleration now is directed tangent to the
hodograph, i.e., normal to τ and equals ω times the “radius of the hodograph”, i.e.

a = ω2rn =
v2

r
n,

where n is the principal normal to the circle. But

a =
d

dt
(vτ ) = v

dτ

dt
= v2 dτ

ds
,

therefore, eliminating a from the latter two formulae

dτ

ds
=

1
r
n.

Comparing with (2) we see that the radius of curvature of a circle equals the radius of the circle, in other words,
the formula (2) generalises the notion of curvature from a circle to any three-dimensional curve.
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Returning to the general case, it now makes sense to introduce another unit vector b, which is normal to the
osculating plane, and so that (τ , n, b) form a right triple, i.e their directions can be matched by the thumb, index,
and middle fingers on the right (but not left!) hand. The vector b is called the binormal to the curve, and the
triple (τ ,n, b) of unit vectors is referred to as the Frenet (1816–1900) basis. The Frenet basis is attached to the
curve and represents the “natural” moving frame of reference to be associated with a moving material point. The
derivative db

ds naturally shows how the direction of the osculating plane changes in time, i.e. how the curve twists,
or to what extent it is not plane. Observing that

b = τ × n,

we have
db

ds
=

d

ds
(τ × n) =

dτ

ds
× n + τ × dn

ds
.

By (2) the first term is zero, because a × a = 0 for any vector a. Besides, since b is a unit vector, then db
ds is

perpendicular to b, i.e. lies in the (τ , n)-plane (i.e. the osculating plane). But since now db
ds = τ × dn

ds , it must be
perpendicular to τ , therefore we must have

db

ds
= Tn, (3)

for some real coefficient T . The latter coefficient T is called torsion, or twist, and can be both positive and negative.
The two formulas (2) and (3) are referred to as Frenet formulae. If T is always zero, the curve is called plane. In
this case, one can always choose coordinates, so that z(t) = 0, and the osculating plane is the xy-plane, where the
curve lives. Torsion is then always zero, while curvature i smuch easier to compute than in the general case.

2.2.3 General formula for acceleration

Let us use (2) to obtain a general formula for acceleration. We have, using ds = vdt,

a = v̇ =
d(vτ )

dt
=

dv

dt
τ + v

dτ

dt
=

dv

dt
τ +

v2

r
n ≡ a‖ + a⊥. (4)

Namely, acceleration always has two components – one a‖ in the direction of τ , which is called linear acceleration,
accounting for the change of speed, and the other a⊥ in the normal direction n, called angular acceleration,
accounting for curvature of the trajectory.

Example – mathematical pendulum. Let us use this formula to write the equation of motion for the mathematical
pendulum: a material point of mass m constrained to move on a circle of radius r under the influence of gravity by,
say attaching it on a massless string of fixed length r, whose opposite end has been fixed. This example requires
the Second law of Newton F = ma. Assuming it, let us use the formula (4) for the acceleration. The net force
acting on the material point consists of gravity mg acting downwards and the constraint force T directed towards

the centre of the circle, i.e. along n.
Let us look only at the tangent component of the acceleration. If α is the angle on the circle, with α = 0 at

the lowermost point, α increasing counterclockwise, then the component of the net force in the tangent direction
equals mg sinα. Hence

m
dv

dt
τ = mg sin ατ ,

where τ is tangent to the circle, pointing clockwise. Using now v = −dα
dt r (the minus sign is because α increases

counterclockwise, while τ points clockwise), we have

α̈ +
g

r
sinα = 0. (5)
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The general solution of this second order equation cannot be expressed via elementary functions, and requires
the use of special Jacobi elliptic functions. However, assuming that α is small, i.e. the pendulum does small
oscillations, one can approximate sinα ≈ α, in which case

α(t) ≈ A cos(
√

g

r
t + φ),

where the constants A, φ are determined from initial conditions. This approximate solution is good enough only
when A ≈ sin A, i.e. for small amplitudes A. If the amplitude increases, it will be later shown that the period of
oscillations – which for small A does not depend on it and equals 2π

√
r
g – increases, and as A approaches π the

period goes to infinity.

2.2.4 The number of degrees of freedom

Looking back at the above example, the position of the pendulum is naturally characterised by the angle α,
rather than the two Cartesian coordinates x and y. Of course, knowing α(t) one can write down what x(t) and
y(t) are. In general, if the evolution of a mechanical system can be fully described by the least number n of
scalar functions q1(t), . . . , qn(t) of t, the number n is called the number of degrees of freedom of this system. The
quantities q1(t), . . . , qn(t) are called generalised coordinates. E.g. a particle in three dimensions has three degrees
of freedom, the generalised coordinates being x, y, z. A system of N particles has 3N degrees of freedom, the
generalised coordinates being the union of the Cartesian coordinates x1, y1, z1, . . . , xN , yN , zN of each particle.
A system may have constraints, i.e. functional relations between its Cartesian coordinates, and the number of
degrees of freedom equals the number of Cartesian coordinates minus the number of constraints. E.g., for the
pendulum, the Cartesian coordinates x, y are connected via a constraint x2 + y2 = r2. Hence, the pendulum has
one degree of freedom, and is best described in terms of the generalised coordinate α which is characteristic of the
geometric shape of the trajectory – a circle.

Consider a rigid body, which can be viewed as a collection of particles, such that the distances between each
pair of particles have been fixed once and for all. The number of degrees of freedom of a rigid body equals 6.
Indeed, it suffices to choose three non-collinear points A,B, C inside the body, and knowing their movement in
time will unambiguously determine the movement of any other particle in the body. There are three constraints
on the points A, B,C: the distances AB, BC, AC are fixed and equal, day dAB , dBC , dAC , respectively. So, the
9 Cartesian coordinates xA, yA, zA, xB , yB , zB , xC , yC , zC have three constraints imposed thereon:

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 = d2
AB ,

(xC − xB)2 + (yC − yB)2 + (zC − zB)2 = d2
CB ,

(xA − xC)2 + (yA − yC)2 + (zA − zC)2 = d2
AC .

Hence, one can expect to be able to decompose any free motion of a rigid body into the body moving as the
whole (i.e. describing the motion of the mass centre in terms of its three coordinates xC , yC , zC) and rotating with
respect to some axis, passing through the mass centre, the rotation being characterised by a three-dimensional
vector ω.

2.2.5 Appendix: some formulae for curvature

The definition of curvature by (2), in other words as

K =
∣∣∣∣
dτ

ds

∣∣∣∣ ,

despite being the only intrinsic one, is not very practical if one wants to calculate it in some simple instances.
The difficulty is that almost never one has the parameterisation of a curve in terms of the natural parameter s.
Usually, the curve is parameterised as r(t). In this case, with the notations v = ṙ, a = r̈, and v for the absolute
value of v it is possible to write a general formula for K as well. Indeed, as ds = vdt we have

K =
1
v

∣∣∣∣
dτ

dt

∣∣∣∣ =
1
v

∣∣∣∣
d

dt

v

v

∣∣∣∣ =
1
v3

∣∣∣∣va− dv

dt
v

∣∣∣∣ .
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By the rule of differentiating dot product and the chain rule

dv

dt
=

d

dt

√
v · v =

v · v̇√
v · v =

v · a
v

.

Hence

K =
1
v3

∣∣∣∣va− (v · a)v
v

∣∣∣∣ . (6)

Let us take a particular case when the curve is plain, so y = f(x), z = 0. In this case one can identify x and t,
writing the curve’s equation as

r(t) = ti + f(t)j, so v(t) = i + f ′(t)j, a(t) = f ′′(t)j.

Substitution into (6), using v =
√

1 + [f ′(t)]2 yields, after some algebra

K =
1
v4
| − f ′(t)f ′′(t)i + f ′′(t)j| = f ′′(t)

v4

√
1 + [f ′(t)]2 =

f ′′(x)
(1 + [f ′(x)]2)3/2

,

recalling x = t – a formula known from calculus.

3 Dynamics

Dynamics is the part of mechanics dealing with motions of bodies under the action of forces. The force is in effect
a measure of how the body interacts with other bodies. Laws of dynamics were discovered by Newton; they are
empirical and cannot be proved.

3.1 Newton’s laws

Newton starts his Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy,
or The Principia, first published in 1687) with the following definitions, among others.

i. Quantity of matter is a measure of matter that arises from its density and volume jointly.

ii. Quantity of motion is a measure of motion that arises from the velocity and the quantity of matter jointly.

iii. Inherent force of matter is the power of resting by which every body, so far as it is able, perseveres at its
state either of resting or moving uniformly straight forward.

iv. Impressed force is the action exerted on a body to change its state either of resting or of moving uniformly
straight forward.

He then formulates his famous laws.

I. Law 1 Every body preserves its state of being at rest or moving uniformly straight forward, except insofar
as it is compelled to change its state by forces impressed.

II. Law 2 A change in motion is proportional to the motive force impressed and takes place along the straight
line in which that force is impressed.

III. Law 3 To any action there is always an opposite and equal reaction; in other words, the actions of two
bodies upon each other are always equal and always opposite in direction.

Note that Newton’s concept of mass is somewhat obscure, because the definition of density has not been given.
Besides, the “continuous” idea of density is macroscopic and does not apply to the world of elementary particles.
Therefore, Newton’s definition of mass has not quite lived up to these days.

Aristotle and his followers considered force as the cause of motion, and that force was necessary to sustain
motion. Newton’s first law elucidated the fact that such an idea of force was false. Instead, Newton essentially
defines force as a measure of intensity of bodies’ interaction which displays itself via the changes of their quantity
of motion, or momentum.
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3.2 First Law, inertial frames and Relativity principle

The First Newton’s law, or the law of inertia was, in fact, discovered by Galileo. Galileo was probably the first to
bring into natural sciences the abstract mathematical idea of empty space-time where bodies that do not interact
with other bodies move freely. Or, at least he was the first to use this idea as a the starting point for building
physical theory. A free material body is moving uniformly and rectilinearly, by inertia. Free bodies, or bodies that
do not interact with other bodies are, if course, an idealisation and the practical question regarding the First law
is whether this idealisation can be sustained with high precision, i.e. whether “almost” free bodies exist. Modern
physics understands interaction, even if it is effected via omnipresent in classical mechanics strings, springs, etc.,
in terms of force fields created by other bodies. There are four types of interaction: electromagnetic, gravitational,
strong and weak. The latter two act on length scales under 10−12cm and hence are beyond classical mechanics’
concern. The former two are long-range interactions: static electric and gravitational forces vanish slowly, as the
inverse square of the distance between bodies; time-changing fields carried by electromagnetic and (presumably)
gravitational waves vanish even slower, as one over the distance. However, the absence of electromagnetic fields can
be easily verified by their different action on positive and negative charges. This is not the case with gravitational
fields. However, the static gravitational field from distant objects of the Universe can be regarded as uniform, and
one can always introduce a frame of reference, free falling in this field, similar to how the Earth’s gravity is absent
in the Mir station.

A slight conceptual generalisation of the notion of a free body it the notion of a closed, or isolated, system. This
is a collection of bodies which interact only with each other, but not with the “outside world”. I.e. together they
represent a more complex free body, possessing a higher number of degrees of freedom, so that the corresponding
generalised coordinates would describe the body’s inner state.

Assuming that free bodies and isolated systems exist, the First law states that there exist frames of reference,
where the motion of a free body will be uniform and rectilinear. Such a frame is called inertial. The content of
the First law is – there exists at least one such frame. This is by now is an accumulation of a vast number of
experimental facts. It is only via an experiment, or by comparison with other inertial frames that one can establish
whether a particular frame of reference is inertial – by verifying that free bodies move uniformly along straight
lines. Practically, inertiality of a particular frame is approximate. The snooker table can be regarded as an inertial
frame if one uses it to describe motions of the balls on the table. On the other hand, distant stars, which can
be considered as free bodies because of the vastness of cosmic distances, perform daily periodic movements with
respect to someone watching them from the snooker table, so for studying stars a snooker table is not an inertial
frame of reference, due to the rotation of the Earth. On the other hand, the Copernicus frame of reference, whose
origin is located roughly at the centre of the Sun, or more precisely at the mass centre of the Solar system is
“inertial enough” to study the stars (If one wants to get “more inertial”, the origin can be chosen at the centre
of the Galaxy.) Indeed, the Earth is moving curvilinearly with respect to the Copernicus or any star-associated
system, hence with acceleration, and this explains why is not an inertial frame.

Most importantly, if one system K is inertial, then any system K ′ moving with respect to K uniformly and
along a straight line is also inertial. This appears to be self-evident from the classical mechanics point of view,
because it is tantamount to claiming that if a free body is moving uniformly along a straight line with respect to
one inertial frame, it will also be moving and along a straight line with respect to another frame, which is itself
moving uniformly and along the straight line with respect to the former frame. Indeed, suppose, a a free body is
moving in an inertial frame K, where one must have the body’s trajectory as r(t) = r0 + vt, with some constant
v. Let r′(t′) be the trajectory of the same body, viewed in the system K ′. In classical mechanics time is absolute:
t′ = t, and therefore

r′(t) = r(t)− V t, so v′ = ṙ′(t) = v − V , as t = t′. (7)

This and the next formula are referred to as theGalileo transformations, or the classical law of velocity addition.
However, is based on a principle which is only approximately correct if the velocities v, V are small compared to
c, namely that time is absolute: t = t′.

One can always assume that V is directed along the x-axis, then the coordinate transformations between the
frames K and K ′ can be written simply as

x′ = x− V t, y′ = y, z′ = z, t′ = t. (8)

Galileo went conceptually much further. He proposed what is now called the relativity principle, which pos-
tulates that there are no observational consequences of absolute motion: all laws of physics (including Newton’s
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laws) must have the same form, regardless of whether frame of reference is used to express them.6

The idea behind Galileo’s principle is as follows. Consider tho isolated systems – physics laboratories that move
with respect to each other with constant speed and rectilinearly. Associate with them the two inertial frames of
reference K and K ′ above. Then all laws of physics describing physical processes in both labs are exactly the same.
The same is, for instance, the second Newton’s law F = ma. Indeed, in the context of the two laboratories, suppose
the force comes form some physical interaction, which depends on coordinates, relative velocities of interacting
bodies, and, perhaps, time. If the same interaction occurs in both labs, then F = F ′. But by (7) we have

a′ =
dv′

dt′
=

dv′

dt
=

d

dt
(v(t)− V ) =

dv

dt
− 0 = a.

Besides, m = m′, because mass can be determined via some force interaction, say weighing. So, the second
Newton’s law F = ma in K looks exactly the same: F ′ = ma′ in K ′.

In more modern terms, Galileo’s relativity principle postulates homogeneity of space and time. This means that
physical properties of space-time do not depend on where and when physical phenomena take place: any physics
experiment repeated in the two labs with the associated inertial frames K and K ′ under the same conditions shall
yield exactly the same results no matter how far the two instances of the experiment are separated in space or
time. I.e., there are no “privileged” points in space or time. (Of course, this applies to the abstract “empty” from
interaction space-time only.) In the same vein, space is isotropic, i.e., all the directions in space are equivalent.
E.g., in the absence of other force fields but gravity, a cannon that makes the same angle with the horizon shoots
the same projectile at the same distance, no matter in which direction.

It follows from homogeneity of space-time and isotropy of space that in general, the transformation formulae
between the inertial frames K and K ′ such as (8) must be expressed by linear functions of (x, y, z, t), whose
coefficients depend only on the relative speed V between the two frames. Indeed, if the coefficients were allowed
to depend on (x, y, z, t), the rule would depend on where K ′ was located relative to K, and this would contradict
homogeneity. Similarly, their dependence on the direction of V would contradict the isotropy of space.

By the end of the XIX century physicists were confronted by a major problem. Maxwell’s equations for
electromagnetic field in vacuum were not invariant with respect to the Galileo transformations: change the variables
in these equations according to (8) and the equations will look different. Instead of (8), Maxwell’s equations were
invariant with respect to the following changes:

x′ = γ(x− V t), y′ = y, z′ = z, t′ = γ

(
t− V

c2
x

)
, where γ =

1√
1− V 2

c2

. (9)

These were called Lorentz transformations, and in the limit c →∞ they yield the Galileo transformations (8). This
contradiction was thought to be accounted to non-inertiality of conventional Earth-associates frames of reference:
the primordial inertial frame was to be associated with luminiferious ether – a hypothetical medium which carries
electromagnetic waves similar to as the air carries sound. The idea, or the principle, however, could not sustain:
the famous experiment by Michelson-Morley (Google it!) performed in 1887 proved it false.

Einstein’s special relativity theory that resolved the contradiction was the triumph of the method of principles.
Einstein postulated the relativity principle above all. If a frame of reference K ′ is moving uniformly and along
the straight line relative to the inertial frame K, it is also inertial. (One can then assume that the direction of the
coordinate axes in K and K ′ coincide and the origin O′ of K ′ is moving along the x-axis with velocity V .) This
means that any physical experiment repeated independently in the two labs associated K and K ′ would yield the
same result. Whether this experiment consists in looking at butterflies flying or fish swimming, measuring the
charge of an electron or Newton’s gravitational constant, or ... the speed of light in vacuum c. To resolve the
above contradiction with Maxwell’s equations, Einstein had to assume that c is also a world’s fundamental constant
giving the maximum speed of interaction. This implies that t = t′ is untenable, because as it was discussed above

6Galileo wrote (the translation is not quite exact): ”Seclude yourself with some friend of yours in a large room under a ship’s desk.
Bring with you all sorts of flies, butterflies, and other small flying insects. Fill a tank with water and set some fish free therein. Hang
a bucket high up to the ceiling, so that the water from the bucket falls drop by drop into a small bottle with a narrow neck. Let the
ship be standing still...”. He then goes on saying that if the ship were, in fact, moving in calm seas, you and your friend under the
deck would have no idea about it, just by looking at the insects flying, fish swimming, and water dripping vertically into the bottle.
He also notes that if one jumps or throws a stone at a certain distance on the moving ship, it takes precisely the same effort as it does
on the ground.
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the notion of simultaneity becomes relative. Assuming the maximality of c, Lorentz transformations follow from
the relativity principle (to be shown later), regardless of Maxwell’s equations.

But the First Newton’s law was not affected: trajectories of free bodies in inertial frames are straight lines,
along which the free bodies are traveling with constant speeds. (Only straight lines can be generalised as paths
chosen by light rays.) And given an inertial frame K, any other frame K ′ moving uniformly along the straight
line with respect to K (e.g. K ′ can be associated with a moving free body) is inertial.

3.3 The Second and Third Laws, mass and momentum

According to Newton’s framework, the Second law requires the notion of the quantity of motion, or momentum p,
which in turn requires the notion of mass. The formulation of the second law is then

ṗ = F , (10)

and for a single particle in classical mechanics

p = mv, so F = ma.

But (10) is more general: in special relativity, a momentum of a particle moving with velocity v is

p =
m0v√
1− v2

c2

, (11)

where m0 is rest mass. Acceleration is still v̇, but taking the time derivative ṗ is now more tricky, and it still
defines force.

Let us discuss the notion of mass. Mass in mechanics is a measure of inertiality. Suppose, two material points
have interacted, whereupon their velocities v1, v2 have changed to v′1, v′2, by ∆v1, ∆v2, respectively. First off, if
space is homogeneous and isotropic, the changes ∆v1 and ∆v2 must have opposite directions. Then one can write

m1∆v1 = −m2∆v2, (12)

with some real coefficients m1 and m2. These are called the inertial masses of the material points. It follows
that a body’s mass is determined as a measure of its inertiality with respect to other bodies, therefore one should
postulate that some body has a unit mass, which is a matter of choice of the system of units.

Amazingly, Newton discovered that the law of gravitational attraction is such that the force of gravitational
attraction between two bodies is proportional to each’s mass: if the force F 21 is impressed by the first body onto
the second one, and r12 is the radius vector from body 1 to body 2, then

F 21 = −G
m1m2

r2
12

r12

r12
,

where the unit vector −r12
r12

is there to indicate that this is an attracting force, and G ≈ 6.67300×10−11m3kg−1s−2

is the Gravitational constant. This formula tells one nothing about the origin of gravity – Newton ascribed the
formula to God. Einstein might have credited gravity to God as well, but his General relativity did explain the
formula above, and why, in fact, the gravitational mass is so amazingly related to the inertial mass.

It is worth mentioning here that in relativistic mechanics the inertial mass is no longer a constant: instead of
(12) one would have

m0,1


 v′1√

1− (v′1)2

c2

− v1√
1− v2

1
c2


 = −m0,2


 v′2√

1− (v′2)2

c2

− v2√
1− v2

2
c2


 , (13)

in other words the inertial relativistic mass depends on speed:

m =
m0√
1− v2

c2

, (14)
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where m0, the rest mass, is the mass of a particle determined by an observer, with respect to which the particle
does not move, e.g. if the observer is associated with the particle itself.

The relation (12) has curious consequences. Suppose, the interaction is taking place continuously, and over a
time dt the velocities change by dv1, dv2. Then we have

m1dv1 = −m2dv2, so m1v̇1 = −m2v̇2, so P = m1v1 + m2v2 = p1 + p2 = const. (15)

So, viewed as the isolated system, the system of two particles has constant total momentum. This is a particular
case of the law of the momentum conservation. Note that by (13) the law of conservation of momentum P = const.
transcends to relativistic mechanics as well, and so represents a universal principle.

Defining, via the second Newton’s law the forces F 12 = m1a1 and F 21 = m2a2 impressed by the second
particle onto the first one and conversely, we have

F 12 = −F 21, (16)

which is a particular form of the Third law: action is equal in value and opposite in direction to reaction.
However, Newton’s formulation of the third law appears to be more general: it states that (16) is valid for any

system of particles, as long as the forces F 12 and F 21 can be correctly identified. Strictly speaking, however, it
represents a conceptual difficulty. The Second law only defines a net force F acting on a particle, as the rate of
change of a particle’s momentum. In a practical mechanical model, involving different kinds of interaction, one
tries to represent the net force as a superposition

F = F 1 + F 2 + . . .

of various forces. E.g. in the pendulum example considered above the net force was the superposition of the force
of gravity and the tension force applied by the string. The fact that the two could be added as vectors is based on
the physical assumption of independence of the two forces: the gravity mg is there regardless of the string; on the
other hand, tension of the string (no wonder, one is much better off speaking of a massless string) can be realised
in the absence of gravity by, say attaching to its both ends two charges of the same sign, which would repel each
other.

So, the moral is that the Laws of Newton should be viewed as a system of principles, and one should not
separate them from one another.

3.3.1 Hooke’s Law and some other forces

Consider a simplest mechanical system: a body of mass m hanging vertically on a spring. One might try to hang
different bodies and find out that, in fact, if their masses are not too great, the spring after the body has been
hanged will become longer by ∆x = mg/k, for some constant k, characterising the spring independent of the body
that’s being hanged. In terms of Newton’s second law this means that a deformed spring impresses a force which
is directed opposite to the deformation x and equals −kx. This is called Hooke’ (1635–1703) law. The nature of
the law is electromagnetic: the spring force is due to the change in the alignment of positive and negative charges
inside the spring, where they were originally in equilibrium. The law is approximate and gets violated for large
x. Wherever the spring force comes from, if the x axis is directed downwards, the equation of motion of the body
hanging on the spring is

mẍ = −kx + mg.

The solution x(t) of this equation is the sum of the solution of the homogeneous equation

ẍ + ω2x = 0,

with the notation ω2 = k
m , and the particular solution. The latter is simply a constant x = x0 = mg/k,

and represents the equilibrium position of the body on spring. Hence x(t) will represent oscillations along the
equilibrium position, which can be taken for the origin:

x− x0 = A cos(ωt + φ),

where A is the amplitude and together φ is found from the initial conditions x(0) and ẋ(0). The period of oscillations
is T = 2π

ω .
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If besides one takes into account the fact that surrounding the air resists the motion by imposing a drag force
which is proportional to the speed of the body and is directed opposite to it, there is an extra force −κẋ, with
some drag coefficient κ. (This fact can be established empirically; more deeply it is a consequence of equations of
gas/fluid dynamics and is once again approximate.)

Changing x to x−x0 does not affect ẋ or its higher derivatives. Having done this, mg in the equation of motion
is gone, and the equation of motion, considering the drag force, is now

ẍ + 2γẋ + ω2x = 0,

where γ = 1
2κ/m. (The coefficient 2 is a matter of convenience.) The characteristic polynomial has roots −γ ±

i
√

ω2 − γ2, which are complex, provided that γ < ω, or the system is not overdamped. The solution is now

x− x0 = Ae−γt cos(
√

ω2 − γ2 t + φ),

representing damped oscillations. Their period is now T = 2π√
ω2−γ2

, getting longer with the growth of γ. The

amplitude is vanishing exponentially. Namely, the ratio of the values x − x0 at the times t1 and t2, giving the
two the successive maxima (t1 is such that t1

√
ω2 − γ2 + φ = 2πk, t2 is such that t2

√
ω2 − γ2 + φ = 2π(k + 1),

for some integer k) equals eγT . The exponent γT = 2π γ√
ω2−γ2

is called the logarithmic decrement, showing how

many times the log of the amplitude decreases over a single period of oscillations.

In general, there are two main types of dynamics problem. One is to calculate forces, given the accelerations
within a system of material bodies. This is fairly simple, as the relation F = ma is a linear equation. The other
type of problems is to determine accelerations within a particular mechanical system. This is more difficult, and
may be regarded as the central problem of mechanics. Consideration of such a problem should start out with the
identification of independent forces acting on each body in the system. Such forces can be gravity, deformation
forces, drag forces, etc. In addition, a system may be constrained, like the pendulum, to move not in the whole
space but along some regions of space only. Constraints impose reaction forces (a constrained body “feels” the
constraints), and the problem of identifying the acceleration becomes inseparable from calculating the reaction
forces.

In addition, there are friction forces. Friction has electromagnetic nature, but mechanical friction laws have
been dealt with long before it became understood. Consider a massive body on a surface, and try to move it.
This requires some fitness level. If, say the body is a massive rectangular block on a horizontal surface, there is no
way to shift it horizontally for anyone who is not capable of exerting a force which is some fraction of the block’s
weight. This is very different form drag forces: a single man can (in principle) pull a massive barge through water,
provided that he does not have an ambition of moving it too rapidly. In other words, drag forces are proportional
to speed and are therefore small if the speed is small. On the other hand, friction is roughly proportional to the
reaction of the surface, whereupon the body is positioned. If the surface is horizontal and the body is not moving,
then the reaction N = Mg, and in order to shift the body one needs to exert a horizontal force in excess of µMg,
for some µ > 0. The coefficient µ can drop after the body has been set in motion. Thus, one has to distinguish
between static and dynamical friction. The easiest model that one assumes is as follows. By the friction coefficient
one always means the dynamic friction coefficient, which is determined as the fraction of the weight of the body,
equal to the value of a horizontal force it takes to sustain the body in uniform motion along a horizontal surface.
If a body is on any surface, one defines the dynamic friction force equal in value to µN , where N is the value of
the reaction force that the body experiences from the surface. The dynamic friction force is directed opposite to
the body’s velocity along the surface.

It the body is at rest with respect to the surface, the force F ‖ acting along the surface may not suffice to move
the body. Then, by the second Newton’s law one has F sf + F ‖ = 0, where F sf denotes the static friction force.
One can also write Fsf = µsN , where µs is the static friction coefficient. Assuming that bodies do not get stuck
to surfaces, one always has

µs ≤ µ,

where µ is the dynamic friction coefficient. Laws of friction were studied in detail by Coulomb (1736–1806).
E.g. consider a car moving with constant speed v along a curve of radius R. What is the maximum speed vmax

that the car may have before it starts skidding if the friction coefficient between the tyres’ rubber and pavement
is µ? The car is moving along the circle, so is not moving in the direction normal to the circle. On the other
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hand, by (4) its acceleration is directed towards the centre of the curve. The only force that acts on the car in the
direction towards the centre is the static friction force, so one has

mv2/R = µsmg

The motion will sustain as long as v =
√

µsgR, and the maximum static friction is equal to dynamic friction, i.e.
when µs = µ. Hence the maximum speed vmax =

√
µgR.

3.3.2 Non-inertial frames: centrifugal forces

In the above example, a passenger in the car feels the “centrifugal force” than pushes him outside the centre
of the circle. The passenger is moving with acceleration and therefore does not represent an inertial frame of
reference. It is often useful, however to write the second Newton’s law in such a non-inertial frame of reference.
The acceleration a′ of the body i the frame associated with itself is clearly zero.

By the Galileo transforms (7) it is no longer true that a′ = a, because V is not a constant. What is true,
however is that in general a′ = a − V̇ . As V is the velocity of one frame with respect to the other, V = v, the
body’s velocity. In other words, in the non-inertial frame associated with the moving body one can introduce an
artificial correspondence force, which equals −ma, where a is the body’s acceleration in the inertial frame. The
main equation in the previous example, with respect the non-inertial frame associated with the car can be written
as

F c + F sf = 0,

where F c is the correspondence centrifugal force that the body feels acting on it off the centre and equal mv2/R.
Sometimes this idea does bring a certain simplification. Consider the following example. A person of mass

M is sitting on a chair of mass m, and the coefficient of friction between their trousers’ material and the chair
is µ. The chair can be moved without friction along the floor (say, the floor is ice). What horizontal force F
would suffice to pull the chair from under the person? First, suppose there has been no success, as F is small.
It has, however, set the whole system in motion, with acceleration a = F/(M + m). In the non-inertial frame
associated with the person, the acceleration a′ = 0: this is due to the static friction force, which compensates the
“correspondence force” Ma = F M

m+M . Hence the person will remain on the chair as long as

µsMg = F
M

m + M

But as one has µs ≤ µ, remaining on the chair will become impossible if F ≥ µ(M + m)g.

3.4 Conservation of momentum, mass centre

The second Newton’s law F = ma clearly implies that if F = 0, a = 0, so the velocity v = const. or the
momentum p = const. (This does not imply the First law, because the Second law is true only in inertial frames,
and the First law postulates that they exist.) In addition, if the projection of a force F on a specific direction is
zero, then the projection of the momentum on that direction is constant. (This is used, for instance, in problems
about projectiles, where the only force, gravity, is vertical, so the horizontal velocity is preserved.)

Let us generalize the law of conservation of momentum to a system of N particles. Suppose, the ith particle is
acted upon by forces F ij via the interactions with other particles j 6= i, and all interactions are independent. In
addition, suppose, the system is in some external force field F e, which acts on each particle individually via the
force F ii.

By the Second law, for the ith particle of mass mi, with the radius-vector ri and momentum pi:

ṗi =
N∑

j=1

F ij , i = 1, . . . , N.

Let us sum these equations over all i (let us not write the upper limits in the sums, as they are irrelevant):
∑

i

ṗi =
∑

i,j

F ij =
∑

i

F ii +
∑

i 6=j

F ij .
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Namely, in the double sum
∑

i,j F ij we have separated the “diagonal term” with i = j. By the Third law, for
i 6= j, we have F ij = −F ji, and therefore the second sum above is zero. Thus

Ṗ =
d

dt

∑

i

pi =
∑

i

F ii = F e. (17)

In particular, if F e = 0, then P = const. This is the general formulation of the law of conservation of momentum:
the total momentum of an isolated system is preserved. Or is preserved its projection on some direction, such that
the projection of the net external force on this direction is zero.

Observe that in classical mechanics
P =

∑

i

mivi = MṘmc,

where M =
∑

i mi is the total mass, and

Rmc =
∑

i miri

M
(18)

is called the position of the system’s mass centre. From this point of view, one can say that the mass centre of an
isolated system is moving with constant velocity

V mc = Ṙmc =
∑

i mivi∑
i mi

. (19)

If a system is impressed upon by external forces, then by (17) its mass centre moves under the action of the net
external force as a single particle of mass M . This statement is sometimes called the theorem of motion of the
mass centre:

M
dV

dt
= F e,

where V is the velocity of the mass centre, and F e the external force.
Besides, the mass centre is by its definition an additive quantity: the mass centre of two systems with total

masses M1 and M2, and mass centres at Rmc1, Rmc2 coincides with the mass centre of two particles of masses
M1 and M2 positioned at Rmc1 and Rmc2. It suffices to show it for 4 particles; the case when N particles are
partitioned into n groups is identical. We have

R =
m1r1 + m2r2 + m3r3 + m4r4

m1 + m2 + m3 + m4
=

(m1 + m2)m1r1+m2r2
m1+m2

+ (m3 + m4)m3r3+m4r4
m3+m4

(m1 + m2) + (m3 + m4)
=

M1R1 + M2R2

M1 + M2
,

where M1, R1 characterise the mass centre of the first and second particles viewed as a single group, while M2,R2

characterise the mass centre of the third and fourth particles viewed as the other group.

It is convenient to associate with any closed system an inertial mass centre frame, whose origin is positioned
at Rmc, moving with the constant velocity V mc. Indeed, in the absence of external forces the mass centre is
moving with constant velocity, and then the mass center frame is inertial, where the mass centre, i.e. the system
“as whole” rests.

As an application, consider a boat of length L and mass M which is uniformly distributed along the length.
The boat is floating in water. A person of mass m walks slowly from one end of the boat to the other, whereupon
the boat moves by a distance X. To find X, one can regard the boat and the person as an isolated system – as
the person walks slowly, the boat will move slowly, and the drag force impelled by the water can be disregarded.
The mass centre of the system therefore should not have moved. The mass centre of the boat is in the middle of
the boat. Taking it as the origin, by (18), the mass centre of the system when the person is on he left/right end of
the boat, is at the distance m

M+m
L
2 to the left/right of the middle of the boat. As the system’s mass centre shall

not have moved, throughout the person walking from one end to the other the boat must move in the opposite
direction, eventually by the distance m

M+mL.
Note than, in fact the assumption of uniformity of mass distribution throughout the boat was superfluous: the

above argument goes through wherever the boat’s mass centre is.
As another particular case consider the so-called law of conservation of mass. Mechanics deals with interactions

between bodies, such that the total mass of the bodies involved is constant. This is not true, say in nuclear fusion,
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when part ∆m of the mass of light nuclei that collide to form heavier nuclei gets transformed into (huge, equal
to ∆mc2) energy that gets released. The law of conservation of mass is, in fact, a particular case of the law of
conservation of energy. While the former is valid only within the limits of classical mechanics, the latter is one of
the most fundamental principles of all physics.

Consider two particles of masses m1 and m2 that interact and collide, whereupon they form a single particle of
mass m. The self-evident fact that m = m1 +m2 can in fact be derived from the law of conservation of momentum
and Galileo’s principle. Let v1 and v2 be the velocities of the particles before the collision and v be the velocity
of the composite particle after the collision.

By the law of conservation of momentum, as there are no external forces involved,

m1v1 + m2v2 = mv. (20)

Let some other inertial frame K ′ move with the velocity V with respect to the origin.
According to Galileo transforms, the velocities of the particles in the inertial frame K ′ are

v′1 = v1 − V , v′2 = v2 − V , v′ = v − V .

The law of conservation of momentum in K ′ becomes

m1(v1 − V ) + m2(v2 − V ) = m(v − V ).

Comparing with (20) yields
(m1 + m2)V = mV ,

and as this is the case for any V , one must have m = m1 + m2.
Of course, this is a particular case of the above discussion about the mass centre. Suppose, N particles within

an isolated system over some time get glued into one, due to internal interactions only. The mass centre momentum
MV cm does not change throughout the interaction, yet after all the particles have become one, V is the velocity
of the composite particle. Hence, M =

∑
mi is its mass.

3.4.1 Two-body problem and effective mass

Consider two material points with masses m1 and m2 which interact with each other. We have by the Second and
Third laws:

m1r̈1 = F 12, m2r̈2 = −F 12. (21)

Dividing the first equation by m1, the second by m2 and then subtracting the second equation from the first one
yields

r̈1 − r̈2 =
(

1
m1

+
1

m2

)
F 12,

or denoting r = r1 − r2

µr̈ = F 12, µ =
m1m2

m1 + m2
. (22)

If, as it often happens, the force of interaction F 12 depends only on the relative position of the particles (let us
now drop the 12 subscript) the resulting equation

µr̈ = F (r) (23)

is independent and self-contained, describing the motion of a virtual particle with “effective mass” µ. Of course,
this single equation is not equivalent to the two equations (21), but if one adds to it the fact that the mass centre,
located at

R =
m1r1 + m2r2

m1 + m2

moves with constant velocity, as there are no external forces, then together with Ṙ = V = const the two equations
are equivalent to (21). What is important mathematically is the fact that the equation (23) has the same form
in the mass centre frame, because the difference r = r1 − r2 is invariant with respect to Galileo transforms (7).
Thus, the system’s motion has been broken up into the independent motion of the mass centre, or the system as
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whole and the relative motion of the particles with respect to each other, which is described by (23). The reason
it is important is that in general a system of two particles has six degrees of freedom, so is generally described
by a system of six (!) second-order differential equations. But the above argument shows that in this system of
equations, by means of passing to the mass centre frame of reference, the three equations corresponding to the
motion of the mass centre are trivial. So, rather than solving six equations, one has only to solve three equations
in (23). We shall later see that as long as

F (r) = f(r)
r

r
, (24)

i.e, when the interaction force (such as gravity, Coulomb, etc.) depends only on the distance between the interacting
bodies and acts along the line connecting them, the equations (23) can be solved completely, by using polar
coordinates. The force in this case is called central.

There is no physical meaning here in the effective mass notion – this is only a mathematical convenience. As
an example, consider m1 = m, mass of the Earth and m2 = M , mass of the Sun; assume that the Earth is rotating
around the Sun, i.e. the distance r = const. The force

F = −G
mM

r2

r

r

is gravity, and the minus sign shows that is it directed opposite to the vector starting at the Sun and ending at
the Earth (both are treated as material points).

Then, from (22) we have

r̈ = −G
M + m

r3
r = −G

M + m

r2
n,

where n is the principal normal vector to the trajectory of the Earth with respect to the Sun (see the section on
Kinematics).

It follows that the relative motion of the Earth with respect to the Sun is uniform, with the angular velocity
ω defined by (4) as

G
M + m

r2
= ω2r,

namely

ω =

√
G

M + m

r
≈

√
G

M

r
.

If, however, the mass of the Earth were equal to the mass of the Sun and the radius of the orbit were the same, the
Earth would have to move

√
2 times faster, so a year would be

√
2 times shorter. Note that so far we have, in fact,

assumed that the distance between the Sun and the Earth is constant; in reality this is true only approximately,
and a more sophisticated analysis would tell that the orbit is, in fact, an ellipse.

3.4.2 Appendix. Jet propulsion

In all the above examples a mechanical system consisted of individual particles whose masses were fixed. However
nothing prevents one from considering a “continuous” exchange if mass between different bodies that constitute a
mechanical system. Such phenomena are characteristic of dynamics involving liquid or gas. The simplest example
is jet propulsion.

Consider a closed system “rocket payload plus fuel”. Fuel burns in the jet engine and is ejected to propel the
rocket. By the mass of the rocket m(t) we mean a variable quantity representing the mass of the rocket itself plus
the mass of fuel inside of it at a given time. Suppose, over a time dt the mass of the rocket has changed by dm < 0.
I.e., dm kilos of fuel have been burned into gas and ejected, with some velocity vg. (The law of conservation of
mass is highly accurate for chemical reactions underlying combustion, due to their relatively small energy yield).
Then the velocity of the rocket v gets an increment dv, so that the net change of momentum is zero:

(m + dm)(v + dv) + dmvg −mv = 0.

Neglecting higher order terms, and introducing the relative velocity vr = vg − v at which the gas is being ejected
from the engine, we have

m
dv

dt
=

dm

dt
vr. (25)
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This looks like the Second law, with the right-hand side where F r = vr
dm
dt which may be regarded as the jet

propulsion force, the product of the rate at which the fuel burns and the speed at which it is ejected. The mass
m, however, is now also a function of time.

If there is an additional external force F e acting on the rocket, then clearly

m
dv

dt
= F r + F e.

If there are no external forces, the rocket moves along a line, and the engine works steadily, i.e. vr = const, then
variables in the differential equation (25) separate:

dv = vr
dm

m
,

so
v

vr
= log

(m0

m

)
, or m = m0e

− v
vr . (26)

where m0 was the start mass of the rocket when v = 0. The latter formula bears the name of Tsiolkovsky (1859–
1935). It shows that in order for the rocket to reach the speed Nvr, its mass shall decrease eN times from the
original mass m0. I.e. fuel to be burned has to take the huge 1− e−N proportion of the total launch mass.

In today’s rockets vr is some two kilometers per second, and it seems unlikely that combustion-based engines
could account for vr greater than 4 km/s. In order for a rocket to overcome the Earth’s gravity and be able to
reach, say the Moon, it needs to achieve v = 11.2 km/s, while to leave the limits of the Solar system the minimum
speed is 16.7 km/s. Thus to achieve the former goal, payload may constitute no more than e−11.2/4 ≈ 1/17 of the
brutto start weight of the rocket. To achieve the latter goal, the share of payload drops to approximately 1/64.

If one adds to it that fuel is needed to return, then for a round-trip to a planet whose mass, for simplicity, equals
the mass of the Earth one needs to have m/m0 ≈ 1

172 . In addition, fuel is needed to break, at least to decrease the
rocket’s velocity by several km/s to be captured into the target’s gravitational field. This adds another factor of
10 to the denominator. Navigate, have something for emergency, etc. and in fact, for a return trip one would need
a reasonably realistic ratio m0/m ≈ 3600, which means 3.6 tons of fuel per kilo of payload, and astronauts better
be thinner than jockeys. Nonetheless, such a mass ratio is still practically achievable. But for interstellar missions
chemical combustion-based engines seem to be utterly hopeless. (Relativistic corrections to Tsiolkovsky’s formula
are easy to take into account using (13) but unfortunately they only make things worse. If one wants the rocket
to move with the speed comparable with the speed of light, the ratio m0/m grows even greater than predicted by
the Tsiolkovsky formula.) In order to reach the nearest star and complete a return trip over a lifetime, traveling,
say at 1/4 of the speed of light would require the ratio m0/m to be some 103257. So, for each gram of payload
one would need some 103251 tons of fuel, while the mass of the observable Universe is “only” some 1056g. What
makes today’s jet propulsion engines unacceptable for such missions is the relatively small value of the gas jet
ejection speed vr, some kilometers per second only, which is the consequence of the relatively small energy yield of
chemical reactions underlying the engine’s design. Even today largely hypothetical atomic hydrogen-fueled engines
would yield only vr ≈ 10km/s – still way too small to enable interstellar travel but possibly quite comfortable
for moving around the Solar system. (A hydrogen engine would require combustion temperatures of up to 5000
degrees Celsius, which poses a great challenge to engineers.)

4 Methods of integration of Newton’s equation

Solving, or integrating Newton’s equations

ṗi = F i, i = 1, . . . , N

for a system of N particles is the principal objective of dynamics. In general this poses a great challenge, as above
we have a system of 3N second-order differential equations, which are usually all coupled and nonlinear. Complete
integration of Newton’s equations is possible only in a very narrow class of so-called classical integrable systems.
E.g., a body sliding down an incline with angle α in a stationary gravitational field is an integrable system (of one
degree of freedom): its acceleration along the incline is constant and equals g sin α, which certainly enables one
to write down the trajectory r(t). We have also seen that momentum conservation, leading to the idea of mass
centre enables one to reduce the number of equations that have to be dealt with.
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More complex systems require more sophisticated methods of integration (solving). These methods should first
and foremost take into account the system’s geometric features, using the right set of generalised coordinates. E.g.
in the pendulum example we were able to arrive in the differential equation (5) after having taken into account its
circular geometry which expressed itself in the fact that the natural variable to characterise the pendulum’s state
is the angle α between the pendulum and the vertical.

The concepts to be considered further, with the final goal being integration of Newton’s equations, are force
impulse, work and energy, and angular momentum.

4.1 Force impulse

If a force acts on a material point, then the momentum gained by the point depends not only on the magnitude of
the force, but also on the duration of the interaction. Suppose the force F in Newton’s ṗ = F has acted between
times t1 and t2. Multiplying both sides of the above equation by dt and integrating in time between t1 and t2
yields

p(t2)− p(t1) =
∫ t2

t1

F dt.

The right-hand side is called the impulse of force F . The above statement reads that the change of a body’s
momentum equals the impulse of the net force. For a system of some number N particles we use (17) to get the
same statement:

P (t2)− P (t1) =
∫ t2

t1

F edt, (27)

where F e is the net external force acing on the system and P is total momentum, or the mass centre momentum.
The easiest example is when the force is constant and has magnitude F . Then the change of the momentum equals
in absolute value F (t2 − t1).

In general, external forces would most often depend on the positions of the particles in the system. In this case
the force impulse ∫ t2

t1

F edt =
∫ t2

t1

F e(r1(t), . . . , rN (t))dt,

which is not easy to find. For this reason the force impulse is rarely used to integrate Newton’s equations of
motion. Still, it is useful to explain at least qualitatively some physical phenomena.

One can make an interesting experiment to this end. Hang a small dumbbell on one thread, and tie another
thread to the bottom of the weight. If one pulls gently at the second thread, increasing the force, the upper thread
will snap. Indeed, let T0 be the limit tension that a thread can stand before snapping. If one pulls gently at the
lower thread, the system can be always viewed as at rest, and therefore the tension of the upper thread must be
equal to the weight of the dumbbell plus the force T2 at which one pulls at the lower thread. Thus the upper
thread will break when T2 + Mg = T0.

If one pulls at the lower thread abruptly however, the lower thread will break instead. Indeed, before the upper
thread will snap it has to be stretched by some critical increment of length. In order to do so, the dumbbell must
be set in motion. The issue is that by (27) the heavier the body, the greater force impulse is required to set it
in motion. Setting the heavy dumbbell in motion requires a considerable force impulse, and if a force acts over
a very short time even though the force itself may be of considerable magnitude, the dumbbell practically would
not move, as its momentum, being proportional to M , will change only little from zero. This means that upon a
very short time of interaction T1 is still approximately equals to Mg (the upper thread has barely stretched). On
the other hand T2 shall compensate the force at which one pulls, and will snap if this force exceeds T0, provided
that it has been applied quickly enough.

The ideas of work, energy and angular momentum discussed further are more complex, especially when they
apply to system with more than one degree of freedom (as the notion of angular momentum always does). We
shall start out by introducing the notion of work and potential for one degree of freedom systems.

4.2 Work and potential energy in the case of one degree of freedom

Consider a particle of mass m constrained to move along the straight line. This is a one degree of freedom
mechanical system: the state of the system is described by the particle’s position x and velocity v = ẋ at any time.
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If one knows x(0) = x0 and ẋ(0) = v0, and all the forces acting on the particle, then solving Newton’s equation

mẍ = F,

with the above initial conditions will determine the state of the system, i.e. the position x(t) of the particle, for
any t ∈ R: both in the past and future.

The force F may in general be the function of x, ẋ, and t. However, a very important and typical case is
when F depends on x only. This corresponds to a physical reality of an external stationary force field such as,
say gravity. The intensity of the force field, i.e. the measure of its effect on mechanical bodies depends only on
the position of these bodies. Such are, for instance, the gravitational force field, created by the Sun that governs
planetary motions in the Solar system or the electrostatic fields of atomic nuclei that govern the electrons in an
atom (although the electrons live according to law of quantum, rather than classical mechanics). Such is the
gravitational field of the Earth close to the ground can be approximately regarded as constant, which is the trivial
dependence on hight x.

Mathematically, in the above one-dimensional model we will further assume F = F (x). In this case we have
mdv

dt = F (x) and multiplying it by dx = vdt we get

mv dv = F (x)dx or m
dv

dx
= F (x). (28)

Suppose, over some time interval between t1 and t2 the particle moves from position x1 to position x2, and its
velocity changes from v1 to v2 accordingly. The differential equation (28) does not contain t explicitly at all,
and one can look for its solution in the form v(x), i.e as the dependence of the particle’s velocity on its position.
Integrating (28), where the variables x, v have been separated, we have

mv2
2

2
− mv2

1

2
=

∫ x2

x1

F (x)dx, (29)

and if v2, x2 are regarded as variables, and v1, x1 initial conditions, then this alone defines the dependence v(x).
The quantity

K(v) =
mv2

2
is called the particle’s Kinetic energy, and the most important thing about it is that K ≥ 0 and equals zero only
if v = 0, i.e., when the particle is a rest (classical mechanics does not consider massless particles such as photons;
in Relativistic mechanics massless particles must move with the speed of light.) Note, however, that the particle
which is instantly at rest will stay at rest only if there are no forces acting on it.

The right-hand side of (29) is called work done by the force F . Observe that as long as the net force F can be
partitioned into a sum of several particular forces acting in a particular problem, it makes sense to talk about the
work done by each particular force: it simply follows from the additivity property of an integral

∫
(F1 + F2 + . . . + FN )dx =

∫
F1dx +

∫
F2dx + . . . +

∫
FNdx.

So (29) can be read as follows: the change in a particle’s kinetic energy equals work done by external forces.
An important notion related to work is power

W =
dA

dt
,

which is work done by a particular force per unit time. Hence, to compute power, one must fix x1 in the right-hand
side of (29) and consider x2 as a variable in the integral for work: let us assume that x1 corresponds to t = 0 and
x2 to a variable time t. Then

W =
d

dt

∫ x2(t)

x1

F (x)dx =
d

dt

∫ t

0

F (x(t′))v(t′)dt′ = F (x(t))v(t). (30)

In other words, power equals force, acting on the particle at a given moment times the particle’s velocity.
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Solving the differential equation (28) is tantamount to finding the integral for work. Let us denote

U(x) = −
∫

F (x)dx, so F (x) = −dU

dx
. (31)

The antiderivative U(x) is called the potential energy, of the particle, corresponding to the force F . Being an
indefinite integral, it is defined up to an additive constant. However, the constant plays no dynamical role: the
relation (29) can be now rewritten as

K2 −K1 = −(U2 − U1), or E = K(v) + U(x) = const. (32)

This formula represents the law of conservation of energy: total energy of a particle, which is the sum of its kinetic
and potential energy, is constant throughout the particle’s motion.

Note that the introduction of potential energy in (31) became possible because the force F = F (x) was assumed
to be a function of x only. Such forces are called conservative, because they enable the concept of potential energy
that leads to energy conservation. Comparing (32) and (29) we see that work done by a conservative force equals
minus the change in the potential energy, which depends only on the starting point x1 and x2, but not on how the
particle got from x1 to x2. E.g., if an absolutely elastic ball has been dropped from a hight x1 and let to jump, its
speed at the height x2 is always the same, no matter how many times the ball has been jumping up and down in
the mean time. The notions of conservative force and potential will be soon generalised to forces acting in space,
rather than along straight line.

The expression (32) provides full description of the particle’s trajectory in the form v = v(x), i.e. tells one what
the particle’s velocity will be when it visits a particular point in space. One can plot the curves K(v)+U(x) = const
in the (x, v)-plane: to do this no advanced maths is needed as long as U(x) has been found. Observe that as
K ∼ v2, these curves will always be symmetric with respect to the x-axis. They are called phase curves.

So far, we have been moving towards revealing more and more information about the solution x(t) of Newton’s
equation. Our ultimate wish is to get x(t), i.e. to plot the solution’s graph in the (t, x)-coordinate plane. We can
already do this in the (x,E)-plane: the solution x(t) is represented there by a horizontal line E = const. Observe
that given E, the particle can possibly find itself only at those places x, where E ≥ U(x), for otherwise would
imply that the particle’s kinetic energy becomes negative – an impossibility.

Furthermore, in the (x, v)-plane the solution x(t) will be represented by a phase curve v = ± 2
m

√
E − U(x).

The shape of this curve contains further information about x(t). Now it is time to find x(t) explicitly.
Mathematically, the main merit of (32) in comparison to (28) is that one act of integration has already been

performed, and in order to solve the Newton second-order equation one has to integrate only two times. The value
of the total energy E can be found from initial conditions – it depends on x0 and v0 only. But now (32) represents
the first order differential equation

dx

dt
= ±

√
2
m

(E − U(x)). (33)

The presence of ± in front of the square root brings no extra difficulty: it merely accounts for the particle moving
in the positive or negative direction along the x-axis. Suppose, v0 > 0, then until the particle stops (if ever) or, in
fact, as long as there is a reason to believe that x(t) will be an everywhere differentiable function (so the velocity
will change continuously) one should choose the plus sign. In the latter equation the variables have separated
again, and we can continue as follows:

dt =
√

m

2
dx√

E(x0, v0)− U(x)
.

We have written E = E(x0, v0) to emphasise how the initial conditions will enter the final solution explicitly.
Integration now yields

t =
√

m

2

∫ x

x0

dy√
E(x0, v0)− U(y)

. (34)

The potential U being either given or having been computed from the force F by (31), we may now be able to find
the integral in the right-hand side to have the trajectory x(t) of the particle given implicitly as t = t(x). Finding
the inverse function will finally secure the trajectory x(t), with all the initial conditions incorporated.

We have therefore described a method of solving Newton’s equation for a one degree of freedom system no
matter what F (x). The merit of this is that second order differential equations are in general more difficult than
first order equations, but we have reduced the second order equation mẍ = F (x) to the first order equation (33).
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4.2.1 Example: mass on a spring

Consider a mass oscillating on a spring, with no other forces than F (x) = −kx. Newton’s equation mẍ = −kx is
easy to solve anyway, the standard technique for second-order linear equations yields

x(t) = a sin(ωt + φ),

where ω =
√

k
m and the constants a, φ can be found by solving algebraic equations x(0) = x0, ẋ(0) = v0. Let us

go down the more general ”Energy way” instead. (It was the simplicity of the force F = −kx that has enabled us
to just write down the above solution, but the second-order equation technique would fail if, for instance, instead
of a linear force F = −kx one had the non-linear F = −k sin x to be considered soon as well.)

First, we have U(x) = kx2

2 + C for the potential energy. The choice of C is irrelevant, and it only makes sense
to choose C = 0. We now need to take the initial conditions into account to find the system’s energy. Suppose, at
the time t = 0 the spring is not deformed, but the body acquires (after a kick of sorts) an initial velocity v0 > 0.
Then the energy E = mv2

0
2 = const.

Now, (34) becomes

t =
√

m

2

∫ x

0

dy√
E − ky2

2

=
√

m

2E

∫ x

0

dy√
1− k

2E y2
=

√
m

k

(
arcsin

√
k

2E
x

)
.

Therefore, as E = mv2
0

2 ,

x(t) =

√
mv2

0

k
sin(ωt),

where ω =
√

k
m . Let us verify that the factor a =

√
2E
k =

√
mv2

0
k makes sense. It gives the amplitude of the

spring’s oscillations, when x reaches its minimum or maximum. In both cases ẋ will be zero, so all the system’s
energy will be represented by the spring’s potential energy. I.e ka2

2 = E, which gives a as it is.

To illustrate the advantage of the energy method, consider now a non-linear spring, where F = −k sinx.
Newton’s equation is then

ẍ + ω2 sin x = 0,

which is the same as the equation (5) for the pendulum, where ω2 = g
r . And as the force is 2π-periodic in x and

integrates into zero over [−π, π], we can consider x modulo 2π, i.e. as an angle as well. So, in fact, we are now
dealing with the pendulum, having identified k with g and m with the length r, see (5).

The potential energy now is U(x) = −k cos x, and let us consider a particular case when the system’s total
energy E equals k, the maximum of the potential, corresponding to x = π. In the case of the pendulum, when
x = α is the angle formed by the pendulum with the vertical, this corresponds to the pendulum standing upright
(suppose that instead of a string, the weight of the pendulum is suspended on a massless spoke of length r).

We have

t =
√

m

2k

∫ x

0

dy√
1 + cos y

.

Using the identity 1 + cos y = 2 cos2 y/2, we have, using the fact that
∫

sec ydy = ln | tan(y/2 + π/4)| (derive it by
multiplying the numerator and denominator by cos y, then use the substitution u = sin y):

t =
√

m

4k

∫ x

0

dy

cos(y/2)
=

√
m

k

∫ x/2

0

dy

cos y
=

√
m

k
ln | tan(π + x)/4|.

Hence,
x(t) = 4 arctan eωt − π.

Indeed, if t = 0, we have x(0) = 4 arctan 1 − π = 0. If t increases, arctan eωt limits to π/2, so as t → ∞, x(t)
asymptotically approaches π. This shows that if a spoke pendulum at rest is given the right velocity, it will be
approaching an upright position over infinite time, without ever being able to go over it. Similarly, as t → −∞
x(t) goes asymptotically to −π, which in terms of the pendulum means approaching the upright position “from
the other side”. Therefore, one can imagine that at time t = −∞, the pendulum was standing upright in unstable
equilibrium, with x = −π. Then it was given an infinitesimal push and started falling, at time t = 0 passed the
bottom point x = 0, and by the time t = +∞ will swing back to the upright position x = π.
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4.3 Potential energy and domains of possible motions

Knowing the potential energy function U(x) enables one to say a lot about the qualitative features of the particle’s
motion, without computing the integral (34). Indeed, completely solving Newton’s equation mẍ = F (x) takes
two integrations; introducing U(x) has involved one. The qualitative analysis of the solutions simply follows from
comparing the function U(x) with different values of total energy, which is considered as given. It is solely based
on the fact that

mv2

2
= E − U(x) ≥ 0.

First of all, given E, one can talk about the domain of possible motions. Namely given E, the particle cannot find
itself at the position x where E < U(x), due to the fact that the kinetic energy (and, in fact, mass) cannot be
negative. Consider a particular example of the potential U(x) given by the following figure.
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One can think of this figure as a plot in coordinates (E, x). Then the trajectory of a particle, depending on
E and x0, will be given by a single horizontal line segment E = const, so that this segment always lies above the
potential energy curve U(x). The height of the segment over the curve U(x) will determine the velocity v. Indeed,

v = ±
√

2(E − U(x))/m. (35)

This line segment, depending on E and x0 will be either finite or infinite, and hence one can talk about the
particle’s finite, which in this case would mean periodic, as well as infinite motions.

Suppose the total energy of the particle is −.1 < E < 1 and at t = 0 the particle is positioned at x0 equal to
plus or minus 1. Then the motion of the particle x(t) will be finite and periodic: the particle will never be able to
leave the potential well in which it is confined. Depending on a particular value of E in the above range, x(t) will
oscillate back and force between the values xm and xM , which are defined by the intersection of the horizontal
segment E = const with the potential energy curve. E.g. if E = .9 and the particle starts at x0 = 1 (with some
velocity v0 to ensure E = .9) then approximately xm = .4 and xM = 1.2. The points xm and xM are called turning
points: at these points E = U , so the velocity is zero, and the particle cannot penetrate beyond these points, or
its kinetic energy would become negative.

According to (34), the period of oscillations between the turning points xm and xM is

T = 2
√

m

2

∫ xM

xm

dx√
E − U(x)

,
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the factor 2 is there because the integral itself is how long it would take to go from xm to xM . It will take the
same time to go back – this is due to the fact that K ∼ v2, or equivalently because the integral from xM to xm

equals minus the integral from xm to xM , or equivalently to the presence of the ± sign in (33): when v is negative,
the minus sign in front of the square root in (35) has to be chosen.

A totally valid analogy for understanding these concepts would be imagining a ball that can roll freely up
and down a one-dimensional hill with profile U(x) in a constant gravity field. (Indeed, the potential energy in
the uniform gravity field is proportional to the altitude x). Then if the ball at t = 0 were placed at xm and
let go, it would roll up and down the wall of the well, form xm to xM and backwards. Similarly, if E = .5 and
x0 = xm ≈ 4.4, the ball would roll right with increasing speed. At x → +∞ its velocity would asymptotically
reach the value v =

√
2E/m, as U(x) goes to zero as x → +∞. This is an example of infinite motion. However,

it is semi-infinite only: as long as E < 2.5, the ball (particle) would not be able to find itself left of xm. (In
quantum mechanics this is not the case: a quantum particle can “tunnel” through a potential wall, the probability
of tunneling decreasing exponentially with the width and height of the wall.)

However, if the energy of the particle E > 2.5, the motion is double-infinite. Indeed, for any x, K(x) = E−U(x)
will be bounded from below, so the velocity will be bounded form below and retain the sign, and any x will be
reached in positive/negative time.

Finally, the most interesting scenario is when E equals one of the local minima or maxima of the potential (in
the figure such critical values are approximately −.1, 1, and approximately 2.5). If x∗ is a local minimum/maximum
of the potential, then the force F (x∗) = −U ′(x∗) acting on the particle at that point is zero. Hence, a particle
which is at rest at x∗ at t = 0 would stay there for ever, by the First law. In other words, for these critical
values E∗ = E(x∗) of E, the Newton equation enables solutions x(t) = x∗, for all t. Such x∗ are called equilibria.
An equilibrium is stable if it corresponds to a local minimum of U(x), because a slight increase of energy from
E∗ would result in finite motion only. (Alternatively, if there is small dissipation of energy from the system, the
particle, after having been perturbed from equilibrium would eventually come to rest at the equilibrium point.)
If however x∗ is a local maximum of U , it corresponds to an unstable equilibrium: a ball positioned right on the
very tip of a hill would fall off upon receiving the slightest push giving it extra energy.

Observe that if x∗ is a critical point of U(x), then we can Taylor-expand

U(x) = U(x∗) +
1
2
U ′′(x∗)(x− x∗)2 + . . . .

Indeed, as x∗ is a critical point, the first derivative U ′ there is zero. Without loss of generality, the constant U(x∗)
can be rendered zero. Then,

U(x) ≈ 1
2
U ′′(x∗)(x− x∗)2, (36)

which is the potential energy of a spring, stretched by z = x− x∗, with the spring constant U ′′(x∗). Therefore, for
the energies E slightly greater than E∗ = U(x∗), the motion

x(t)− x∗ ≈ a sin(ωt + φ), (37)

where the amplitude a = x∗−xm, xm being the left turning point, is determined by E−E∗, while φ is determined

by the initial condition x(0). Besides, ω =
√

U ′′(x∗)
m . Mathematically this expresses the most fundamental idea of

the Taylor approximation in calculus: in this case any smooth function U(x) near its critical point x∗ can be viewed
as a parabola with coefficient 1

2U ′′(x∗), as long as the latter is nonzero, the relative error of the approximation
going to zero as x gets closer x∗.

If x∗ corresponds to the local maximum of U however, and suppose U ′′(x∗) < 0, then denoting again k =
|U ′′(x∗)|, for small deviations z = x− x∗ we have an approximate differential equation

mz̈ − kz = 0.

Indeed, z̈ = ẍ and F = −dU/dx = −dU/dz = −U ′′(x∗)z. Two linearly independent solutions of this equations are

x(t)− x∗ ∼ e∓ωt, (38)

where now ω =
√
|U ′′(x∗)|

m . These solutions asymptotically approach zero: one in positive and the other in negative
time. In terms of the above figure this means that if x0 equals, for instance, 6 and v0 < 0, so that and the total
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energy equals the maximum of U , which is approximately 2.5, then the ball will be rolling left up the hill whose
tip is at x = 2, getting closer and closer to the top, reaching it ad infinitum. Similarly, if x0 = −.8, v0 > 0 and
such that E = 1, the ball will be rolling right up the hill at x = 0 over infinite time, without ever getting over the
top.

Similarly the motion with energy E = 1, starting at xM ≈ 1.2 and further moving towards the left is no longer
periodic, or its “period”

T ∼
∫ xM

0

dx√
1− U(x)

= ∞.

Indeed, near x = 0 we have U(x) = 1− 1
2kx2 + . . . . Therefore the denominator in the above formula, as x → 0+

becomes proportional to 1/x, and the antiderivative ln x is infinite at x = 0. This is just another expression of the
above mentioned fact that localised near an unstable equilibrium, linearly independent solutions of the Newton
equation have exponential form e∓ωt.

4.4 Work and Energy in general

Let us now extend the concepts of work and potential energy beyond systems of one degree of freedom. We once
again start out with the Second law, only now it is in the vector form:

m
dv

dt
= F ,

and we are therefore trying to solve three differential equations at the same time even if we deal with a single
particle in 3d. Suppose, the particle is moving between the points 1 and 2 along the trajectory r(t), see fig. (In
fact, the same argument works for r ∈ Rn for any n, which makes sense, because r may generally denote the
aggregate of the coordinates used to describe a mechanical system, which may well contain more than just a single
particle.)

Let dr be an infinitesimal change of the particle’s radius-vector along the trajectory. Take the dot product of
both sides of the Newton equation with dr and observe that dr = vdt. One gets

mv · dv = dA, where dA = F · dr. (39)

The quantity dA is called infinitesimal, or elementary work, done by the force F over the position change dr,
clearly

dA = |F ||dr| cosφ,

where φ is the angle between the directions of the vectors F and dr. In the Newton formula F is the net force,
acting on a particle. However, if F is a superposition of forces

F = F 1 + F 2 + . . . ,

one can naturally talk about elementary work, done independently by each individual force. Observe that if a
force and the velocity v are perpendicular to each other, then dA = 0.

We will now be integrating equation (39) which means summing the elementary bits (39) over a huge numebr
of such, sums becoming integrals in the limit. The left-hand side of (39) enables one to introduce the notion of
kinetic energy

K(v) =
mv2

2
,
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similar to (28), where v = |v| = √
v · v is speed. In order to arrive in K we claim that v · dv = vdv, and in fact,

the same relation is true for any vector. Note: v ·dv is the dot product of the velocity v and its increment dv. But
vdv is the product of two scalars: the speed v and the increment dv of speed. One way to verify this is geometric,
see the following figure,

where is boils down to the vector identity ~OA · ~AB = |OA||AC|. Equivalently, analytically

mv · dv = m(vxdvx + vydvy + vzdvz) = m d

(
v2

x + v2
y + v2

z

2

)
= dK. (40)

Observe that the above differential formulae represent the limit cases as ∆r → 0 of “finite” formulae

∆K = mv∆v + . . . , ∆r = v∆t + . . . , ∆A = F ·∆r + . . . ,

where . . . denote higher order terms in small quantities ∆v, ∆t, ∆r. The relative contribution of the omitted
terms will go to zero as ∆v, ∆t, ∆r go to zero.

We now integrate (39) between the particle’s states 1 and 2, characterised by positions and velocities r1, v1 and
r2, v2, occurring at times t1 and t2, respectively. Mathematically, we represent the trajectory r(t) as a broken line
consisting of straight segments ∆ri, i = 1, . . . , N whose length goes to zero and number N to infinity. Summing
the left-hand side is easy: we get just a definite integral in a single variable v:

∫ v2

v1

mv dv =
∫ v2

v1

dK(v) =
mv2

2

2
− mv2

1

2
= K2 −K1,

similar to the left-hand side of (29). The value depends only on the initial speed v1 and final speed v2, no matter
how v changed form v1 to v2. Indeed, let us mentally partition the trajectory on the “elementary work” figure
into a huge number of small bits ∆ri. Then

∫ v2

v1

dK(v) ≈
∑

i

∆K(i) = K2 −K1,

because in the latter sum everything, but the first and the last term cancels telescopically.
Integration of the right-hand side of (39) means summing elementary works dA ≈ ∆A on each bit ∆ri of the

trajectory r(t). Such a sum would generally depend on the force F , as well as the trajectory r(t). Denoting γ12

the piece of the trajectory r(t) between the endpoints r1 and r2 one gets

A12 =
∫

γ12

dA =
∫

γ12

F · dr = lim
N→∞

N∑

i=1

∆Ai = lim
N→∞

N∑

i=1

F i ·∆ri, (41)

where the vector ∆r1 begins at r1 and the vector ∆rN ends at r2, and for i = 1, . . . , N , the force F i is applied
at the starting point of each ∆ri.

Thus, the analog of (32) is now

K2 −K1 = A12 :
mv2

2

2
− mv2

1

2
=

∫

γ12

F · dr. (42)
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The change in kinetic energy equals the net work of all the forces. Observe that v2 = v · v.

Thus work in more than one dimension defined via (41) represents a so-called path integral. It depends in
general not only by the endpoints 1 and 2, but the path γ12 connecting them. Given r(t), and hence v(t) by
differentiation, computing work is an easy task. First off, dr = v(t)dt. The force F may be the function of
r, v, and even t, but knowing r(t) enables, by substituting all the time dependencies into F express it as a
vector-function F (t) only. Suppose the endpoints correspond to the times t1 and t2. Then

A12 =
∫ t2

t1

F (t) · v(t)dt,

the usual integral of a scalar function. In the same fashion, power

W =
dA

dt
= F (t) · v(t).

The real question though is how to use the notion of work in order to get r(t), which is unknown. For this
purpose, in the case of one degree of freedom, we could introduce potential energy U(x), associating it via F = −U ′

with any force F = F (x), depending only on x. Can this be done in the case of more than one degree of freedom?
Yes and no, depending on the force. We would now like to claim F (r) = −∇U(r) for some scalar function U(r).

The major difference in comparison with the case of one degree of freedom is that there, as long as the force is
the function of the position x only, one has the Newton-Leibniz formula, which says that the integral

∫ x2

x1
F (x)dx

depends only on x1 and x2. In higher dimensions, this is no longer the case: there are many examples of F (r),
for which F (r) = −∇U(r) is simply impossible. Simple intuition suggests that even in two degrees of freedom
the force F (x, y), having two components (Fx, Fy), each of which is a function of x and y is quite unlikely to be
the minus gradient of just one function U(x, y): there are many more pairs of functions (Fx(x, y), Fy(x, y)) than
single functions U(x, y).

So, potential energy can not be introduced only for any force, and the work done by a force between the initial
and final states 1 and 2 may depend on not just these states but the path γ12 connecting them.

E.g., suppose the particle is moving in the xy plane and the endpoints 1 and 2 are both on the x-axis, with
coordinates (0, 0) and (1, 0); suppose F = 1

y2+1i is directed along the x-axis and gets smaller away from it. Then
if the path γ12 is the segment of the x-axis connecting the endpoints, obviously one has A12 = 1. On the other
hand, if the path γ first goes up along the y-axis from y = 0 to y = N , then proceeds horizontally from (0, N) to
(1, N), and then down from (1, N) to (1, 0), the work of F along the going up and down sections is zero, because
there F and dr are perpendicular. On the horizontal section the work equals 1

1+N2 . Thus the work done by F in
this case, despite F = F (r) only and is independent of t and v, does depend on how the particle gets from point
1 to point 2.

But Nature has arranged that the key physical interaction forces do allow for potential energy. A force F = F (r)
is called potential if there exists a scalar function U(r) such that F = −∇U(r). I.e. if

F (r) = Fx(r)i + Fy(r)j + Fz(r)k, then Fx = −∂U

∂x
, Fy = −∂U

∂y
, Fz = −∂U

∂z
.

If this is the case, the elementary work

−dA = ∇U(r) · dr =
∂U

∂x
dx +

∂U

∂y
dy +

∂U

∂z
dz = dU.

Alternatively,
−∆A = ∇U(r) ·∆r + . . . = ∆U + . . . ,

where the relative contribution of the terms . . . vanishes as ∆r → 0. In other words, if the force is potential, one
has

A12 =
∫

γ12

F · dr =
∫

γ12

dU(r) = U(r1)− U(r2),

regardless of the path γ12 connecting r1 and r2. What follows from (42) immediately then is the law of conservation
of mechanical energy, generalising (32):

E = K(v) + U(r) = const, (43)
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for systems subject to the action of potential forces only potential forces only. If there are other non-potential
forces denoted as F np (they can depend on r, v and t) one can only claim that

∆E = ∆[K(v) + U(r)] =
∫

γ12

F np · dr = Anp, (44)

the term in the right-hand side being work done by non-potential forces. The change of total energy equals the
work done by non-potential forces. The latter ones are friction, drag, etc., and are commonly physically associated
with energy dissipating away via heat. (Slightly more generally, see below, potential and non-potential forces are
referred to as conservative and dissipative, respectively – those that conserve energy and those that don’t ... the
distinction between potential and conservative forces are way beyond this course.)

Fortunately, the fundamental physical interaction forces are either potential or gyroscopic. The latter are forces
that always act perpendicular to the velocity and therefore produce no work. An important example of gyroscopic
forces is the Lorentz force acting on charged particles moving in magnetic field.

Let us find potentials U , corresponding to some forces. E.g., if we have a constant downward force F = −mgk,
then U = mgz. Indeed, −∇U = 0i + 0j −mgk. Another important example of a potential force is a central force

F (r) = f(r)r̂, where r = |r|, r̂ =
r

r
, (45)

acting at a given point along a line connecting the point with the origin. In this case

U = U(r) = −
∫

f(r)dr, (46)

i.e. all one needs to do to find U is take the antiderivative of f(r) as a function of one variable. To verify this, use
the chain rule: take U = U(r) = U(

√
r · r) and compute its partial derivatives. E.g.

∂U

∂x
= U ′(r)

∂
√

x2 + y2 + z2

∂x
= U ′(r)

x

r
,

similar for ∂U
∂y , ∂U

∂z . Thus

∇U = U ′(r)
xi + yj + zk

r
= U ′(r)r̂.

Another way of verifying (46) is simply noticing that similar to (40), we have r · dr = rdr – this merely is a vector
identity, see the figure preceding (40). Hence,

dA = f(r)
r · dr

r
= f(r)dr, and U(r) = −

∫
f(r)dr,

as we are now dealing with a function of a single variable r, whose integral between r1 and r2 is well defined.
For instance, for the gravity force

F = −G
Mm

r2
r̂

of attraction acting on a body of mass m and radius-vector r by a body of mass M , positioned at the origin (the
minus sign shows that the force is directed towards rather than away from the origin), we find

U(r) = −G
Mm

r
+ C.

The constant is insignificant and can be assigned zero value. Hence, if the body with the mass m is being brought
by gravity form infinity, where U = 0, its potential energy decreases with the decrease of r, and the kinetic energy
grows. Conversely, if M pertains to the Earth and m to a rocket, and one asks what launch velocity v0 the rocket
needs to be able to overcome the attraction of the Earth, the answer, by the law of conservation of energy, is

mv2
0

2
−G

Mm

r0
≥ 0,
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where r0 is the radius of the Earth. Indeed, the left-hand side is the rocket’s energy at launch. The right-hand
side is its energy far away from the Earth, so that U = 0 assuming the rocket would have exhausted all its initial
momentum to fight against gravity.

Mathematically, one can determine whether a given force, or force field – this is the term used to denominate a
force F = F (r) that depends on the position only – is potential is by performing integration. E.g. let F = yi+xj.
It is potential. Indeed, one must have y = −∂U

∂x , so U(x, y) = −xy + C(y). On the other hand, one must have

x = −∂U

∂y
=

∂(xy − C(y))
∂y

, so C ′(y) = 0, C = const, U = −xy + C.

However, the force field F = yi− xj is not potential. Indeed, the same reasoning leads to the conclusion that
U(x, y) = −xy + C(y) and ∂U

∂y = x, which is inconsistent, as C cannot depend on x.
Another way of establishing that a given force field F is not potential is producing two different paths with

the same endpoints, so that the work of F along these paths is not the same.

Observe that claiming for a force field F (r) that its work along any path depends only on the endpoints of
the path is equivalent to a claim that the work of F along any closed path is zero. Indeed, let γ1 and γ2 be two
different curves (paths) with the same endpoints P, Q, let γ be a closed path which consists in going from P to Q
along γ1 and then returning to P along γ2. An integral along a closed path is often denoted as

∮
, and the work

of F along the close path γ equals
∮

γ

F · dr =
∫

γ1

F · dr −
∫

γ2

F · dr = 0.

To generalise the notion of potential forces, a force field is called conservative if its work along any closed path
is zero, or equivalently for any points P, Q the work done along a path connecting P and Q does not depend on
the particular path. If a force field is potential, it is conservative. The converse is true in the Euclidean space of
any dimension (so within this course conservative andpotential is the same thing) but is not necessarily true if the
domain of particle’s possible motions has more complicated geometry.7

Non-conservative forces are friction, drag, etc. A force is called dissipative if it results in the loss of kinetic
energy. Thus the dynamic friction force, as well as drag force are dissipative. Static friction is not dissipative, as
obviously bodies can be accelerated due to static friction.

4.4.1 Additivity of energy

Kinetic energy is an additive quantity: the kinetic energy of a system of particles equals the sum of kinetic energies
of individual particles. This follows as the integration of the Newton equation performed in the preceding section
can be done for each particle individually. However, unlike the momentum, which is proportional to v, the kinetic
energy is proportional to v2, and so the work done by internal forces inside a system of particles is usually not
zero and does result in the change of the system’s kinetic energy. The reason is that as far as the work done by
the jth force over ith particle dAji = F j · dri in concerned, having F j1 = −F j2 for a pair of forces (action equals
reaction) does not mean that the net work done by the two is zero, due to different dri that each individual force
is being dot-multiplied by. E.g., suppose two electrons are repelled from each other from rest by the electric force.
Their speeds, and hence the kinetic energy of the system increase, while the total momentum remains zero.

In a system of N particles, suppose v′i is the ith particle’s velocity in a frame K ′ moving with the velocity V
with respect to the origin, then vi = v′i + V . So

Ki =
mi

2
(v′i

2 + 2v′i · V + V 2).

7E.g. in the Euclidean plane take F = y
r2 i − x

r2 j, where r2 = x2 + y2. It is easy to see that the work done by F along a path
connecting two points P and Q equals the angle (in radians) POQ. Thus is a closed path from P to P does not contain the origin
O, the work along such a path is always zero, while it is ±2π each time the path goes around the origin. So the vector field is not
potential. Let us now cut the Euclidean plane along the non-negative x-axis or any other line beginning at the origin and going to
infinity. Then paths going around the origin are now forbidden, so the vector field, restricted to the new domain (R2 minus the cut)
is conservative, but it is still not potential.
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If K ′ is associated with the mass centre of the system, then
∑

i miv
′
i = 0, and so the total kinetic energy

K =
∑

i

Ki =
∑

i

miv
′
i
2

2
+

V 2

2

∑

i

mi = K ′ +
MV 2

2
.

This statement is called the König theorem: the kinetic energy of a system of particles equals their kinetic energy
in the mass centre frame (where the system rests as whole) plus the kinetic energy of the mass centre as a single
particle of mass M =

∑
mi moving with the velocity V . Recall that

V =
∑

i mivi

M
.

4.4.2 Collisions of particles

Collisions (or scattering) of particles represent obviously important applications of the mechanical theory partially
developed above. Collisions theory gets quite involved if the particles are allowed to move beyond a single direction,
and especially if they are allowed to have non-point sizes, when it becomes meaningful to allow them to rotate.
The general idea of dealing with collisions is avoiding the analysis of complex and short-lived electromagnetic
processes occurring at the moment of the collision per se and rather using the laws of conservation of momentum
and energy (if applicable) to describe the system in terms of its state “before” and “after” the collision.

E.g. suppose a particle of mass m1 is moving with the velocity v1 along a line and hits another particle of
mass m2, whereupon the particles continue to move together. The total momentum of the system is preserved,
while the energy is definitely not preserved. To see this we need a calculation, which becomes shortest if done in
the mass centre frame. Regardless of the collision, the mass centre moves with the velocity v = m1v1/(m1 + m2),
due to the conservation of momentum. By the König theorem above the total kinetic energy of the system is the
sum of kinetic energies of the particles relative to the mass centre, plus the kinetic energy of the mass centre itself.
The latter stays the same: the mass centre keeps moving with the same velocity v. However, after the collision
the particles no longer move relative to the mass centre. But before the collision the first and second particle were
moving with respect to the mass centre with the velocities, respectively

v′1 = v1 − v and − v.

Hence, the loss of kinetic energy (verify the calculation!) is

∆K =
m1(v1 − v)2

2
+

m2v
2

2
=

µv2
1

2
, where µ =

m1m2

m1 + m2
.

Note that if the particles have the same mass m, µ = m/2, so half of the kinetic energy gets lost. If m2 À m1

then µ ≈ m1, so almost all energy is lost.
Such a collision, namely when after the collision all the kinetic energy relative to the mass centre is lost, is

called absolutely non-elastic. Mechanical energy then is definitely not conserved. The reason is that the kinetic
energy of the particles at the moment when they collide gets transferred into their internal energy, resulting in the
increase of their temperature, which represents the inner average motions of the molecules forming the particles.
Analysing temperature is beyond the expertise of Classical mechanics. If one takes the change in the internal
energy before and after the collision into account, the total physical energy of the system is, of course, preserved.
The law of conservation of total energy is perhaps the fundamental law of physics. Einstein’s special relativity
shows that energy and momentum are, in fact, components of a single four-dimensional vector.

A collision of two mechanical bodies is called elastic if mechanical energy before and after the collision is
preserved. (In Classical mechanics elastic collisions are an idealisation, yet in relativistic particles’ mechanics they
are omnipresent, as it does not make sense to talk about a particle’s temperature, and all the particle’s physical
energy is contained in its velocity and mass). E.g. consider an elastic collision of two particles with equal masses m
and velocities v1 and v2. In the mass center frame moving with some velocity v, where the velocities are denoted
by u’s, the particles before the collision move with velocities u1 = v1 − v and u2 = v2 − v, so that u1 = −u2.
Thus the problem is therefore one-dimensional, and the vector notations for u’s will further be dropped. After the
collision the total momentum in the mass centre frame is still zero, so the “new” velocities u′1 and u′2 still satisfy
u′1 = −u′2. In addition, total energy is preserved, so u′1

2 + u′2
2 = u2

1 + u2
2. There are two possibilities then: either
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u′1 = u1 and u′2 = u2 or u′1 = −u1 and u′2 = −u2. Physically, for obvious reasons (the left particle remains on the
left of the right particle) the former possibility is unacceptable. Therefore, after an elastic collision of two particles
of equal mass, they simply exchange their velocities: v′1 = v2, v′2 = v1. (The other way of seeing it is that two
particles of the same mass after the elastic collision “move through each other but exchange identities”. Here is a
standard cartoon illustrating elastic collisions.

4.4.3 Potential energy of interaction

Considering systems of particles, it is a common physical reality that interaction (e.g. gravitational, electrostatic)
forces between particles are such that they depend only on the distances between particles and act along the lines
connecting pairs of particles. If this is the case, it is possible to introduce the potential energy of interaction and
therefore use conservation of energy to describe such systems of particles.

To see this, consider a system of N particles, and suppose the jth particle imposes the force F ij onto the ith
particle (thus i 6= j), so that

F ij = Fij(rij)r̂ij ,

where rij > 0 is the distance between the particles, and r̂ij is the unit vector in the direction of rij = ri − rj , i.e.
pointing from the jth particle in the direction of the ith one. So, r̂ij = rij

rij
. If Ki = miv

2
i

2 , by (39, 40) we have, for
each particle

dKi =
∑

j 6=i

F ij · dri, i = 1, . . . , N.

We now sum over all i, introducing the total kinetic energy K =
∑

i
miv

2
i

2 and use the third Newton’s law stating
that F ij = −F ji:

dK =
∑

j>i

F ij · d(ri − rj) =
∑

j>i

Fij(rij)
rij · drij

rij
=

∑

j>i

Fij(rij)drij .

Indeed, the last equality follows from the vector identity rij · drij = rijdrij – in the past we’ve had exactly the
same identity for v, see (39, 40) as well as for r dealing with central forces, see (46).

Now the variables have separated, each term in the left-hand side depends on vi only, each term in the right-
hand side on rij only. Therefore, defining

Uij(rij) = −
∫

Fij(rij)drij , U =
∑

j>i

Uij ,

after integrating term by term independently, we conclude that

E = K + U = const.

E.g. suppose three electrons are initially positioned at rest at three corners of the equilateral triangle with side r0

and then let fly under the electric repulsion force. In this case Fij = k/r2
ij , for some k proportional to e2. (This is

a repulsion force, so it is indeed directed along ri − rj , not opposite; a good somewhat heuristic rule here is that
attraction forces bear a minus sign, while repulsion forces do not.) Hence Uij = k/rij , and E = 3k/r0, as there
are three pairs of interacting electrons. After the electrons fly far enough, rij →∞, so in the limit U = 0, and the
whole of E has been recycled into the electrons’ kinetic energy, which is equal 3m v2

2 – there are three electrons.

So, the limit speed of each electron at infinity will be v∞ =
√

2k
mr0

.
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4.5 Harmonic oscillations

An important example when the Newton equation can be fully solved in quadratures is the harmonic oscillator.
Consider, for instance, a mass m attached to a spring with the spring constant k on a horizontal table.

On this picture, in addition to the spring there is an external driving force to be considered further, but for
now assume it is zero. However, suppose the motion occurs in a medium (air or liquid), so there is a dissipative
damping force, proportional to the speed with the coefficient κ and acting in the direction against it.

4.5.1 Undriven oscillator

In the lack of external driving force the Second law is

mẍ = −kx− κẋ, (47)

where x is the deformation of the spring from equilibrium. Equivalently

ẍ + 2γẋ + ω2x = 0, (48)

where γ = κ/2m, ω =
√

k/m.
This is a homogeneous linear ODE, and we seek its solution as x(t) = Ceλt, for some λ and any C.8 From

linearity and homogeneity of the equation we can, in fact, seek complex, rather than just real λ. This would result
naturally in complex x. Then, by linearity of the equation, if the complex x(t) = <x(t) + i=x(t) satisfies the
equation, then both its real and imaginary parts <x(t) and =x(t) are real solutions of the equation.

Substitution of the above x(t) into the equation yields

λ2 + 2γλ + ω2 = 0, so λ = −γ ± i
√

ω2 − γ2.

We therefore get two linearly independent solutions for differen choices of the ± sign, unless ω = γ. In the latter
case, one solution x(t) = C1e

−γt has been found. The other solution (see the footnote) can only have the form
C2te

−γt, and it is easy to verify that it satisfies the equation (48) if and only if γ = ω. (Verify this and do not
neglect the Leibniz formula for the second derivative of the product: (uv)′′ = uv′′ + 2u′v′ + vu′′.)

So, denoting ω̃ =
√
|ω2 − γ2| the solutions in general are

x(t) =





C1e
−(γ−ω̃)t + C2e

−(γ+ω̃)t, if ω < γ,

(C1 + C2t)e−γt, if ω = γ,

C1e
−(γ−iω̃)t + C2e

−(γ+iω̃)t, if ω > γ.

(49)

The case γ > ω is called overdamped, the case γ = ω critical and the case γ < ω underdamped, or normal. The
constants above are determined by the initial conditions x(0) = x0 and ẋ(0) = v0, and can be both zero, which
corresponds to no motion at all.

8The reason it is sought in this form is that the coefficients in the equation are time-independent. Thus if x(t) is a solution of this
equation, then for any T , x(t + T ) must also be a solution (because differentiating x(t) with respect to either t or t′ = t + T yields the
same result.) The exponential function has the desired property: x(t + T ) = CeλT eλt = C′eλt. And so does a more general solution
x(t) = C1eλt + C2teλt, which kicks in in the critical damping case below, but no other.
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In the underdamped case to be discussed further in more detail the real solution can be extracted as

x(t) = e−γt[A cos ω̃t + B sin ω̃t] = Ce−γt cos(ω̃t− φ), (50)

where
C =

√
A2 + B2, φ = arctan(B/A).

Observe that the later is just a version of Pythagoras’ theorem, after writing

A cos ω̃t + B sin ω̃t = C

(
A

C
cos ω̃t +

B

C
sin ω̃t

)

and using the formula for cos(α− φ), with α = ω̃t and φ as above.
Note that whatever the relation between γ and ω, as long as γ > 0 damping makes x(t) vanish exponentially.

If γ = 0, then (50) is still valid, with ω̃ = ω, and represents simple harmonic motion with frequency ω. In general,
(50) is referred to as damped oscillations, with frequency ω̃ and logarithmic decrement γ. The motivation for the
latter terminology is that the time-separation between the nearby maxima of the solution in (50) equals T = 2π/ω̃.
Over this time the pre-factor e−γt becomes e−γT smaller. In other words, the ratio

log
x(t)

x(t + T )
= γ.

4.5.2 Driven harmonic oscillator

Consider now the forced, or driven oscillator, namely in the Newton equation (47) let us add some extra time-
dependent driving force F = F (t) (the man in the above cartoon gets to work). An interesting case is when the
force is constant or periodic. Let f = F/m, the ODE we are dealing with is now

ẍ + 2γẋ + ω2x = f(t), (51)

and its general solution is the sum of the transient solution from (49), solving the homogeneous equation (48) and
any particular solution xp(t) solving the whole equation (51)9.

Let us further consider only the case of (damped) oscillations when ω > γ ≥ 0. So, the goal is to find a single
particular xp(t) solution to (51). Observe that as

x(t) = xp(t) + Ce−γt cos(ω̃t− φ), (52)

for γ > 0 the initial conditions which determine C and φ will have almost no effect on x(t), for large t, due to the
exponential decay e−γt. Thus xp(t) ≈ x(t) for large t is called steady state solution.

Furthermore, note that if f(t) = f1(t) + f2(t) + . . . , then, in fact,

xp(t) = xp,1(t) + xp,2(t) + . . . ,

where each xp,i(t) is obtained as if the term fi(t) were the only one in the right-hand side. This is the reflection
of the linearity of the equation which makes the forces’ action independent.

9Indeed, by linearity of (51), if x(t) is any solution of it and xp(t) some solution, the difference x(t) − xp(t) must satisfy the
homogeneous equation.
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The simplest f(t) is the constant force f = const. This corresponds to the spring whose Newton’s equation was
(47) hanging vertically rather than horizontally, when gravity comes into play, in which case f = g. The particular
solution then is simply

xp(t) =
g

ω2
=

mg

k
= x0.

Physically, it corresponds to the equilibrium position of the mass hanging vertically on the spring, stretched by
x0, with kx0 = mg. In other words, the only impact of gravity is that the (damped) oscillations (51) now pertain
to the deviation from equilibrium x(t)− x0, rather than from the unstretched spring.

Now let us consider a periodic f(t), i.e f(t) = f(t + T ) for some minimum period T > 0. A periodic function
with the period T is given by a Fourier series with frequencies nΩ, where Ω = 2π/T . However, as we have shown,
each term in the series will have an independent effect, and therefore it suffices to consider only

f(t) = f0 cosΩt or f(t) = f0 sinΩt.

To account for both sine and cosine, it is convenient to deal with

f(t) = f0e
iΩt

instead. Then, after the complex xp(t) has been found, its real part <xp(t) will describe the response to the cosine
forcing and its imaginary part =xp(t) – to the sine forcing.

Let us try the solution xp(t) = KeiΩt for some complex K. Substituting it into (51) and canceling the
exponential (never zero!) out, we have:

K(−Ω2 + 2iγΩ + ω2) = f0.

This works, unless simultaneously γ = 0 and Ω = ω. The latter scenario is called full resonance and if it is the
case, our ansatz xp(t) = KeiΩt was wrong. Let us deal with this situation first, so γ = 0 and Ω = ω; now try
xp(t) = Kteiωt. Substitution into

ẍ + ω2x = f0e
iωt

yields, after canceling the exponential
K(−tω2 + 2iω + tω2) = f0,

so K = −i f0
2ω . Thus, the oscillator’s resonant response to

f = f0(cos ωt + i sin ωt)

is
−it

f0

2ω
cos ωt +

f0

2ω
t sinωt.

In particular, if f = f0 cosωt, the response is xp(t) = f0
2ω t sin ωt; if f = f0 sin ωt, the response is xp(t) = − f0

2ω t cosωt.
In both cases, it is proportional to t and is therefore unbounded as t → ∞. Physically, unbounded solutions

lead to destruction. Bridges are known to be sensitive to resonances.
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For the future, suppose no full resonance occurs, for which it suffices to have either γ > 0, or Ω 6= ω. Then we
have the complex solution

xp(t) =
f0

(−Ω2 + ω2) + 2iγΩ
eiΩt

It makes sense to write the pre-exponential factor K as K = Aeiψ, where A is the modulus of the complex number
K and ψ the phase. Observe that for any complex z 6= 0, the modulus of 1/z is one over the modulus of z, while
the phase of 1/z is minus the phase of z. Thus

K = f0√
(ω2−Ω2)2+4Ω2γ2

e
−i arctan 2γΩ

ω2−Ω2 ,

xp(t) = f0√
(ω2−Ω2)2+4Ω2γ2

e
i
(
Ωt−arctan 2γΩ

ω2−Ω2

)
.

(53)

Observe that the response to the cosine driving force will contain the real part of the complex exponential, i.e.
the cosine of Ωt− arctan 2γΩ

ω2−Ω2 ; the response to the sine driving force will be the sine of the above.
By (52) in the full solution the transient solution can be dropped, as long as γ > 0. Otherwise, if γ = 0 and

Ω 6= ω, x(t) represents the superposition of two sine curves, one with frequency ω and the other with frequency
Ω. A typical countenance for such x(t) is as sequence of “beats”, whose maximum amplitude grows as Ω → ω.
The envelope of the beats has frequency 1

2 |ω − Ω|, providing “amplitude modulation” of “fast” oscillations with
frequency 1

2 (ω + Ω). This follows basically from the formula cos ωt + cos Ωt = 2 cos |ω−Ω|t
2 cos |ω+Ω|t

2 .

Assuming γ 6= 0, it makes sense to ask for which Ω does the amplitude K of the steady state solution attain
its maximum. To do this is tantamount to minimizing the square of the denominator G(y) = (y − ω2)2 + 4yγ2,
with respect to y = Ω2. We have

G′(y) = 2(y − ω2) + 4γ2,

and zero if y = ω2 − 2γ2, which, considering that y > 0, occurs only if ω >
√

2γ. Therefore, the steady state
solution will have maximum amplitude provided that

Ω2 = ω2 − 2γ2.

If ω2 < 2γ2, then the above function G(y) is increasing for y > 0, and therefore the amplitude K of the steady state
solution will be a decreasing function of Ω. Different relations K(Ω), for different values of γ can be qualitatively
seen on the following diagram (never mind the German).
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4.6 Angular momentum

4.6.1 Constants of motion

The mathematical aspects of mechanics grow increasingly harder as the number of degrees of freedom of a mechan-
ical system increases. As far as systems of one degree of freedom were concerned, in Section 4.2 it was shown that
under rather general circumstances one can introduce the notion of potential and then use energy conservation
to completely solve (in other words, integrate) the Newton equations of motion of a “one-dimensional” particle.
Further in Section 4.4 it turned out that when the number of degrees of freedom exceeds one, the class of forces
when the law of conservation of mechanical energy would apply had to be narrowed to potential forces only. Still,
the key physical interaction forces are potential.

In the case of one degree of freedom, the mere fact of energy conservation resulted in equation (33), which is
the first-order differential equation. A single first-order differential equation is fairly easy to solve, or integrate.

When the number of degrees of freedom equals, for instance two, the analogue of (33) is

ẋ2 + ẏ2 =
2
m

(E − U(x, y)) ⇔ E =
m

2
(ẋ2 + ẏ2) + U(x, y) = const. (54)

This is no longer a single ordinary differential equation. Yet its advantage over the Newton equations is that (54)
contains only the first time-derivatives of r = (x, y). On the other hand, it is a single relation, which obviously
does not suffice to obtain the two unknown functions x(t) and y(t).

In order to solve the Newton equations, i.e. find the unknown functions x(t), y(t) satisfying given initial
conditions, one may try to obtain another relation in the form

F (ẋ, ẏ, x, y) = C = const. (55)

Such a quantity F , which is in general a function of position and velocity (and sometimes even time) is called a
constant, or integral of motion. Heuristically, the integral of motion F (a particular case is the energy E) is a
function that depends on r, ṙ, yet being evaluated along the trajectory r(t) of a particle, it always returns the
same value equal to C. (Geometrically this means that the trajectory viewed as a phase curve lies within a single
level set of the function F ). In particular, knowing the initial conditions r, ṙ at t = 0 would suffice to fix the value
of F once and for all.

If the number of degrees of freedom equals two, having another constant of motion (55) independent of energy
E would give another relation binding ẋ, ẏ and x, y. Together with (54) they would constitute now a system of two
first-order ODEs, which in general shall be easier to solve than the Newton equations, which comprise a system
of two second-order ODEs.

Today, the method of constants of motions is the most common approach to studying the mathematical aspects
of mechanics. In order to identify constants of motion, one may have to use coordinate systems other than the
Cartesian one and are dictated by the system’s geometry. We shall further introduce the concept of angular
momentum, as one of the most important application of the method of constants of motion and completely
integrate the problem of motion of a single particle in central force field by using polar coordinates.

4.6.2 The rate of change of angular momentum equals torque.

Let us start out in full generality. Consider a particle moving in three dimensions, whose evolution is governed by
the Newton equation

mr̈ = F .

Let us take the cross, i.e. vector product of both sides with r, multiplying on the left (recall that in general
a× b = − b× a for two vectors a, b ∈ R3. We get

m(r × r̈) = r × F .

The right-hand side is called torque generated by force F (in this case F is the net force acting on the particle, so
we have the net torque, but if F =

∑
F i is a sum of individual forces, it makes sense to define torque generated

by each force as r × F i.) The left-hand side equals

d

dt
(mr × ṙ) ≡ d

dt
L, (56)
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thus defining the quantity

L = mr × ṙ,

called the particle’s angular momentum. Indeed,

L̇ = m
d

dt
(r × ṙ) = m(ṙ × ṙ) + mr × r̈ = 0 + mr × r̈,

because the cross product of any vector with itself equals zero. The quantity L is trivially zero when the vectors
r and ṙ are collinear. A heuristic way of thinking of L is that it gives a measure of how curved the particle’s
trajectory is or, for a system of particles, how the system rotates. Observe that the quantity L is additive: the
total angular momentum of a system of particles equals the sum of individual angular momenta of each separate
particle.

The formula (56) is just a paraphrase of the Newton law. However, it gives it an interesting twist, explaining,
for instance, how a lever works: one can balance a weight M by a weight m on a lever, provided that Ml = mL,
where l and L are the lengths of the arms of the lever, whereto the masses M and m are attached, respectively.
Indeed, in order that the lever be in the state of equilibrium, its total angular momentum shall always remain
zero, and thus the total torque, with respect to the origin which is at the fulcrum, or the pivot point, of the lever.
Note that the directions of the (horizontal) radius-vectors toward the masses M and m are opposite, and therefore
the torques obtained by taking cross-products of these vectors with downward vertical vectors Mg and mg also
act in opposite directions.

Without consequences in this exposition, let us note that in fact, L being a cross product, its direction is
determined by the right hand rule if the coordinate frame used is right (as is conventionally the case) or the
left-hand rule if the coordinate frame axes orientation is left.

4.6.3 Law of conservation of angular momentum

The most interesting case regarding the angular momentum vector is when torque is zero. This occurs not only
when F = 0, but more generally when the vectors F and r are collinear. In particular, this happens when the
force is central, i.e. its value depends only on the distance to a fixed origin and acts along the line connecting the
particle and the origin, see the defining formula (45). Such forces are common in nature – gravity, electrostatics
– and moreover they arise in two-particles’ interactions, see Section 3.4.1.

If torque is zero, as will be assumed from now on, then one gets the law of conservation of angular momentum

L = const,

and as L is a vector, this means there are three constants of motion:

Lx = m(yż − zẏ), Ly = m(zẋ− xż), Lz = m(xẏ − yẋ).

If one deals with a system of particles, all of the above is true with respect to the net angular momentum.
Physically, an isolated system of many interacting particles, such as liquid or gas, is often isotropic, i.e. there is
no particular reason for this system to behave any different after having been rotated as whole by any angle. This
implies that the net torque in this system is zero, and thus the net angular momentum is conserved.

Returning to the case for a single particle moving in three dimensions, suppose its angular momentum is
constant, which as has been mentioned, is the case when the force acting on the particle is central, which will be
treated in some detail. L is a vector, hence if it is preserved, both its direction and magnitude are preserved. If
L = 0, then this means that the vectors r and v are always collinear, and this is possible only if the particle is
moving along a straight line passing through the origin. If the magnitude L of L is not zero, then it makes sense to
speak of the direction of L, which shall always be the same. But L, as a cross product, is directed perpendicular
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to the plane, spanned by the vectors r and v. This means that the vectors r and v always lie in the same plane.
I.e. the motion of the particle is, in fact, two-dimensional, rather than three-dimensional!

Without loss of generality then one can direct coordinate axes in such a way that the particle’s trajectory lies
in the xy-plane. Then conservation of angular momentum means that

L = m(xẏ − yẋ) = const. (57)

Let us look at the geometric meaning of the above quantity. We have

const. = r × dr

dt
= r × v.

Geometrically, see the above figure, as the particle moves along a trajectory, one can talk about the area swept
by its radius vector. In the figure, as the particle has moved from A to B over the time dt, its radius-vector r has
swept the triangle OAB, whose area equals in absolute value 1

2 |r × dr| = 1
2 |r × v|dt. By the law of conservation

of momentum, |r× v| = const. What follows is that as long as the angular momentum is preserved, the particle’s
radius vector will sweep equal areas over equal time intervals, the area swept over a unit time being equal to L/2m.
This fact was discovered experimentally by Kepler (first published in his book Astronomia nova in 1609) and is
today referred to as Kepler’s second law of planetary motion. Indeed, with reasonable approximation precision
planets can be thought of as moving independently in the central gravitational field of the stationary Sun (the
relative error of such an approximation can be measured by the dimensionless quantity which is the net mass of
the planets divided by the mass of the Sun, which is about .001). The First Kepler law, stating that the planets’
orbits are ellipses has a more subtle explanation, owing to the fact that the force of gravitational attraction is
proportional to the inverse square of the distance.

We will further consider the particle of mass m moving in the central force field, restating (45):

F (r) = f(r)r̂, where r = |r|, r̂ =
r

r
, (58)

By the law of conservation of angular momentum, we can assume that r = (x, y) is two-dimensional rather than
three-dimensional.

4.7 Polar coordinates

In order to study Newton’s equations with the right-hand side (58), it makes sense to introduce a coordinate
system where r̂ would be a coordinate axis vector. Such a system, however, will be attached to the moving
particle: indeed the quantity r̂ depends on time t. Let us call θ̂ a unit vector perpendicular to r̂, so that r̂ and θ̂
are a right pair, just like the Cartesian unit vectors i and j. Only, contrary to i and j, the directions of r̂ and θ̂
change in time.
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Let us look at the Cartesian coordinates of the vectors r̂ and θ̂. If θ is the angle that the particle’s position
forms with the x-axis, then

r̂ = cos θi + sin θj, θ̂ = − sin θi + cos θj (59)

The pair (r, θ), where r ≥ 0 is the distance from the origin, and θ ∈ [0, 2π) (and is not defined at the origin)
are called polar coordinates of a particle. Knowing these two numbers enables unambiguously defines the particle’s
position (strictly speaking, at the origin θ is not defined). Cartesian coordinates (x, y) of the particle are expressed
via polar coordinates as

x = r cos θ, y = r sin θ. (60)

Evolution of the particle will be understood fully if we can obtain the functions r(t), θ(t) as the particle moves.
In order to obtain the differential equations for the functions r(t), θ(t) we would like to use the conservation

of angular momentum and energy. Both are constant, as the force is central, i.e it allows for the potential energy
U(r) = − ∫

f(r)dr.
Let us look at the value L of the angular momentum: as a vector L is directed perpendicular to the xy plane

where the particle moves.
We let us project the velocity v on the directions along the radius vector and perpendicular to it:

v = ṙr̂ + rθ̇θ̂. (61)

This is just kinematics: the second term is linear velocity along the circle of the fixed radius r, the first one reflects
the change of r itself. Since r̂ and r are collinear, than the first term dos not contribute to angular momentum,
in other words,

L = mr2θ̇. (62)

To be more precise, L here is allowed to be positive or negative, depending on whether the motion is counterclock-
wise or clockwise, so L is, in fact, the signed value of the angular momentum vector L.

The same formula can be obtained using (60) and the product and Chain rule to express ẋ and ẏ. We have,
by (57):

L = m(xẏ − yẋ) = m[r cos θ(ṙ sin θ + rθ̇ cos θ)− r sin θ(ṙ cos θ − rθ̇ sin θ)] = mr2θ̇.

The quantity L shall be thought of as given – having the initial conditions r(0) and v(0) gives L = mr(0)× v(0),
and L is its absolute value. Hence, let us express

θ̇ =
L

mr2
. (63)

We see that the angle θ evolves either counterclockwise, or clockwise, or is constant zero, depending on whether
the constant angular momentum vector L points up or down along the z axis, or is zero. The quantity θ̇ is often
denoted as ω, the angular velocity.

Let us also get the expression for energy: we know by (46) that a central force is potential, so the total energy

E =
mv2

2
+ U(r), U(r) = −

∫
f(r)dr
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is constant. To express v2 = v · v in polar coordinates we just use (61): the latter decomposes v as a sum of two
mutually orthogonal vectors, so

v2 = ṙ2 + (rω)2. (64)

So, energy conservation is now
E =

m

2
(ṙ2 + (rω)2) + U(r) = const, (65)

and just as the angular momentum value L, the value of energy E can be taken as given, because it can be
determined by the initial conditions. Now, we can exclude ω = θ̇ by (63) and obtain

E =
mṙ2

2
+

(
L2

2mr2
+ U(r)

)
= const. (66)

This equation no longer contains θ and can be solved for r(t) by the methods that have been designed for one
degree of freedom systems in Section 4.2. Namely, the function r(t) arises if one deals with a standard one-degree
of freedom system, whose potential, rather than being just U(r), equals

V (r) = U(r) +
L2

2mr2
.

V (r) is called effective potential and is the sum of the actual potential U(r) and another centrifugal term L2

2mr2

which reflects the presence of rotational motion, as long as L 6= 0. Observe that if L 6= 0, V (0) = ∞ and therefore
for all t one has r > 0. If L = 0, then as we have mentioned before, the particle moves along the straight line
passing through the origin, and the variable r can be simply replaced by x, i.e. one is dealing with one-dimensional
particle moving along the x-axis.

Differentiating (66) with respect to time, we get

ṙ

(
mr̈ − (f(r) +

L2

mr3
)
)

= 0. (67)

I.e. either r(t) = const. or

mr̈ = f̃(r), with f̃(r) = f(r) +
L2

mr3
. (68)

The quantity f̃ is called effective force and equals the sum of the actual force f(r) and the additional centrifugal
term

L2

mr3
= mω2r,

by (63).
The two equations (67) and (63) represent the sought for equations of motion, and their most important feature

is that they are not coupled. Given the initial conditions, one determines the constants L,E, then solves (67) for
r(t), and then solves (63) for θ(t).

Observe that the case when r is such that f(r) + L2

mr3 = 0, i.e the “real” force f(r) is compensated by the
centrifugal force L2

mr3 corresponds to solutions r(t) = rC = const., which means moving along a circle of fixed
radius rC with constant angular velocity given by (63). In other words, this means that in (??) the case ṙ(t) = 0
may only occur when the effective force is zero, i.e (??) is equivalent to (67).

If one is on the circular orbit, then on it ωC = θ̇ = L
mr2

C
, so the period of revolution around the orbit is

TC = 2π
mr2

C

L
.

4.7.1 Direct derivation of the equations of motion (optional)

Alternatively, here is the direct derivation of the main equations (67) and (63) from Newton. Clearly, the particle’s
radius vector

r = rr̂. (69)
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We would now like to differentiate the above expression twice, noticing that when we do so, both r and r̂ are
functions of t. The result will be made equal to F in (58), by the Second Newton law.

By the Leibniz formula for the second derivative of the product (fg)′′ = f ′′g + 2f ′g′ + fg′′ we have

r̈ = r̈r̂ + 2ṙ ˙̂r + r¨̂r. (70)

Furthermore, by (59) and Chain rule
˙̂r = θ̇(− sin θi + cos θj) = θ̇θ̂,

so
¨̂r = θ̈θ̂ + θ̇

˙̂
θ = θ̈θ̂ − θ̇2r̂,

since by (59) and Chain rule
˙̂
θ = θ̇(− cos θi− sin θj) = −θ̇r̂.

(We have seen many times that a time derivative of a fixed length vector is perpendicular to this vector.)
Substituting the above expressions for ˙̂r and ¨̂r into (69) we get

r̈ = (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂ (71)

This is the formula for acceleration expressed in polar coordinates. Now, substituting it into F = mr̈, with F
given by (58) we observe that the force vector has a zero θ̂ component. I.e., equalising the r̂ and θ̂ components
of the vectors mr̈ and F we obtain two scalar equations:





m(r̈ − rθ̇2) = f(r),

2ṙθ̇ + rθ̈ = 0.

(72)

The second equation enables us to exclude θ from the first one. Indeed, assuming that r 6= 0 (which can never
happen as long as the angular momentum is not zero) we can multiply the second equation by mr and observe
that it then becomes

0 = 2mrṙθ̇ + r2θ̈ =
d

dt
(mr2θ̇).

Hence, mr2θ̇ = const. We have thus merely arrived into the absolute value of the angular momentum: const = L.
Now eliminating θ̇ from the first equation (71) reproduces (67).

4.7.2 Brief discussion of orbits

The equation (67), or rather its energy representation (66) can be solved for r(t) via the energy method of Section
4.2. After the function r(t) has been found, one goes back to (63) and integrates it:

θ(t) = θ(0) +
L

m

∫ t

0

dτ

r2(τ)
(73)

The pair of functions (r(t), θ(t)) defines the particle trajectory, or orbit. A particular orbit is defined via the
initial conditions r(0), θ(0), and the two constants of motion E and L, which depend on the initial position and
initial velocity of the particle.

Let us now focus on finding r(t). The presence of a centrifugal term in the effective force makes solving this
equation explicitly for an arbitrary f(r) quite difficult, so the equation is usually approached by energy methods.
Looking back at (33) – (34) all one needs to do is replace x there with r and the potential U(x) by the effective
potential V (r). Hence, the general solution t(r), which has to be inverted into r(t) is

t =
√

m

2

∫ r

r(0)

dy√
E − V (y)

. (74)

Recall that

V (r) = −
∫

f(r)dr +
L2

2mr2
,
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and in case of the forces f(r) given by inverse powers of r finding the integral in (73) is feasible, with some
knowledge of special functions. It is in particular feasible, without any special functions, for the inverse square
force governing planetary motion – this was done by Newton. We shall stop here short of doing this; there are many
accounts on how to do this, see e.g. Wikipedia’s http://en.wikipedia.org/wiki/Kepler’s laws of planetary motion.

Let us further confine ourselves with the analysis of circular and nearby orbits, by essentially repeating the
arguments of Section 4.3. Circular orbits are the solutions in the form r(t) = const. which arise as those values of
r which are critical points of the effective potential, i.e where

V ′(r) = 0.

Equivalently, if for some r = R, the effective force f̃(R) is zero, then the initial condition r(0) = R, ṙ(0) = 0 will
persist, i.e. the particle will be moving around a circle, with radius R and constant angular velocity

ωR =
L2

mR2
.

Observe that in order to find itself on a circular orbit, the particle must have a specific values of the constant of
motion L, as R satisfies the equation

−f(R) =
L2

mr3
.

E.g. in the attracting gravitational force created by the stationary Sun of mass M À m, we have f(r) = −GmM
r2 ,

the radius of a single circular orbit is

R =
L2

Gm2M
.

In section 4.3 we used Taylor expansions (36) to describe approximately the behaviour of one degree of freedom
systems near equilibria. In particular, we called a critical point of the potential, or equilibrium, stable if the second
derivative of the potential at that point was positive and unstable if the second derivative of the potential there
was negative.

The formulae (37), (38) for the behaviour x(t)− x∗ near an equilibrium x∗ transfer verbatim as approximate

solutions r(t)−R near circular orbits, the parameter ω =
√
|U ′′(x∗)|

m in these formulae being replaced by

ωO =

√
|V ′′(R)|

m
.

Hence, circular orbits can be stable or unstable, depending on the sign of V ′′(R):

r(t)−R ≈




a sin(ωOt + φ), V ′′(R) > 0,

a1e
ωOt + a2e

−ωOt, V ′′(R) < 0.

This is merely a restatement of (37), (38).
A stable orbit (V ′′(R) > 0) oscillates around the circular orbit, as shown qualitatively in the figure.

An orbit, obtained via the Taylor approximation V (r) = V (R) + 1
2V ′′(R)(r − R)2 near a stable circular orbit

will be closed, when the ratio of the period of the circular orbit

TR =
2π

ωR
= 2π

mR2

L2
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and the period of oscillations

TO = 2π

√
m

V ′′(R)

are rational multiples of each other – in the figure TR = 3TO. Otherwise, the orbit near a stable circular orbit will
wind around it without ever closing upon itself.

Unstable circular orbits occur when V ′′(R) < 0, in which case the two exponential solutions correspond to
orbits winding onto or spiralling out of the circular orbit. In the above example with the gravitational field, an
easy calculation, or merely looking at the shape of the effective potential

V (r) = −GmM

r
+

L2

2mr2

(the second term dominates and goes to +∞ for small r and the first term dominates and approaches zero from
below for large r) shows that R = L2

Gm2M is the minimum of the potential, and therefore the circular orbit is stable.
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