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hen Dr. Golomb and Dr. Bergquist asked me to give a takconomicsmy
first impulse was to try to get out of it.

“Sol,” | said, “I'm not an economist. You know that.”

“I know,” said Golomb.

“If you want an economist, | can get you one,” | said. “I know some excellent
economists.”

“No,” he said, “we want a mathematician to talk about the subject to other
mathematicians from their own point of view.”

That made sense, and | hit on this idea: | won't try to tell you what mathematics has
done for economics. Instead, I'll do the reverse: I'll tell you some things economics has
done for mathematics. I'll describe some mathematical discoveries that were motivated
by problems in economics, and I'll suggest to you that some of the new mathematical
methods of economics might come into your own teaching and research.

One of these methods is call@tear programmingl learned about it in 1958. | had just
come to Caltech as a junior faculty member associated with the computing center. The
director and | made a cross-country trip to survey the most important industrial uses of
computers. In New York, we visited the Mobil Oil Company, which had just put in a
multi-million-dollar computer system. We found out that Mobil had paid off this huge
investment infwo weeksy doing linear programming.

Back at Caltech, Professor Alan Sweezy in economics and Professors Bill Corcoran and
Neil Pings in chemical engineering urged me to teach a course in linear programming.
When | told them | didn’t know linear programming, they said: Fine, Jeain it.

Seeing they meant business, | did study the subject and give the course. The students
loved it, and so did I. Perhaps you will have a similar experience.

One surprising thing | found was this: The mathematics was delightful. | knew it was
useful, but | hadn’t expected it to be beautiful. | was surprised to find that linear
programming wasn'’t just business mathematics or engineering mathematics; it was the
general mathematics of linear inequalities. Later | found this mathematics coming into
some of my own special fields of research (statistics, numerical analysis, ill-posed
problems). Here again, you may have a similar experience.
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Linear pogramming is one of the mgrmahemaical methods of economics. Heae a
few othes: quadstic programming geometrc programming geneal nonlinear
programming; txed-point thecgms—especiafl the Kakutani the@m; calculus of
varations, contol theol, dynamics pogramming; theoy of corvex sets—especiall
convex cones; pobability, staistics, stodastic pocesses;itite stiuctures (gaph theoy,
lattice theoy); matrix theoly; calculus,ordinaly differential equéions; and special
topics like game theoy andArrow’s theoy of rational preference odelings.

Plao said méhemdics is the essence adality; Willard Gibbs said ménemdics is the
languae of sciencelf they are right, we shouldrnt be suprised to ind uses dr ary
brandh of mahemadics in ary science Every brand of mahemadics ma have some use
in the science of economics. ldege two bizare examples:

Have you head of nonstandad analsis? I've head of it, but knov next to nothing
about it. Neverthelesspn November 101981,I head Yale Economics Pifessor Donald
J. Brown gve a colloquium on theonstandadl analsis of lyperfinite economiegsee
[4] and Q).

You have head of Bourbaki; so ha I. | alvays thought thiastuf would never be @od
for arything. NeverthelessBourbakiultrafilters appear in a paer in theJournal of
EconomicTheoly [17]. The authos, A. Kirman and D Sondemann,use ultafilters to
geneanlize KennethArrow’s fundamental theem of welfare economicsl].

Mathemdics gpeas in all pats of economicsgspecialy in mahemadical economics
and ineconomeircs. Mathemadical economics is lik mahemadical physics: it is
theoeetical,nonempircal, sometimes spectuiae. For instanceAlfred Mashall
hypothesied theexistenceof cetain cuves (suppt and demand sedules) mose
intersections detenine commodity dces.Very pretty, but he didnt shav how to
measue or pedictnumeical values or specifc suppy-demand deedules.

In geneal, measuementandpredictionbelong toeconomeics. As you would epect,
economeics uses a lot of ntkemdical stdistics, probability theory, and rumeical
analsis.A Nobel pize was gven in 1980 to Larence Klein ér his work in building
economeic models.

In 1969 theifst Nobel pize in economics &as gven to Rgnar Fisch and an
Tinbegen“for having developed and gplied d/namic modelsdr the anaisis of
economic pocesses”; in other evds,the pize was gven for mahemdics gplied to
economics. Lter, I'll show you a list of all the Nobel pes in economicsand you'll
see thaat least 7 of the 12 pres gven from 1969 though 1981 wre gven for work
tha could be called@plied mahemadics. In fact,in 1975 a Nobel pze in economics
was gven to Leonid Kantavich, who is a mahemadician.

In 1969 a spoésman ér the Nobel dunddion welcomed the ne prize subject,
economicsas‘“the oldest of the &s,the youngest of the sciencéslt might be &ir to
s& tha economics became a sciendeew it stated making signi€ant use of
mahemadics. When was th&? I'd sg/ the nineteenth centur

In 1817 the stddoroker David Ricardo pioved atheoemtha estdlishes an astounding
principle of intenaional economics. Ricdp poved mahemdically that free tade is
(under cetain assumptionsadvantageous to consumeiin all naions.



Alfred Mashall was another @& nineteenth-centyreconomist. Mahall stated out to
be a méhemdician; he vas RrstWrangler in mghemadics & Cambrdge. Although his
work is seldom eplicitly mahemdical, any mahemadician reading it can sense its
mahemadical core. Marshall was a tedeer of dhn Maynad Keynes,whose vork
contains plenty ofxglicit mathemadics. But,at least to ny taste Marshall’s work shavs
more mahemadical insight.

As Gerard Debreu wiote in hisTheoly of Value [7], mahemadical economics has
become in@asingy geometic and qualitéve. If we want pecise mmeical
information, we have to tun to economeics. Wheras Mashall dew his suppy-and-
demand cuwres in a nonameical, qualitdive way, the economeitian would hase the
hard problem of gving numeical values br these cuwres br speciic commaodities &
specifc times.

An example of economatrs gpeas in an aticle [29) by mahemdician Jcob
Schwartz. He used &Vharton economeic model br residential housingrou can see it
in Fig. 1. There you see a typicalvaul equdion of economeics; please dohtry to
undestand it. | just \ant you to see Wa is looks like. It predicts the ate of investment
in residential housing as a function @mous factors (the mimeical subsapts refer to
time lags). The coeficients(58.26, 0.0249, etc.) come fom a mmeiical cuwve fit to daa
for 1948-1964; the modelas pulished in 1967.

There is an old Chinese querb: It is always dificult to predict—especiajl the futue.
For tha reason economets is dificult. TheWharton model of 1967predicts”housing
stats for 1948-1964—notdr the futue. In generl, economeic models a& not lavs of
naure like f = ma or E = mc?; they are empiical studies Wose pedictive value
depends on the constanof the unddying relaionships.

1967Wharton economeic model (br 1948-1964)
I, = 58.26 + 0.0249Y — 45.52(2“) + 1.433(i, — iy_5 + 0.0851(15)_,
r/ —3

l,, = rate of investment$10°) in residential housing per quer (3 months)
Y = total disposkle income
p, = average housing fpce
p, = average rental pice
i, = long-tem inteest ete
is = shot-tem intelest ete
|5 = rate of housing st&s
Negative subsdpts denote time Izs.
FIG. 1.

What Do EconomistsThink of Mathematics? Tha question has had tirent
ansvers & different timesNow the angsver would be @erwhelmingly favorable, if not
unanimous. But not so in the oldydaAdam Smith pulished his gea bookWealth of
Nationsin 1776. It is eaddle, fascinaing, and impotant; kut it contains almost no
mahemdics.



| told you the ged nineteenth-centyreconomisilfred Mashall had beenifst
Wrangler in méhemadics & Cambidge. Later, he talled dout the ole mahemdics
played in his vork:

I had a gowing feeling in the lter yeass of my work a the subject thaa gpod mahemdical
theoem dealing with economicypotheses as \ery unlikely to be ggod economicsand |
went moe and mag on the ules—(1) Use maéhemdics as a shdinand languge, rather
than as an emge of inquiy. (2) Keep to them till yu have done (3) Translde into
English. (4) Then illustete by examples thaare impotant in eal life. (5) Bumn the
mathemadics. (6) If you cant succeed in 4purn 3.This last | did often. —quoted ir3]],

p. 307.

So Mashall pacticed methemdics as a seet vice; he was a toset maéhemadician.

His most &mous student as dhn Maynard Keynes.At Cambidge, Keynes took his
degree in méghemdics*. In 1920 Keynes pubshed hisTredise of Pobability. Keyness
grea books on economics contain nyagguaions. By the time of Lat Keynes
mahemadics was not a seet vice lut a pullic virtue

A living disciple of Kynes,Harvard Piofessor dhn Kenneth Galkaith, regards
mathemadics with slepticism. One of Gallaith’s moe entetaining books is called
EconomicsPeace and Laughter Commenting on the models of thamdical
economicshe sgs this:

Moreover, the models so consitted though of no gactical \alug sewve a useful academic
function. The oldest psblem in economic edutian is hav to exclude the incompetent . . . .
The requirement thathere be an hility to master dificult models,including ones ér which
mahemdical competence iguired is a highy useful sceening deice.

Not sdisfied with this commeniGalbrith adls a dourdotnote:

There can be no questiohgwever, that prolonged commitment to nthemdical exercises in
economics can be dagiag. It leads to theteophy of judgment and intuition . . . .

John Galbaith does not stand alonide tells this stogr about Raul Sanuelson,a superb
applied mahemadician and winner of the Nobel i2e for work in mahemadical
economics:

Professor Samelson,in his pesidential adress to thémerican Economi@ssocidion
se/eral years ago, noted thathe thee pevious pesidential adresses had beenwated to a
deruncigion of mahemaical economics and théhe most ndant had encoaged the
audience to standingplause

Well! And skepticism dout mahemadics is not corihed to this continent.
Galbraith sas:

Once vhen | vas in Russia on a visit to @et economists, spent a long afteoon
attending a discussion on the use oftimeandical models in plandrmation. At the
condusion an elddy scholar, who had alsodund it \ery heary going, asked me sather
wistfully if I didn’t think thee was still a“certain place”for the old-ashioned Marxian
formulation of the ldor theoy of value

*W hile studying for theTripos, Keynes wote to his frend B W. Swithinbank on 18 pril 1905:
“I am soddening ny brain, destoying my intellect,souing my disposition in a panic-stken
attempt to acque the udiments of the Miaemadics” See R. FHarod [13], p. 130.



The old Russian $olar nust hae sighed wen a Nobel pze in economics &s gven
to Leonid Kantoovich, a mahemdician. Kantoovich got the pize for developing the
mathemadical theoy of linear ppgramming anddr gplying it to the economic pblem
of optimum allocdion of resouces. He wuld hare gone a lot &rther with linear
programming if he hadm’run into toulde from the othodox Marxians,who objected to
the use of the idea ofipes. Dantzig tells the stpin his book §], p. 23.

Among the Nobel Lawees in economicgsome like Kantoovich, solved poblems
in economics Y inventing n&v mahemadics; othes made rach use of knan
mathemdics. Look & the list of Nobel gees in economicgsig. 2. I've put astasks
by seven of the tvelve piize years to indicée work tha is heaily mahemadical.

Nobel Pizes in Economics

1969* Frisch, Ragnhar andlinbergen, Jan—"for having developed and gplied d/namic
models br the analsis of economic mcesses.

1970* Sanuelson,Paul—“for the scientit work through which he has deeloped sttc and
dynamic economic thegrand actrely contibuted to aising the lgel of anaysis in
economic science

1971 Kuznets Simon—"for his empiically founded intgpretdion of economic gowth
which has led to ne and depened insight into the economic and socialctre
and pocess of deslopment.

1972* Hicks, Sir ohn R. andArrow, Kenneth 3—“for their pioneeng contibutions to
genernl economic equilibum theoy and velfare theoy.”

1973 Leontief Wassiy—"f or the deelopment of the input-output method awd its
application to impotant economic mblems’”

1974 Muyrdal, Gunnar and/on Hayek, Friedrich August—"for their pionedng work in the
theoly of mong and economicldictuaions and ér their penetting anaysis of the
interdependence of economisocial and institutional phenomeha.

1975* Kantomovich, Leonid and KopmansTjalling—“f or their contibutions to the thegr
of optimum allocaion of resouces’

1976* Freidman,Milton—"f or his abievements in theiélds of consumption angis,
monetay historly and theoy and br his demonsétion of the compleity of
stabilization policy.”

1977 Ohlin, Bettil and MeadeJames—"br their pahbreaking contibutions to the thegr
of intemaional trade and interaional caital morements.

1978 Simon,Herbet A.—“f or his pioneéng reseath into the decision-making pcess
within economic aganizdions’”

1979 Lewis, Arthur and ShultzZTheodoe—for studies of human péal.
1980* Klein, Lawrence—br computer models designed todcast economichanges.
1981* Tobin, James—bér mahemdical models of imestment decisions.
* Astelisks indicae very mathemadical work.
FIG. 2.



Seven out of tvelve Nobel pizes—not a bad scerfor mahemaics. And some of this
mathemdics has feshness ancham. For example let me shw you a thecem tha
won a Nobel gee: the Possibility Theoem of KennethArrow.

In 1957 KennethArrow puldished a little book calle&ocial Choice and Indidual
Values He was thinking Bout a poblem of welfare economics:Confronted ly
numeinous conlicting special integsts,howv should the gremment mak decisions?

Use old-Ashioned majaty rule, you sg§. Tha's the demoatic way isn’t it? Tha's the
rational way.

Let’'s see Suppose & hare 3alternatives vanilla (V), chocolde (C), and stawberry
(S). And suppose & hare 9 oters, ead with his avn individual \alues For example
one indvidual ma like vanilla better thantwcolae (V > C), and he mg like
chocolde better than stwbery (C > S); then,by the way, he nust like vanilla better
than stawbery (V > S if his individual values ag rational. Another indvidual mg
prefer steawberry to vanilla (S > V), vanilla to docolde (V > C), andtherefore
strawberry to chocolde (S > C). And so on.

If all of our nine wters hare defnite flavor preferencesthe \oters constitute 6 special-
interest goups,comresponding to the sixays of rmnking 3 favors. For example we
might hare the bllowing tabulation:

Individual values Number of indviduals

V>C>S 2
S>V>C
C>S>V
V>S>C
C>V>S
S>C>V

Now comes the gnearl election. Hez ae the esults:

PR R NN

V > C by a majoity of 5 to 4

C > Shby a majoity of 5 to 4
and—wha’s this?

S > V by a majoity of 5 to 4.

But tha's clazy: V > C andC > Sshouldimply V > S notS > V. (This is an
example ofConcodet’s paadax.)

No wonder Congess is confusedou see the blem. So didArrow, and he vendeed
if there was ary way out.

Thereis one way out: Hitler's way. Pidk one indvidual, call himder Fuher, and do
wha he s&s. Then all the gvemments preferences can be nice andisitve, and too
bad Pr you if you dont like it.

Is thee ary rational way to male social boices besides didtaship?To this basic
guestion of welfare economicskennethArrow gave an astonishing anwer: No.



ARROW’'S THEOREM Suppose @& have a function themales iational (transitive)
social doices as a function oétional individual \values tha rank (by preference or
indifferencg three or moe altemnatives.Assume thiathe social-boice function has tw
propetties:

() If all individuals pefer altemative a to altenative b then society shall pfer a
toh

(i) The social boice betwen ay two altematives a and b shall geend ony on the
individual values betwen a and fand should not dgeend on aw third
alternative ©.

ThenArrow’s theoem sgs thee «ists a dictéor—a single indiidual whose
preferences become socidiaices.

In a mirute I'll write this theoem symbolicaly, in terms of marices. But irst | want to
explain the tvo assumptionslhe first is a pinciple of unanimity If everyone pefers
vanilla to docolae, so should societyrhe second is a jprciple ofrelevance Societys
choice betveen \anilla and bocoldae should dpend on har people el dout \anilla
and docolde, not on hav they feel dout stewberry.

If you wish,you can wite Arrow’s theoem in tems of mdrices. Leta; = 1if i is
preferred toj; leta; = —1if j is preferred toi; leta; = 0 if neither is pefered to the
other If there ae m altematives (favors), then the mmbes a; constitute am x m
skew-symmetic matrix, A. In a etional peference odeiing, if i is preferred toj, and ifj
is preferred tok, theni must be pefered tok. For the marix A this sgs: If a; = 1 and
ay = 1, theng, = 1. We shall alsoequiea, = 1if a; = Oanda, = lorifa; = 1
anda, = 0. If this is so,then we'll call A arational preference méix.

EXAMPLE. Suppose w piefer flavor 3 to favor 1 and flavor 2, which we like equal.
Then this is ourational peference maix:

0 0 -1
A=10 0 -1
11 0

EXAMPLE. Suppose w peefer flavor 1 to tavor 2, flavor 2 to tavor 3,andflavor 3 to
flavor 1. Tha is irrational, and so the mference maix is irrational:

0 1 -1
A=1-1 0 1)
1 -1 0

Look: a;, = 1anday; = 1, buta,; # 1.

Individual values and sociallwice Suppose therae n individuals andm altematives.
The indvidual values a& expressed ¥ n rational peference maicesA(l),. . ., A(n). A

social toice is a a@ional peference maix A. We're looking br afunctionF magpping

Pr into P, where P, is the set om x mrational peference méices andP is then-
fold Catesian poduct:

A= FAQ), . ., An).



EXAMPLE. For majorty rule, the functionF is defned as 6llows:

If m > 2, majoity rule ma give irational social boices,as we sav in the example of

vanilla, chocolae, and stawbery. So thisF takes \alues outsid®,,, but thisF does
saisfy the assumption afnanimityandrelevance

(1) a; = 1if aij(k) =1vk=1, . .,n
(2) a; = afunction ofa;(1),. . ., a;(n).

Arrow’s theoemnow takes this drm: Let F be a function nppingP? into P,
Supposen > 2, and suppose the function Ftisfies equéions (1) and(2). Then thee
exists an intger d sut that a; = 1if a;(d) = 1. (The intgger d dgoends on F it not

on the m&ricesA(1),. . ., A(n).)

By the way, there ae no estictions on the amber of indviduals,n. In mariage,
n = 2. ThenArrow’s theoem sgs: Either the husband or the wifrust be a dictar, or
there must be irational dhoices. Expaence seems to bear this out.

Arrow’s theoem talks doutrational (transitve) preference oderings. This raises a
guestion in combirtaric anaysis: How may rational peferences aterings ofm
altematives ae thee?The ansver has ppeaed in [L2]. For large mthe rumber of
rational peference odelings behses like (1/2)m!(log2) ™~ 1.

The mahemadics of Arrow’s theoem is \ery different from mahemdics like linear
programming Here we have a ether odinaty looking poblem:

Fori =1, . .,mandj = 1. . .nwe ae gven the eal umbes g;, b, ¢. We wish to
find numbes x, = 0 sudh tha

n
GX = minimum
j=1

]
over all solutions of the linear edi@ns

i ;X = bi (i =1, . .,m)_
=1

Tha is the canonicaldrm of linear pogramming In tems of marices and ectos, it
looks like this:

Ax=Db, x=0,c'™x=min.

The poblem is inteesting ony if the linear systenx = b has moe than one solution,
so we usualy supposeank A = m < n. Then the ancial assumption is the sign
constaint x = 0 (all components ot must be nonnggtive).

Kantomovich in Russa and Dantzig in the Unitedt8saind@endenty developed linear
programming to sole economic Igistical pioblems.The histoy of their work appeas
in Dantzigs book f].

The most &mous edy problem of linear pogramming the diet pioblem, first gppeaed
in theJournal of Farm Economic$33]. The poblem is to design autritionally
adequée diet & minimum cost.The authgrGeoge Stigler won the 1982 Nobel e in
Economics.



Supposey; is the amount ofutrienti in one unit of éodj. (For instancea,, might be
the amount of vitamiB, in one gam of whed bread) Letb, be the mininam daily
requirement of mtrienti, and letc; be the cost of one unit obddj. Letx; be the
amount of dodj in a daily diet. Then we require

2”: ax=bi=1...m, x=0 En: ¢, % = minimum.
i=1 =1

This is a linear pogram instandad form. To put it in canonicaldrm, we nust eplace
them linear inequalities Y equdions.We do th& by introducingm new unknavns
z=0:

n
D &% %= b
j=1
The poblem is nav easy to sole by Dantzigs simplex method

Linear pogramming has manuses in indusyrand bankingin 1981,a good popular
atticle [2] appeaed inScientifc Ameiican; | recommend its>ample on beeAn
introduction to the use of linearggramming br the optimizéon of bank iwvestment
portfolios gpeaed in theMonthly Review of the Federl Reseve Bank of Ribmond
(see B] and [LQ], p. 3). Banks and oil companies neadk lot of mong with linear
programming

But you and | a&@ mdahemadicians; mong means nothing to us. So let us speak of
something mar impotant—lIet’s talk dout Chebyshes gpproximation.

Suppose w ae gven a system ofeal linear equ#ons, Ax = b, and suppose the system
has no solutiomx. Typically, this occus when we hare moe equéions than unknans. If
we hae m equdions inn unknavns,the eror in equéioni is a function of the ectorx:

n
g=>Yax—b (=1 ..m.
=1
The poblem of Chédyshes gpproximation is to fnd a \ectorx tha minimizes the
maximum &solute eror:
Minimize (max |g|).
X |

That is a beautiful and imptant poblem of gproximation theoy. Mary things were
known @out Chéyshey gpproximation bebre 1959 but no one kne a good way to do
it. Then Edvard Stiekl discavered hav to do it ty linear ppgramming (seed2] and
[10], p. 8). Hee’s haw:

Define a n&v unknavn: x, = max|e| fori = 1,. . ., m. Then we shall hae the unibrm
emor bradket

X =D ax —b=x (=1...,m.
=1
The poblem of Chdéysher is to doosex,,. . ., X, S0 as to minimig the maximam
absolute emor: Minimize x,.

Tha's all thee is to it—a inite number of linear inequalities in aite number of
unknowvns, with a linear 6rm to be minimied That is a linear ppgram in generl form.



It's tivial to restde it in canonicaldrm, and it’s routine to sole it rumeically by the
simplex method

The simple method is perh@s the most impdéant rumeical method imented in the
twentieth centur. Experence with enanous indusial problems shavs tha the simple
method vorks fast In problems withm equdions inn unknovns,the computaon time
seems to be ppotional ton.

Why does the simplemethod usuaji work so fast? No one kives, and this is one of
the gea unsolhed poblems of mmeical anaysis.At first glancethe computaon time

would seem to be ppottional to the binomial coﬁtient(rrﬁ), which is the possie
number of basic solutions @&x = b. For m ~ n/2, the binomial codfcient is almost as
big as2", and this sugests the computing time couldogy exponentialy with n. Indeed
Victor Klee and Gege Minty [18] have constucted péhological casesdr which tha
happens. But it meer seems to Ipgoen in pactice

A Russian mdnemadician named Khddan got aound this poblem by analzing a quite
different algorithm [16]. Khadhian poved tha his algrithm has computing time
bounded l a constantk, timesn®—which becomes smaller th@i. Khadhian's pioof is
a tiumph of theoetical computer scienc8ut Khadian’s algorithm, in its present érm,
has little pactical \alue: the constankK is enomous and so is the computing time

You can becomemous iy doing one of these mthings: (1) shav why the simpl&
method usuayl works as vell as it does; (2shav hov Khadian’s method can be made
to work betterthan the simpbe method in pactice [A persistent umor sgs Stehen
Smalehasdone (1).]

Linear poogramming is impadiant because it is theegeal mahemadics of finite systems
of linear inequalities. Linear pgramming is mog genearl than eal linear algbra, for
this reason:

Any real linear equi#on Y ax = b can be estded as a pair of linear inequalities:

Yax=<band>ax=h.

But the comerse is &lse: You cant restde a linear inequality as anfte number of
linear equ#ons.

No mahemadician doubts the imptaince of linear akgpra. So linear ppgramming nust
also be impdant,and perhps you will agree tha linear ppgramming should be paof
the basic undgraduae mahemaics curiculum.Why should mghemadics students
have to pik up their linear pygramming fom economists anchemical engees and
people like tha? They should leam it fromus and thg should lean it right.

Marshall Hall has a section on lineaogramming in his bookCombindoric Analysis
There’s nothing od aout tha; linear pogramming has manapplicaions to
combindorics. For instancelook & this poblem:

We ae gven ann x n marix of real umbes g;. We seek a pemnutdion j;,. . ., j, tha
maximizes the sum
S=ay Tay +- - +ay.

10



This poblem is called th@ptimal-assignmergroblem.
EXAMPLE. Suppose &'re gven the maix

7 2 6
3 9 1)
8 4 5

The sums has six possike values.The lagest is
maxs=a;; +a, +ag; =6+ 9+ 8= 23
achieved for the pemutation (4, j,, j3) = (3,2, 1).

In geneal, we could sole the poblem by calculding all then! possilbe values or s, but
tha takes too long iin is large. A much faster algrithm is gven ly linear pogramming

We defne the unknainsx; as 1 ifj = j;, or 0 if j # j;. Thus,x; will tell us which
component to picfrom eat row. For the peceding nmeical example we would have

0 0 1
x)=10 1 0.
1 00
In geneel, the intger unknevns x; must saisfy the constints
Xg+ - -+x,=1 (i=1...,n)
X+ -+tx;=1 (G=1...n)
=0 (,j=1...n).
Then we wish to maximie a linear érm:

S = Ya;X; = maximum.
Y|

This is a poblem in linear pogramming H. W. Kuhn [19] has shan tha it can be
solved inO(n3) steps.

You ae light if you object thalinear pogramming povides the optimateal solution
X, and these umbes might not be ingers (we need alk; = 0 or 1). But br the
optimal-assignment pblem the optimal solutionwer the intgers x;; is also optimal
over the eal umbes x;. Tha's not olvious, but it's easy to mve. In geneal, however,
linear pogramming oer the intgers is dificult. The optimal solutioneer integers is
usually notoptimal oser real rumbes.

So nuch for combinaorics. Now let’s look @ geomety. I'd like to shav you haw
guadratic programming soles a poblem stded in 1857 ig J. J Sylvester B4]: “Itis
required to fnd the least cale which shall contain aigen set of points in the planhe

Suppose theigen points e a,,. . ., a,. We're looking br a cicle with the unknan
centerx and adiusp. The gven points a required to lie inside the aite:

lay — x[2P=<p?* (=1...m).
Then we want to d10osex andp so as to minimie p.

11



We can eplace them quadatic inequalities i linear inequalities asdilows. Introduce
the unknavn

—1 2 _ 2
%= 2(62 — [P

Then theminequalities become
X ta- -x=b (i=1,...m),
where b, = 3|ja |2 Then ve want to minimiz p
2%y + |IX|)> = minimum.
Sylvesters poblem nav has this érm: First we require m linear inequalities:
Xo + a. X +ax=b (=1...m).
Then we want
2%y + X2 + X2 = minimum,

in which the quaditic tems constitute a posit defnite form. This is a outine
problem of quadatic programming It can be soled rumeically by an ingenious arant
of the simpl& method This algprithm was disceered by a mahemadician, Philip
Wolfe, but it was pulished in aneconomicgournal, Econometica [36].

Why in an economics joual? Becaus®/olfe’s pgper etended the wrk of some
economists Wwo were inteested in the use of quatic programming to ma& optimal
investment decision¥Volfe’s mahemadical discwery solved a poblem in economics.

The theoetical basis of linear and nonlineapgramming vas pulished in 1902 ¥ a
mahemadician named Jlius Farkas. He gve a long cumbesome poof of the bllowing
proposition,which you might callthe altenative of linear inequalitie$genealizing the
Fredholm altenative of linear equi#ons):

THE FARKAS THEOREM. LetA be a gvenm x nreal mdrix, and let b be aigen
vector with m eal componentsthen ongeand ony one of the bllowing altematives
IS true:

(i) the systenix = b has a solutiorx = 0 (all components= 0);

(i) the system of inequalitig8A = 0 has a solution y g&sfyingy'™ < 0.
Indeed both altematives cart be tue, for then ve could deduce
0<(Y'Ax=y"(Ax) = y™b < 0.

Tha's easy; the hdrpat is to shav tha oneof the altenaives nust be tue A moden
straightforward proof of the Farkas theoem elies on the gearting-plane theam for
corvex sets (seee.g., [10], p. 56).

The Farkas altenaive has may uses outside nlaemadical economics. | hope to
corvince you thda every mahemadician should knw the Farkas theoem and should
know how to use it. Br example let me sha how to use the &kas theoem to pove
the fundamental theem of fnite Markov processes.

12



THEOREM (Markov). Supposep; = 0, and suppose

Enzlpij =1 (j=1,...,n).

Then thee &ist rumbes x = 0 saisfying

:ip,uz . (i=1,...n)
25

The poof of a special case of this theor occupies seral pages in Feller’s book on
probability ([ 8], pp. 428—-432)The generl case is usuallproved by using the Brron-
Frobenius maximam piinciple for positve mdrices or ly using the Bouwer fixed-point
theoem. Insteagwe can gve an elementgrproof using the &tkas theoem ([L0], p.
58):

First,we stae Makov’'s assdion as one &kas altenaive:
(i) Ther «ists a ectorx = 0 sdisfying then + 1 linear equéions

(|0.J S =0 (i=1...,n

X =1
whete g;; is the Kioneder delta.

Secondwe stae the other &kas altenaive:

(i) Ther «ist umbesy,,. . ., ¥, Y, Saisfying the inequalities
n
SVilp; = 8) + Yo =0 (j=1...n)
=1

yn+1 <0.
Alternative (ii) implies the stct inequalities

ilyi p; >, forallj.

But _
max y; = ;”:lyi Pij

because w assumegy; = 0 andZ; p; = 1, so we find
max y, >y, for allj.

That is impossile, so altenaive (ii) is false

Now Farkas tells us thaaltenative (i) is tue: Markov’'s theoem is poved Tha was
easywasnt it?
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Now let me tell pu @outthe theoy of games and economic behar. A book with tha
title was pulished in 1944 § the mahemdician bhn von Neumann and the economist
Oskar Mogensten [25]. Economists consider this book gmoeh-making contbution

to economics.

Fine, you sg, but what has it donedr mahemadics?

This book,along with vwn Neumanrs ealier work [24] on game theoy, has gven us
some stimlating problems and some impt@nt esults. Br example look & this
theoem on mé#ices:

THEOREM (VON NEUMANN). LetA be a ealm x n mdrix. Let \ectors x and y ange
over the sets

ilei=1, x = 0; jZlyj=1, y;= 0.

Then
min max x"Ay = max min x"Ay.
y X X y
This theoem is no platude As a ule, mixed extrema ae not equal,as the éllowing
example shars. Suppose andy range over the set < x<1,0<y=< 1 Then

1
H _ 2 — —
min max (x—y) 2

but

max miyn (x —y?=0.
Von Neumanrs minimaxtheoemis the fundamentaksult in the thegrof zero-sum
two-pesson games. But thids not the point; the point ig;s good mathemadics. Von
Neumann poved the minimax theem by using the Bouwer fixed-point thecem. His
proof is nonelementgrand nonconstictive. Later, the mahemdician Geoge Dantzig

gave an elementgy constuctive pioof by using the dual simpkemethod of linear
programming

Following von Neumanngmathemadical economists maknuch use of theiked-point
theoems.Their favorite seems to be thexéd-point theaem of Kakutani 15].

As a young m#hemdician & the Institute oAdvanced Stug Shizuo Kakutani
discovered a g@nealizaion of the Bouwer fixed-point theagm. Kakutans work was
motivated by problems in economic@me theoy. His theoem has gea mathemdical
novelty. It speaks of point-to-set mpgings:

THeEOREM (Kakutani).Let X be a Ibsed boundedconvex set inR". For every pointx in
X, let F(x) equal a nonempty cuex subset of XAssume thiathe gaph

{X,y:y € F(x)} is dosed
Then some point in X gafiesx* € F(x*).

The imaye of eab point x is a covex setF(x) C X. The theoem sgs some poink* lies
in its image F(x*). Figure 3 illustetes this. Kakutans theoem is n@el because it talks
aboutsetvalued functions.

14



Fic. 3.

If every setF(x) contains just one pointhe dosed-gaph assumption is equilent to
the contimiity of the functionF(x) and then Kakutars'theoem leduces to the Buwer
fixed-point theaem. Kakutani poved his theam ty using the Bouwer theoem.

A private suvey indicaes tha 96% of all méhemdicians can sta the Bouwer fixed-
point theoem, but only 5% can pove it. Among mahemadical economists95% can
stae it, but only 2% can pove it (and these arall -topologists). This dangrous
situaion will soon be emediedWithin the last tw yeass, John Milnor [22] and C.A.
Rogers [27] have pioduced elementgamproofs, using nothing mar adranced than
calculus.These poofs ae so easy thd can undestand them10], and cetainly you can.

While 96% of méhemdicians carstate the Biouwer fixed-point theagm,only 7% can
stae the Kakutani theem.This situdion is also dangrous,or, at least,wasteful.The
Kakutani theoem has manpotential @plicaions outside economics; thegglacaions
should be madeNow tha we can all undetand the Byuwer theoem,we can also
undestand the Kakutani theem,so nothing can stop us.

In the gplication of Kakutanis theoem to mag-person game theoy, the point x
denotes a collection of nexl stetegies and the setalued function denotes the sets of
optimal mixed stategies. The indusionx € F(x) chamcteizes an equilibum solution

of the game The Kakutani the@am is thus the pegtt tool br proving J F Nashs
fundamental the@m 23] on n-person @mes.

Professor H. FBohnenkust once told me somethingp@ut eseach. He had supeised
mary successful Ph.xhesis pojects—and adv unsuccessful ones. He said tAike
unsuccessful pjects starwith some &mous old prblem (prove the Riemann
hypothesis) andhenlook for a method to sobvit. The successful pjectsstart with
some ne& method and then lookrfa problem

Let's tale Bohnenhust's advice. Let’s stat with linear ppgramming and lookdr a
problem. Hee’s a god onethe problem of momenti probability theoty.

Suppose & ae gven a collection ofeal-\valued contimous functions(t) fort € RP.
We ae gven a tosed sef) C RP, and we're gven a collection ofeal rumbes b;.
The poblem is to ind a pobability distribution functionx(t) saisfying the moment
equdions
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f a(t) dx(t) = b, for alli

wher we require dx(t) > 0 and

Jgdx(t) = 1.

This poblem has may applicaions in goplysics and in other sciences. It has an
extensve mahemaical theoy (seg for instanceShoha andTamakin [30]). So wha is
left for you and me to do he?PWell, for one thingwe could deise a @od rumeical
method At least,tha will please our collegues in goptlysics.

Suppose w're gven afinite number of momentsyhich is the usual case in
applicaions.And suppose & use someumeical shheme to pproximate the intgrals
by finite sumsThen we et a fnite set of linear equns in a inite set of unknans:

_znllaiixi = by i=1,...,m).
=

Now we're looking br the nmbesx,, . . ., X,; they will constitute aihite set of
probabilities, saisfying

ixj:l, X > 0.
i=1

So we want to sole m + 1 linear equéions inn unknavnsx; = 0. Ah! We recanize
a poblem in linear pogramming For this we have an &istence themm,the Farkas
theoem,and a mmeical methodthe simpl& method

The simple method will tell us if no solutionxésts, or it will compute a solutiox if
solutions do ®ist. Forn > m + 1 we cant expect the solutiox to be uniqueWe ae
free to impose anminimum condition of thedrm

n
Ecjxj = minimum.
i=1

We note thathe orginal problem with afinite number of moments usugltioesnt have
a unigue solutiox(t), so the feedom to impose anxtea condition is pysically naural
and mahemdically necessat

Fine, you s&. All right for some peopleut not r you.You ae a pue mahemadician,
and numeical methods ba& you.Wha you'd like is a little solid thegr—something
you can @t your teeth into.

OK, I'm with you. Lets piove a ged theoem taether Let's gve a n&, elementay
proof of a amous theam of F Hausdorff[14]. The poof will use a method of
mathemdical economicsthe Farkas theoem.

Hausdorf studied the moment pblem

1
(3) ftkdx(t) —b, (k=0,1,....
0

16



He asled this questionhich infinite sequencefb, } are the moments of agiability
distribution x(t) on the inteval 0 < t < 1? He called those sequenaasment
sequences

Cettainly b, = 1, since ve require [ dx(t) = 1. Also we nust hae

f lf(t) dx(t) = 0

0

for all contiruous functiond(t) > 0. Settingf(t) = ti(1 — t)%, we get the necessar
condition

L 1V§k]o(— )V<t>tj vdx(t) = 0,

which sas this d@out the moments:
K k :
S (b= 062 0.
v=0

A sequencdb;} with this piopety is calledcompletey monotonelf we defne the
difference opeaator A by Ab, = b, , — b;, the last érmula sgs

(—)kAkD, > 0 (j,k > 0).

Hausdorf's theoem sgs: If b, = 1, the sequenchb,, b, b,, . . . is a moment sequence if
and ony if it is completgt monotone

We've alead/ proved theonly if patt. To prove theif pat, let's assume the sequence
{b;} is completey monotonewith b, = 1. Now we rrust ind a p.df (probability
distribution function)x(t) saisfying the moment eqtians (3).

Suppose & can sole the system of moment eduas

1
(i) f tkdx(t) =b, (k=0,...,n)
0

for ead finite n. Then the p.d.s x,(t) have a subsequence thr@rverges to a p.d. x(t)
at all points of continity of the limitx(t). Thenx(t) saisfiesall the moment equ@ns
(3), and we're done

So the equired p.df. x(t) exists unless somfinite system (i) is unsohble. But the
system (i) is aifite linear systemdr an unknwn dx,(t) = 0. A simple etension of the
Farkas theoem sgs this: The systen(i) is unsolhable for a p.df. x,(t) if and onj if
there ist umbesy,, .. ., Y, saisfying

(ii) kioyktk >0 (0sts 1)

> by < 0.
k=0

We nrust shav tha this is impossile.
Suppose (ii) is tie Define the poynomialf(t) = Sy, tk ThenTaylor's theoem sgs

Y = F®(0)/K
17



As a limit of difference quotientghis equals
Ve = IirrgAa"f(O)/(skk!),
wher A_f(t) = f(t + &) — f(t). Settinge = 1/N, we deduce

v = fim atrc.

The second paof (ii) says 2y, b, < 0, and so ér large N we nmust hae

2 /N
E ( k)(A";f(O)) - b, < 0.
k=0

The upper limith, may be eplaced ly a lager integer, N, since amth degree
polynomialf(t)saisfies AKf(t) = 0 for k > n. Now we rearange the last sum to obtain
the inequality

ﬁof<JN><’\Jl> $(Z)ATTG < 0.

But (i) saysf = 0, and the completgimonotone sequendé,} sdisfies (—)*Ako, > 0,
so all tems in the last sum anonngative, and we hare a contadiction.The Farkas
altemdive (ii) is impossite.

Therefore, the altendive (i) is tue: every finite system of moment eqtians (i) is
solvable. It follows thd the ininite system (3) is sobble, and so v hare proved
Hausdorf’s theoem.

This theoem is impotant in pobability theoty. As William Feller said “Its discovery
has been justiceldrated as a dgeand pwerful result’ (See ], p. 226.)

As you've just seerthe mahemadical methods of economics\eastiking applicaions
to the est of méhemadics. As you might hae feaed | could g on talking to yu
forever. | could tell you &out gplicaions to ill-posed boundgtvalue poblems of
patial differential equions. But | manful refrain; you have allead/ head enough. By
now, | hope you will agree with methese poblems and methods of economicse ar
valuable, and thg are fascinaing.
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