MECH1

Problem Sheet 6 Solutions

Constants of motion, angular momentum

1. The net force on a particle moving in three dimensions is $\mathbf{F} = a\mathbf{i} + b\mathbf{j}$ with $a, b \neq 0$. Find the direction(s) in which (i) the momentum, (ii) angular momentum are conserved.

Answer: Since $\dot{p} = F$, the momentum is preserved in any direction d such that $F \cdot d = 0$. (Meaning that the projection of the momentum on the direction d is constant). I.e., for any d lying in the plane, spanned by the z-direction (vector k) and the vector (-b, a, 0).

Since $\dot{L} = r \times F$, the angular momentum is preserved in any direction d such that the projection of torque $r \times F$ on this direction is zero. This is clearly the direction of F itself $(r \times F$ is perpendicular to F), and, in fact, no other direction, in the sense that $d \cdot (r \times F) = 0$ for all r only for d collinear with F.

2. A bead of mass m whirls on the frictionless table, held to circular motion by a string that passes through a hole in the centre of the table. The string is *slowly* pulled through the hole, so that at every moment t the bead can be thought to be in the state of circular motion, with radius r and angular velocity $\omega(r)$. Originally $r = r_0$ and $\omega = \omega_0$. Find the dependence of the bead's kinetic energy on r and verify that its change equals the work of the force T(r) impelled by the rope. HINT: How does *slowly* enable one to express the latter force as a function of r?

Answer: The force acting on the bead is central, so the angular momentum is preserved and equals $L = mr_0(\omega_0 r_0)$ in magnitude, from the initial conditions. And whenever r is the distance to the origin,

$$r^2\omega(r) = \omega_0 r_0^2, \qquad \omega(r) = \omega_0 \frac{r_0^2}{r^2}.$$

The kinetic energy

$$K(r) = mv^2/2 = m(\omega(r)r)^2/2 = m(\omega(r)r)^2/2 = m\omega_0^2 r_0^2 \frac{r_0^2}{2r^2}.$$

The change in kinetic energy is then

$$K(r) - K(r_0) = m\omega_0^2 r_0^2 \left(\frac{r_0^2}{2r^2} - \frac{1}{2}\right).$$

On the other hand, as the rope is pulled in slowly, at every time t one may say, for the tension T(r) of the rope that

$$T(r) = m(\omega(r)^2 r) = m \frac{(\omega_0 r_0^2)^2}{r^3}$$

which is mass times acceleration. In vector terms,

$$\boldsymbol{T} = -m\frac{(\omega_0 r_0^2)^2}{r^3} \frac{\boldsymbol{r}}{r},$$

i.e. the central force is directed to the origin.

So, since $\mathbf{r} \cdot d\mathbf{r} = rdr$ (see the notes, p.31) the work of T between $r = r_0$ and r = r equals

$$-m\omega_0^2 r_0^4 \int_{r_0}^r \frac{dr}{r^3} = \frac{1}{2}m\omega_0^2 r_0^4 \left(\frac{1}{r^2} - \frac{1}{r_0^2}\right),$$

which indeed matches the above expression for the kinetic energy change.

Central force field, polar coordinates

1. Can a repelling central force result in circular orbits?

Answer: No: the equation for r is $m\ddot{r} = f(r) + \frac{L^2}{mr^3}$. The second term is the centrifugal force. If f is repelling, i.e. f(r) > 0 for all r, then $\ddot{r} > 0$ and therefore the circual orbit solution r(t) = const, which implies $\ddot{r} = 0$ is impossible.

2. A particle moves under a cental force $\mathbf{F}(\mathbf{r}) = -Kr^4 \hat{\mathbf{r}}$, with K > 0. Is this an attractive or repelling force? Find the radius and energy of circular orbit(s), if any. Can a repelling central force result in circular orbits?

Answer: Attractive, because of the minus sign, acts towards the origin. Circular orbit: when the effective force is zero:

$$0 = -Kr^4 + \frac{L^2}{mr^3}, \qquad r = \sqrt[7]{\frac{L^2}{Km}}$$

The energy of the circular orbit is

$$E = mv^2/2 = m(\omega r)^2/2 = m\left(\frac{L}{mr^2}r\right)^2/2 = \frac{L^2}{2mr^2}$$

with r given by the seventh root above. Recall that $\omega = \dot{\theta} = \frac{L}{mr^2}$, so if r(t) = const, ω is also constant.

We can eliminate L from $r = \sqrt[7]{\frac{L^2}{Km}}$ and $\omega = \dot{\theta} = \frac{L}{mr^2}$ to obtain

$$Kr^3 = m\omega^2,$$

this relation is necessary to be obeyed by the initial conditions r(0) and $\dot{\theta}(0)$ in order that the particle move along the circular orbit.

Another necessary condition, of course, is $\dot{r}(0) = 0$. Indeed, if the particle is on the circular orbit, then r = const., so $\dot{r}(t) = 0$ for all t, in particular t = 0.

3. A particle of mass m moves in the central force field with the force function $f(r) = -Kr^3$, with K > 0. Sketch the effective potential, and argue that all the orbits are bounded. Find the radius and period of circular orbit(s), if any.

Answer: Similar to the above problem, the circular orbit has radius

$$r = \sqrt[6]{\frac{L^2}{Km}}.$$

The period is

$$T = 2\pi/\omega = \frac{2\pi}{\frac{L}{mr^2}},$$

 \boldsymbol{r} given above.

The effective potential is the integral of the effective force:

$$U_{eff} = Kr^4/4 + \frac{L^2}{2mr^2}.$$

This function clearly goes to $+\infty$ for r going to zero and infinity, with a single minimum, corresponding to the above circular orbit. Hence, r is finite for every orbit (as for the finite total energy E one must always have $E \ge U_{eff}$.

4. A particle of mass m moves in the central force field with the force function $f(r) = -K/r^3$, with K > 0. Find the nonzero values of the angular momentum L when circular orbits are possible. For these particular values of L, describe the (non-circular) orbits, given that initially the particle's velocity had some non-zero radial component.

Answer: In this case the effective force is

$$-K/r^3 + \frac{L^2}{mr^3},$$

and it is identically zero as long as

$$L^2 = Km.$$

So, if $L^2 = Km$, there exist circular orbits of any radius, and the sign of L simply determines the direction of rotation along these orbits.

For other values of L the effective force is either always positive or always negative (which corresponds to r(t) always strictly increasing or decreasing) and therefore there are no circular orbits – the latter require the effective force to be zero.

Returning to the case $L^2 = Km$ – in other words, the initial position r_0 and the initial $\dot{\theta}(0) = \omega_0$ are such that

$$L^{2} = Km = (mr_{0}^{2}\omega_{0})^{2},$$

the equations of motion in polar coordinates are then

$$\dot{r} = 0, \qquad \dot{\theta} = \frac{L}{mr^2}.$$

So, in general, r(t) = At + B, and the circular orbit is when A = 0. In both cases $B = r_0$, while $A = \dot{r}(0)$. (Clearly, being on a circular orbit requires a special initial condition $\dot{r}(0) = 0$.)

If $A \neq 0$, then, depending on the sign of A, r increases or decreases, while

$$\theta(t) = \theta_0 + \int_0^t \frac{L}{m} \frac{d\tau}{(At+r_0)^2} = \theta_0 + \frac{L}{Am} \left(\frac{1}{r_0} - \frac{1}{At+r_0}\right)$$

So when t changes from 0 to infinity, the total change of θ will be $\frac{1}{r_0}$, i.e the particle will go to infinity (provided that A > 0) having made the total of $\frac{1}{2\pi r_0}$ revolutions around the origin.

If A < 0, the particle falls onto the centre in a finite time $t = r_0/|A|$.