
MECH1 Problem Sheet 7 Due Monday May 11

Oscillations

Do all problems. Terminology: the damped harmonic oscillator equation is

ẍ + 2γẋ + ω2x = 0,

if the right-hand side is not zero, it is referred to as forcing. Always assume that ω À γ.

1. (This is a revision-type problem: consider it in the mass centre frame.) Find a period of oscillations of a
system that consists of two masses m and M , connected by a massless spring with constant k. Answer:
2π

√
µ
k , with µ = mM

m+M .

Answer: 2π
√

µ
k , with µ = mM

m+M .

Indeed, let x,X be the deviations of masses from equilibrium, both pointing in the same direction. We have,
by the Second and Third laws

mẍ = −k(x−X), MẌ = k(x−X).

Dividing the first equation by m, the second by M , and then subtracting the second one from the first one
yields

χ̈ = − k

M−1 + m−1
χ, χ = x−X.

This is a simple harmonic oscillator equation with ω2 = k
µ , and hence the period as stated.

2. A mass m can slide without friction on a horizontal plane, being attached to a vertical wall via two consecutive
springs with constants k and K. Find the period of oscillations. Answer: 2π

√
m
κ , with κ = kK

k+K . (This is
also a revision-type problem:argue that the net force acting on the point where the springs are connected
must be zero.)

Describe what would change in your solution if the mass was hanging vertically.

Answer: Indeed, let x,X be the deformation of the two springs, both positive if the springs are stretched.
The deviation of the mass from equilibrium is x + X, the force acting on it comes from the second spring
only:

m(ẍ + Ẍ) = −kx.

Besides, at the point where the springs are connected the net force must be zero, or a small mass put therein
would move with acceleration going to infinity. Hence, kx = KX, i.e. if one of the springs stretched, so must
be the other. Eliminating X yields

m(1 +
k

K
)ẍ = −kx,

i.e. mẍ = −κx, a simple harmonic oscillator with frequency ω2 = κ
m , and hence the period as stated.

If the masses were hanging vertically, the same equation will apply to oscillations about the equilibrium
position. At the equilibrium, where the second spring is stretched by x0 we have

mg = kx0,

and the second spring must be stretched by X0 = k
K x0.

Note that the presence of gravity would modify the equations of motion as

m(ẍ + Ẍ) = −kx + mg, kx = KX,

which means that the quantities x−x0, X −X0 would satisfy the original system of equations, without mg.
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3. Show that the solution of
ẍ + ω2x = f cos (ω + ε)t

with x = ẋ = 0 can be written as

x =
2f

ε2 + 2ωε
sin

1
2
εt sin(ω +

1
2
ε)t.

(Use the formula cos u− cos v = −2 sin
u + v

2
sin

u− v

2
.)

Sketch qualitatively this solution for a small ε.

Discuss what happens to it when ε goes to zero when resonance is achieved.

Answer: The particular solution corresponding to to the forcing feiΩt is found by trying xp(t) = KeiΩt for
some complex constant K, only to discover that K is real, and

xp(t) =
f0

ω2 − Ω2
eiΩt.

So, the response to the cosine forcing f cos Ωt is obtained by taking the real part of the above, which is
xp(t) = f0

ω2−Ω2 cosΩt.

This has to be now combined with the solution of the homogeneous solution

xh(t) = A cos ωt + B sin ωt

to find the constants. From zero initial conditions:

f0

ω2 − Ω2
+ A = 0, B = 0.

Hence
x(t) = xp(t) + xh(t) =

f0

ω2 − Ω2
(cos Ωt− cosωt),

and the answer now follows from

cosu− cos v = −2 sin
u + v

2
sin

u− v

2
.

See http://oakroadsystems.com/twt/sumdiff.htm for many helpful trig formulae.

The graph is the beats

,

incorporating a slow “modulation” with frequency ε/2 and fast “carrier frequency” ω + 1
2ε ≈ ω. As we’re

dealing with the product of the sines, the vertical axis in the figure should actually pass through one of the
nodes.

When ε goes to zero, for any given t, sin 1
2εt goes to 1

2εt. Using this and omitting ε2 in the denominator in

x =
2f

ε2 + 2ωε
sin

1
2
εt sin(ω +

1
2
ε)t,

as well as omitting the term 1
2ε under the last sine, we get

x(t) =
f

2ω
t sin(ωt),

the resonance solution.
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4. A damped harmonic oscillator with constants γ, ω is forced by a sine force with the frequency Ω. Find the
value of Ω where the steady state solution has maximum amplitude.

Suppose, at the time t = 1000, after forcing has been on for a long time, the solution x(t) passes through a lo-
cal maximum. At this very moment the external forcing gets suddenly switched off. Sketch x(t) qualitatively
before and after this has happened.

The steady state solution in response to feiΩt is (after trying the solution xp(t) = KeiΩt for some complex
K, ie with K = Aeiψ, with A and ψ to be determined)

xp(t) =
f0√

(ω2 − Ω2)2 + 4Ω2γ2
e
i
(
Ωt−arctan 2γΩ

ω2−Ω2

)

If the forcing is sinusoidal, we take the imaginary part of the above, i.e. the the complex exponential above
gets replaced by the sine, to get the steady state solution.

Let us now look at the amplitude only, i.e the pre-exponential factor in xp(t). Differentiating the square of
the denominator

(ω2 − Ω2)2 + 4Ω2γ2

with respect to Ω2 yields a single critical point at

Ω2 = ω2 − 2γ2.

Thus, it must be a maximum of the amplitude, because the amplitude is positive and vanishes as Ω →∞.

At the time t = 1000 forcing has been on for a long time,so as γ > 0 the solution of the homogeneous
equation xh(t) ∼ e−γt can be regarded as zero. In other words, before t = 1000, we have x(t) = xp(t), the
steady state solution, which is

xp(t) = a cos(Ωt− ψ),

where a is the amplitude and ψ is irrelevant, as long as we know that ψ is such that for t = 1000, xp(t) = a.

After the forcing has been switched off, for t ≥ 1000, the solution x(t) should satisfy the homogeneous
equation. In other words,

x(t + 1000) = e−γt(A cos ω̃t + B cos ω̃t.)

with, x(1000) = a, ẋ(1000) = 0 (the net solution x(t) and its derivative should be continuous functions).
Then A = a, B = aγ/ω̃, which can be rewritten as

x(t + 1000) = a
ω

ω̃
e−γt cos(ω̃t− φ),

for some phase φ (see Problem 3) which we will further ignore to make mattes simpler.

So, the net solution

x(t) =





a cos(Ωt− ψ), t ≤ 1000

aω
ω̃ e−γ(t−1000) cos[ω̃(t− 1000)− φ], t ≥ 1000.

The sketch is: oscillations with constant amplitude a and frequency Ω before t = 1000, passing smoothly
into exponentially vanishing oscillations that begin at x(1000) = a, and then vanish at exponential rate γ,
and frequency ω̃ =

√
ω2 − γ2.
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