
MECH1 Problem Sheet 6 Solutions

Constants of motion, angular momentum

1. The net force on a particle moving in three dimensions is F = ai + bj with a, b 6= 0. Find the direction(s)
in which (i) the momentum, (ii) angular momentum are conserved.

Answer: Since ṗ = F , the momentum is preserved in any direction d such that F ·d = 0. (Meaning that the
projection of the momentum on the direction d is constant). I.e, for any d lying in the plane, spanned by
the z-direction (vector k) and the vector (−b, a, 0).

Since L̇ = r × F , the angular momentum is preserved in any direction d such that the projection of torque
r × F on this direction is zero. This is clearly the direction of F itself (r × F is perpendicular to F ), and,
in fact, no other direction, in the sense that d · (r × F ) = 0 for all r only for d collinear with F .

2. A bead of mass m whirls on the frictionless table, held to circular motion by a string that passes through a
hole in the centre of the table. The string is slowly pulled through the hole, so that at every moment t the
bead can be thought to be in the state of circular motion, with radius r and angular velocity ω(r). Originally
r = r0 and ω = ω0. Find the dependence of the bead’s kinetic energy on r and verify that its change equals
the work of the force T (r) impelled by the rope. HINT: How does slowly enable one to express the latter
force as a function of r?

Answer: The force acting on the bead is central, so the angular momentum is preserved and equals L =
mr0(ω0r0) in magnitude, from the initial conditions. And whenever r is the distance to the origin,

r2ω(r) = ω0r
2
0, ω(r) = ω0

r20
r2
.

The kinetic energy

K(r) = mv2/2 = m(ω(r)r)2/2 = m(ω(r)r)2/2 = mω2
0r

2
0

r20
2r2

.

The change in kinetic energy is then

K(r)−K(r0) = mω2
0r

2
0

(
r20
2r2
− 1

2

)
.

On the other hand, as the rope is pulled in slowly, at every time t one may say, for the tension T (r) of the
rope that

T (r) = m(ω(r)2r) = m
(ω0r

2
0)2

r3
,

which is mass times acceleration. In vector terms,

T = −m (ω0r
2
0)2

r3
r

r
,

i.e. the central force is directed to the origin.

So, since r · dr = rdr (see the notes, p.31) the work of T between r = r0 and r = r equals

−mω2
0r

4
0

∫ r

r0

dr

r3
=

1
2
mω2

0r
4
0

(
1
r2
− 1
r20

)
,

which indeed matches the above expression for the kinetic energy change.

Central force field, polar coordinates

1. Can a repelling central force result in circular orbits?

Answer: No: the equation for r is mr̈ = f(r)+ L2

mr3 . The second term is the centrifugal force. If f is repelling,
i.e. f(r) > 0 for all r, then r̈ > 0 and therefore the circualr orbit solution r(t) = const, which implies r̈ = 0
is impossible.
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2. A particle moves under a cental force F (r) = −Kr4r̂, with K > 0. Is this an attractive or repelling force?
Find the radius and energy of circular orbit(s), if any. Can a repelling central force result in circular orbits?

Answer: Attractive, because of the minus sign, acts towards the origin. Circular orbit: when the effective
force is zero:

0 = −Kr4 +
L2

mr3
, r = 7

√
L2

Km
.

The energy of the circular orbit is

E = mv2/2 = m(ωr)2/2 = m

(
L

mr2
r

)2

/2 =
L2

2mr2
,

with r given by the seventh root above. Recall that ω = θ̇ = L
mr2 , so if r(t) = const, ω is also constant.

We can eliminate L from r = 7

√
L2

Km and ω = θ̇ = L
mr2 to obtain

Kr3 = mω2,

this relation is necessary to be obeyed by the initial conditions r(0) and θ̇(0) in order that the particle move
along the circular orbit.

Another necessary condition, of course, is ṙ(0) = 0. Indeed, if the particle is on the circular orbit, then
r = const., so ṙ(t) = 0 for all t, in particular t = 0.

3. A particle of mass m moves in the central force field with the force function f(r) = −Kr3, with K > 0.
Sketch the effective potential, and argue that all the orbits are bounded. Find the radius and period of
circular orbit(s), if any.

Answer: Similar to the above problem, the circular orbit has radius

r = 6

√
L2

Km
.

The period is

T = 2π/ω =
2π
L
mr2

,

r given above.

The effective potential is the integral of the effective force:

Ueff = Kr4/4 +
L2

2mr2
.

This function clearly goes to +∞ for r going to zero and infinity, with a single minimum, corresponding to
the above circular orbit. Hence, r is finite for every orbit (as for the finite total energy E one must always
have E ≥ Ueff .

4. A particle of mass m moves in the central force field with the force function f(r) = −K/r3, with K > 0.
Find the nonzero values of the angular momentum L when circular orbits are possible. For these particular
values of L, describe the (non-circular) orbits, given that initially the particle’s velocity had some non-zero
radial component.

Answer: In this case the effective force is

−K/r3 +
L2

mr3
,

and it is identically zero as long as
L2 = Km.

So, if L2 = Km, there exist circular orbits of any radius, and the sign of L simply determines the direction
of rotation along these orbits.
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For other values of L the effective force is either always positive or always negative (which corresponds to
r(t) always strictly increasing or decreasing) and therefore there are no circular orbits – the latter require
the effective force to be zero.

Returning to the case L2 = Km – in other words, the initial position r0 and the initial θ̇(0) = ω0 are such
that

L2 = Km = (mr20ω0)2,

the equations of motion in polar coordinates are then

ṙ = 0, θ̇ =
L

mr2
.

So, in general, r(t) = At + B, and the circular orbit is when A = 0. In both cases B = r0, while A = ṙ(0).
(Clearly, being on a circular orbit requires a special initial condition ṙ(0) = 0.)

If A 6= 0, then, depending on the sign of A, r increases or decreases, while

θ(t) = θ0 +
∫ t

0

L

m

dτ

(At+ r0)2
= θ0 +

L

Am

(
1
r0
− 1
At+ r0

)
So when t changes from 0 to infinity, the total change of θ will be 1

r0
, i.e the particle will go to infinity

(provided that A > 0) having made the total of 1
2πr0

revolutions around the origin.

If A < 0, the particle falls onto the centre in a finite time t = r0/|A|.
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