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ABSTRACT

This lecture note is intended for use in the course 04212 Optimization
and Data Fitting at the Technincal University of Denmark. It covers
about 25% of the curriculum. Hopefully, the note may be useful also
to interested persons not participating in that course.

The aim of the note is to give an introduction to algorithms for un-
constrained optimization. We present Conjugate Gradient, Damped
Newton and Quasi Newton methods together with the relevant theo-
retical background.

The reader is assumed to be familiar with algorithms for solving
linear and nonlinear system of equations, at a level corresponding to
an introductory course in numerical analysis.

The algorithms presented in the note appear in any good pro-
gram library, and implementations can be found via GAMS (Guide
to Available Mathematical Software) at the Internet address

http://gams.nist.gov

The examples in the note were computed in MATLAB. The pro-
grams are available via

http://www.imm.dtu.dk/~hbn/software.html
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1. INTRODUCTION

In this lecture note we shall discuss numerical methods for the solu-
tion of the optimization problem: For a real function of several real
variables we want to find an argument vector which corresponds to a
minimal function value:

The Optimization Problem

1.1
Find x* = argmin, f(x) , where f: R" = R (L)

The function f is called the objective function or cost function and x*
is the minimazer.

In some cases we want a mazrimizer of a function. This is easily
determined if we find a minimizer of the function with opposite sign.

Optimization as in (1.1) plays a very important role in many
branches of science and applications: economics, operations research,
network analysis, optimal design of mechanical or electrical systems,
to mention but a few.

Example 1.1. Here we consider functions of one variable. The function
*\2
flz)= (v —a7)

has one, unique minimizer, z*, see Figure 1.1.

Y

Figure 1.1: y = (z — 2*)°
One minimazer.
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The function f(z) = —2cos(x — z*) has infinitely many minimizers:
x = x" + 2pw , where p is an integer; see Figure 1.2.

Figure 1.2: y = —2cos(z — z*). Many minimizers.

The function f(x) = 0.015(x — 2*)* — 2cos(x — #*) has a unique
global minimizer, z*. Besides that, it also has several socalled local
minimezers, each giving the mimimal function value inside a certain
region, see Figure 1.3.

ANV
N

Figure 1.3: y = 0.015(x — 2*)? — 2 cos(x — *)
One global minimeizer and many local minimizers.

The ideal situation for optimization computations is that the ob-
jective function has a unique minimizer. We call this the global mini-
mazer.

In some cases the objective function has several (or even infinitely
many) minimizers. In problems like this it may be sufficient for us to
find one of these minimizers.

In many objective functions from applications we have a global
minimizer and several local minimizers. It is very difficult to develop
methods which can find the global minimizer with certainty in this
situation. Methods for global optimization are very complicated and
outside the scope of this note.
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The methods described here can find a local minimizer for the
objective function. When a local minimizer has been discovered, we
do not know whether it is a global minimizer or one of the local
minimizers. We cannot even be sure that our optimization method
will find the local minimizer closest to the starting point. In order to
explore several local minimizers we can try several runs with different
starting points, or better still examine intermediate results produced
by a global minimizer.

We end this section with an example meant to demonstrate that
optimization methods based on too primitive ideas may be dangerous.

Example 1.2. We want the global minimizer of the function
f(X) = (.’L‘l + xo — 2)2 =+ 100(1‘1 — 1‘2)2
The idea (which we should not use) is the following:

“Make a series of iterations. In each iteration we keep one of the vari-
ables fixed and seek a value of the other variable so as to minimize
the f-value”. In Figure 1.4 we show the level curves or contours of f,
i.e. curves consisting of positions with the same f-value. We also show
the first few iterations.

Figure 1.4: The Method of
Alternating Variables fails to
determine the minimizer of a X
quadratic

After some iterations the steps begin to decrease rapidly in size. They
can become so small that they do not influence the x-values, because
these are represented with a finite precision in the computer, and the
progress stops completely. In many cases this happens far away from
the solution. We say that the iteration is caught in Stiefel’s cage.

1.1. Conditions for a Local Minimizer 8

The “method” is called the method of alternating variables and it is a
classical example of a dangerous method, a method we must avoid.

1.1. Conditions for a Local Minimizer

A local minimizer for f is an argument vector giving the smallest
function value inside a certain region, defined by ¢ :

Definition

x* is a local minimizer for f :IR" — R

<
F) < flx) it flx x| < (2> 0)

Most objective functions, especially those with several local min-
imizers, contain local maximizers and other points which satisfy a
necessary condition for a local minimizer. The following theorems
help us find such points and distinguish the local minimizers from the
irrelevant points.

We assume that f has continuous partial derivatives of second
order. The first order Taylor series for a function of several vari-
ables gives us an approximation to the function value at a point x+h
neighbouring x,

flx+h) = f(x) +h"f'(x) + O(|[n|) (1.3)

where f/(x) is the gradient of f, a vector containing the first partial
derivatives,

of
8—951 (x)

£'(x) : (1.4)
af
50 )
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We only consider vectors h with ||h|| so small that the last term in
(1.3) is negligible compared with the middle term.

If our point x is a local minimizer it is not possible to find an h
so that f(x+h) < f(x) with ||h|| small enough. This together with
(1.3) is the basis of

Theorem 1.1
The Necessary Condition for a Local Minimum

x* is a local minimizer for f : R" — IR

=
f/(x*) = 0

The local minimizers are among the points with f/(x) = 0. They
have a special name:

Definition

(1.5)

Xs 18 a stationary point for f <= f'(xs) =0

The stationary points are the local maximizers, the local minimiz-
ers and “the rest”. To distinguish between them, we need one extra
term in the Taylor series. This is, provided that f has continuous
third derivatives,

F(x+h) = f(x) + h'f'(x) + sh" £ (x)h + O(|[]*) ,  (1.6)

where the Hessian matriz of function f is a matrix containing the
second partial derivatives of f :

el] )

Note that this is a symmetric matrix. For a stationary point (1.6)
takes the form

f’(x) =

1.1. Conditions for a Local Minimizer 10

Flxs +h) = f(x:) + 30" (x )b + O(|[L]) . (1.8)

If the 27% term is positive for all h we say that the matrix £"(xs) is
positive definite (cf. Appendix A, which also has tools for checking
definiteness). Further, we can take ||h|| so small that the error term
1s negligible, and it follows that x5 is a local minimizer.

Theorem 1.2
The Sufficient Condition for a Local Minimum

Assume that x is a stationary point, see Definition (1.5)
and that £ (xs) is positive definite
—
X 1s a local minimizer

The Taylor series (1.6) is also the basis of the proof of the follow-
ing

Corrollary 1.3

Assume that x; is a stationary point and that £”(x) is positive

semidefinite when x is in a neighbourhood of xg
)
X 1s a local minimizer

The local maximizers and “the rest”, which we call saddle points,
can be characterized by the following corollary, also derived from (1.6).
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Corrollary 1.4
Assume that x is a stationary point and that f"(xs) # 0. Then

1)  f£"(xs) is positive definite: see Theorem 1.2.
2)  f”(xs) is positive semidefinite:

= Xg 18 a local minimizer or a saddle point.
3)  f"(xg) is neither definite nor semidefinite:

= Xg 1s a saddle point.
4)  f"(xg) is negative semidefinite:

= Xg 18 a local maximizer or a saddle point.
5) f'(xg) is negative definite:

= Xg I8 a local maximizer.

If £"(xs) =0, then we need higher order terms in the Taylor series
in order to find the local minimizers among the stationary points.

Example 1.3. We consider functions of two variables. Below we show the
variation of the function value near a local minimizer (Figure 1.5a), a
local maximizer (Figure 1.5b) and a saddle point (Figure 1.5¢). It is a
characteristic of a saddle point that there exists one line through xs,
with the property that if we follow the variation of the f-value along
the line, this “looks like” a local minimum, whereas there exists another
line through xs, “indicating” a local maximizer.

a) minimum b) mazimum ¢) saddle point

Figure 1.5: With a 2-dimensional x we see surfaces
z = f(x) near a stationary point

1.1. Conditions for a Local Minimizer 12

If we study the level curves of our function, we see curves approximately
like concentric ellipses near a local maximizer or a local minimizer (Fig-
ure 1.6a), whereas the saddle points exhibit the “hyperbolae” shown in
Figure 1.6b.

a) mazimum or minimum b) saddle point

Figure 1.6: The contours of a function near a stationary point

Finally, the Taylor series (1.6) is also the basis for the following:

Theorem 1.5
Second Order Necessary Condition

x* 1s a local minimizer

—
f”(x*) is positive semidefinite
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All the methods in this lecture note are iterative methods. They pro-
duce a series of vectors

X0, X1, X2, ... , (2.1a)

which in most cases converges under certain mild conditions. We
want the series to converge towards x*, a local minimizer for the
given objective function f:IR" — 1R | i.e.

x; — x* for k— oo, (2.1b)

where x* is a local minimizer, see definition (1.2).

In all (or nearly all) the methods there are measures which enforce
the descending property

S(xpg1) < f(xx) - (2.2)

This prevents convergence to a maximizer and also makes it less prob-
able that we get convergence to a saddle point, see Chapter 1. We
talk about the global convergence properties of a method, i.e. conver-
gence when the iteration starts in a position, xg, which is not close to
a local minimizer, x*. We want our method to produce iterates that
move steadily towards a neighbourhood of x*. For instance, there
are methods for which 1t is possible to prove that any accumulation
point (i.e. limit of a subseries) of {x;} is a stationary point, see (1.5),
i.e. the gradients tend to zero:

f'(xx) -0 for k—o0. (2.3)

2. Descent Methods 14

This does not exclude convergence to a saddle point or even a
maximizer, but the descending property (2.2) prevents this in practice.
In this “global part” of the iteration we are satisfied if the current
errors do not increase except for the very first steps. Letting {ey}
denote the errors,

e =x" —xp ,
the requirement is
llews1]] < |les]| for k> K.

In the final stages of the iteration where the x; are close to x* we
expect faster convergence. The local convergence results tell us how
quickly we can get a result which agrees with x* to a desired accuracy.
Some methods have linear convergence, i.e.

llerwt1]] < erllex]] with ¢; <1 and xj, close to x* . (2.4)

It is more desirable to have higher order of convergence, for in-
stance quadratic convergence (convergence of order 2):

llert+1]] < ¢:2||e/z€||2 with ¢ > 0 and x; close to x* . (2.5)

Only a few of the methods used in the applications achieve
quadratic final convergence. On the other hand we want better than
linear final convergence. Many of the methods used in practice have
superlinear convergence:

llex+1]]
el

—0 fork —oo. (2.6)

This is better than linear convergence though (normally) not as good
as quadratic convergence.
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Example 2.1. Consider 2 iterative methods, one with linear and one with
quadratic convergence. At a given step they have both achieved the
result with an accuracy of 3 decimals:

llex|| < 0.001

They have ¢; = ¢z = % in (2.4) and (2.5) respectively. If we want an
accuracy of 12 decimals, the iteration with quadratic convergence will
only need 2 more steps, whereas the iteration with linear convergence

will need about 30 more steps, (%)30 ~ 1077,

2.1. Fundamental Structure of a Descent Method

Example 2.2. This is a 2-dimensional minimization example. A tourist
has lost his way in a hilly country. It is a foggy day so he cannot see
far and he has no map. He knows that his rescue is at the bottom of a
nearby valley. As tools he has an altimeter, a compass and his sense of
balance together with a spirit level which can tell him about the slope
of the ground locally.

In order not to walk in circles he decides to use straight strides, i.e.
with constant compass bearing. From what his feet tell him about the
slope locally he chooses a direction and walks in that direction as long
as his altimeter tells him that he gets downhill. He stops when his
altimeter indicates increasing altitude, or his feet tell him that he is on
an uphill slope.

Now he has to decide on a new direction and he starts his next stride.
Let us hope he 1s saved in the end.

The pattern of events in the example above is the basis of the
algorithms for descent methods:

2.1. Fundamental Structure of a Descent Method 16

Algorithm 2.7. Descent Method

begin
k:=0; x:=Xo; found:=false {Starting point}
repeat
hgy, := search_direction(x) {From x and downhill }
if no such h exists
found := true {x is stationary}
else
a := line_search(x, hgy) {from x in direction hgy, }
X :=x + ahgp {new position }
ki=k+1

found := update(found)
until found or k>kmas
end {... of descent algorithm }

The search direction must be a descent direction. Then we are able
to gain a smaller value of f(x) by choosing an appropriate walking
distance, and thus we can satisfy the descending condition (2.2). For
details, see Sections 2.2 and 2.5 — 2.6.

As stopping criterion we would like to use the 1deal criterion that
the current error is sufficiently small

lell < 61 -

Another ideal condition would be that the current value of f(x) is
close enough to the minimal value, i.e.

f(xr) = f(x7) <02 .

Both conditions reflect the convergence x; — x*. They cannot be used
in real applications, however, because x* and f(x*) are not known.
Instead we have to use approximations to these conditions:

llxppr—xk|l <er or  flxe)—f(xp41) < ez (2.8)
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We must emphasize that even if (2.8) is fulfilled with small &1 and &5,
we cannot be sure that ||eg|| or f(xr)—f(x*) are small.

The other type of convergence mentioned at the start of this chap-
ter is f'(x;) =0 for k—oo. This can be reflected in the stopping
criterion

1 ()l <25, (2.9)

which is included in many implementations of descent methods.

There is a good way of using the property of converging function
values. The Taylor series (1.6) of f at x* is

Flr) 2 F(x7) + (3 = x) /(%) + 5 (xe —x) T (x7) (x5 — x7)

Now, if x* is a local minimizer, then £'(x*)=0 and H* =" (x*) is
positive semidefinite, see Chapter 1. This gives us

flxi) = f(x") ~ %(xk —x*)TH* (%, — x*) ,
so the stopping criterion could be
%(ka—xk)THk(ka—xk) <ey4 with x, ~x* . (2.10)

Here x; —x* is approximated by x; 11 —x; and H* is approximated by
Hk = f//(Xk).

2.2. Descent Directions

Now we come to the important question: “How do we find a direction
which brings us downhill, a descent direction 7” A necessary condition
is, that if we move from the current position to a neighbouring point
in the given direction we get into a position with a smaller function
value.

Example 2.3. Let us return to our tourist who is lost in the fog in a
hilly country. By experimenting with his compass he can find out that
“half” the compass bearings give strides that start uphill and that the

2.2. Descent Directions 18

“other half” gives strides that start downhill. Between the two halves
are two strides which start off going neither uphill or downhill. These
form the tangent to the level curve corresponding to his position.

The Taylor series (1.3) gives us a first order approximation to the
function value in a neighbouring point to x in direction h:

f(x4ah) = f(x) + ah'f/(x) + O(a?), with a>0.

If « 1s not too large, then the first two terms will dominate over the
last:

f(x 4+ ah) ~ f(x) + ah"f'(x) .

The sign of the term ah'f’(x) decides whether we start off uphill or
downhill. In our space IR" we consider a hyperplane H through the
current position and orthogonal to —f”(x),

H={x+h]|h'f'(x) =0} .

This hyperplane divides the space in an “uphill” halfspace and a
“downhill” halfspace. The halfspace we want has the vector —f’(x)
pointing into it. Figure 2.1 gives the situation in IR

Figure 2.1: IR?
divided into a
“downhill” and an

“uphall” halfspace.
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We now define a descent direction. This 1s a “downhill” direction,
i.e. it is inside the “good” halfspace:

Definition

(2.11)

h is a descent direction from x <+ hTf/(X) <0

A method based on condition (2.11) is a descent method.

In Figure 2.1 we have a descent direction h, satisfying (2.11). We
introduce the angle between h and —f’(x)

—h'"f’(x)
6 =/(h,—f'(x)) with cosf = ———~— (2.12)
Il - {1 ()1l
We state a new condition on this angle,
Definition
An absolute descent method has search directions hy,
which satisfy (2.13)

<3 —p
for all k&, with g > 0 independent of &

The discussion above is concerned with the geometry in IR?, and
is easily seen to be valid also in IR?. If the dimension n is larger than
3, we call 8 “the pseudoangle between h and —f/(x)”. In this way we
can use (2.12) and (2.13), for all n > 2.

The restriction that ¢ must be constant in all the steps is necessary
for the global convergence result we give in the next section.

2.3. Descent Methods with Line Search

When a descent direction has been determined, we have to decide
how long the step in this direction should be. We perform a line
search as indicated in Algorithm 2.7. First, we must be sure that the
descending condition (2.2) is satisfied. Next, we must guard against
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the step being so short that our gain in function value diminishes. We
study the variation of the objective function f along the direction h
from the current position x

p(a) = f(x+ah), with fixed x and h .
From the Taylor series (1.6) it follows that
p(a) = f(x) + ah'f'(x) + La’h"f” (x)h + O(a®)
and
¢'(0) =h'f'(x) . (2.14)

In Figure 2.2 we show an example of the variation of ¢(a) with
h as a descent direction. The descending condition (2.2) implies that
we want to stop the line search with a value ag so that ¢(ag) < ¢(0).
According to (2.14) have ¢’(0) < 0, but the figure shows that there is
a risk that, if « is taken too large, then ¢(a) > ¢(0).

Y
¥ =600) =0

a

Figure 2.2: Variation of the cost function along the search line

To ensure that we get a useful decrease in f-value, we stop the
search with a value ag which gives a ¢-value below that of the line
y = M), indicated in Figure 2.3. This line goes through the starting
point and has a slope which is a fraction of the slope of the starting
tangent to the ¢-curve:
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plag) < /\((as) , where (2.15)

AMa)=¢(0)+0-¢'(0)-a with 0<g<0.5.
The parameter g is normally small, 0.001 can be a good value. Con-
dition (2.15) is needed in some convergence proofs.

We also want to ensure that the a-value is not chosen too small.
In Figure 2.3 we indicate a requirement, ensuring that the local slope
is greater than the starting slope. More specificly,

O'(as) > B-¢'(0) witho<p<1. (2.16)
Y

¥ =000) TR

y=Ma)
[
[
[
[
[
|

acceptable points a

Figure 2.3: Acceptable points according to
criteria (2.15) and (2.16)

Descent methods with line search governed by (2.15) plus (2.16)
are normally convergent. Fletcher (1987), pp 26-30, has the proof of
Theorem 2.1 below.

A possible outcome is that the method finds a stationary point (x
with f/(x;)=0) and then it stops. Another possibility is that f(x)
is not bounded from below for x in the level set {x | f(x) < f(x0)}
and the method may “fall into the hole”. If neither of these occur,
the method converges towards a stationary point. The method being
a descent method often makes it converge towards a point which is
not only a stationary point but also a local minimizer.
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Theorem 2.1
Consider an absolute descent method following Algorithm 2.7
with search directions according to (2.12) and (2.13) and with
line search controlled by (2.15) and (2.16).

If £/(x) exists and is uniformly continuous on the level set
{x | f(x) < f(x0)}, then for & = oo:

either f/(x;) =0 for some k
or flxi) =& —

or t'(xz) — O

A line search as described above is often called a soft line search
because of its liberal stopping criteria, (2.15) and (2.16). In contrast
to this there are variants which we call “exact line searches”, exact
in the sense that we seek an approximation to a local minimizer for

pla), ie.
@e = argmin,, . o f(x+ah) for fixed x and h . (2.17)

A mnecessary condition on ae is ¢'(ae) = 0 . We have ¢'(a) =
h'f/(x+ah) and this shows that either f’(x+ach)=0, which is
a perfect result (we have found a stationary point for f), or if

t/(x+aeh) #0, then ¢'(ae) =0 leads to:
f'(x+ach) Lh . (2.18)

This shows that the exact line search will stop at a point where the
local gradient is orthogonal to the search direction.

Example 2.4. A “divine power” with a radar set follows the movements of
our wayward tourist. He has decided to continue in a given direction,
until his feet or his altimeter tells him that he starts to go uphill.
The ”divine power” can see that he stops where the given direction
is tangent to a local contour. This is equivalent to the orthogonality
mentioned in (2.18).
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Figure 2.4: An exact line search
stops at'y = x+ach, where the

local gradient is orthogonal to

the search direction

For further details about line searches, see Sections 2.5 — 2.6.
There are several disadvantages to exact line search. Firstly, it is
more time consuming than soft line search. It contains iterative re-
finement of an approximation to the minimizer along our direction.
This can take quite a lot of time. Even if an exact line search finds
the solution in 1its first try, in some cases it will perform several steps
of computation in order to check its stopping criterion. Its second
disadvantage is shown in the next example.

Example 2.5. Our wayward tourist has determined to go by exact line
searches. Walking in the given direction towards the lowest point in
that direction, our tourist may feel a steep descent across his path.

This will make him want to start on a new search direction before he
arrives at the bottom in his first direction.

The example hinted that it is often a good idea to use a step
(in the given direction) which is shorter than the step resulting from
an exact line search. This is one of the reasons behind the class of
methods given in the next section, methods with no line searches.
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2.4. Descent Methods with Trust Region

The methods in this note produce series of steps leading from the
starting position to the final result, we hope. In the descent methods
of this chapter and in Newton’s method of Chapter 5, the directions
of the steps are determined by the properties of f(x) at the current
position. Similar considerations lead us to the trust region methods,
where the iteration steps are determined from the properties of a
model of the objective function inside a given region. The size of the
region 1s modified during the iteration.

The Taylor series (1.3) provides us with a linear approximation to
f near a given x:

f(x+h)~q(h) with ¢(h)= f(x)+h'f'(x) . (2.19)

Likewise we can obtain a quadratic approximation to f from the Tay-
lor series (1.6)

fx-+h) = g(b) 0
with g(h) = f(x) + h™f'(x) + th"f"(x)h . '
In both case ¢(h) is a poor approximation to f(x+h) unless ||h||
1s sufficiently small. These considerations lead us to determine the
new iteration step as the solution to the following model problem:

h¢r = argmin, cp{q(h)}

(2.21)
where D ={h||h||<A}, A>0.

The region D is called the trust region and ¢(h) is given by (2.19) or
(2.20).

We use h=hy; as a candidate to our next step, and reject h, if
f(x+h) > f(x). The gain in cost function value controls the size of
the trust region for the next step: The gain is compared with the gain
predicted by the approximation function, and we introduce the gain
factor:
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r:f(x)_f(x‘i'h) . (2.22)
4(0) — q(h)
When r is small our approximation agrees poorly with f, and when
it 1s large the agreement is good. Thus we let the gain factor regulate
the size of the trust region for the next step (or our next attempt for
this step when r < 0 and h is rejected).

We now have the basis for

Algorithm 2.23. Descent Method with Trust Region
begin

k:=0; x:=%x0; A:=Ap; found:=false {starting point}
repeat

k:=k+1; hy¢, := Solution of model problem (2.21)

r := gain factor (2.22)

if r>0.75 {step very good}
A:=2x%A {larger trust region}

if r <0.25 {step not very good}
A:=A/3 {smaller trust region}

ifr >0 {reject step if r < 0}
X := X + h¢r

Update found {stopping criteria, e.g. (2.8) and (2.9)}

until found or k>kmax

end

The numbers in the algorithm, 0.75, 2, 0.25 and 1/3 have been
chosen from practical experience. The method 1s not very sensitive
to minor changes in these values, but in the expressions A := py*xA
and A := A/py the numbers p; and ps must be chosen so that the
A-values cannot oscillate.

There are versions of the trust region method where “r<0.25” ini-
tiates an interpolation between x and x+h based on known values of
f and £/ and/or “r>0.75" leads to an extrapolation along the direc-
tion h, a line search actually. Actions like this can be rather costly,
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and in his book, Fletcher (1987), p. 96, claims that the improvements
in performance may be marginal. In the same reference there are
theorems about the global performance of methods like 2.23.

2.5. Soft Line Search

Many researchers in optimization have proved their inventiveness by
producing new line search methods or modifications to known meth-
ods. What we present here are useful combinations of ideas of different
origin. The description is based on Madsen (1984).

In the early days of optimization the exact line searches were
dominant. Now, the soft line searches are used more and more, and
we rarely see new methods presented which require exact line searches.

An advantage of soft line search over exact line search is that it is
the faster of the two. If the first guess on the step length is a rough ap-
proximation to the minimizer along the given direction, the linesearch
will terminate immediately if some mild criteria are satisfied. The re-
sult of the exact line search is normally a good approximation to the
result, and this can make descent methods with exact line search find
the local minimizer in fewer iterations than used by a descent method
with soft line search. Still, the extra time spent in each line search
often makes the descent method with exact line search a loser.

If we are at the start of the iteration with a descent method, where
x is far from the solution x*, it does not matter much that the result
of the soft line search is only a rough approximation to the result; this
1s another point in favour of the soft line search.

The purpose of the algorithm is to find «g, an acceptable argument
for the function

pla) = f(x + ah) .
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The acceptability is decided by the criteria (2.15),

plas) < AMas) , where
. (2.24a)
AMa)=¢(0)+0-¢'(0)-a with 0<e<0.5
and (2.16),
O'(as) > B-¢'(0) witho<p<1. (2.24Db)

These two criteria express the demands that ag must be sufficiently
small to give a useful decrease in the objective function, and suffi-
ciently large to ensure that we have left the starting tangent of the
curve y = () for a > 0; cf. Figure 2.3.

The algorithm has two parts. First we find an interval [a, b] that

contains acceptable points, see figure 2.5:

Y
y = 4(0) / y = (o)

y=Ma)

a  acceptable points b @

Figure 2.5: Interval [a,b] containing acceptable points

In the second part of the algorithm we successively reduce the
interval: We find a point o« in the strict interior of [a,b]. If both
conditions (2.24) are satisfied by this a-value, then we are finished
(ag = ). Otherwise, the reduced interval is either [a,b] := [a, a] or
[a,b] := [a, b], where the choice is made so that the reduced [a, b] con-
tains acceptable points.
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Algorithm 2.25. Soft Line Search

begin
if ¢'(0) >0 {1°}
a:=0
else
k:=0; v:=p%¢'(0);
a:=0; b:=min{l,dmaz} {2°}

while (go(b) < )\(b)) and (go'(b) < 'y)
and (b < ozmax) and (k < kmax)

k:=k+1; a:=b {3°}

b := min{2b, amax} {4°}
a:=bh {5°}
while ((go(oz) > AMa)) or (¢'(a) < 'y)) and (k < kmax)

k=k+1

Refine o and [a, b] {6°}
if pla) > #(0) {7}

a:=0

end

We have the following remarks:

1° TIf x is a stationary point (f/(x)=0 = ¢’(0)=0) or h is not
downhill, then we do nothing.

2°  The initial choice b=1 is used because in many optimization
methods (e.g. Newton’s method in Chapter 5) =1 is a very
good guess in the final steps of the iteration. The upper bound
amax must be supplied by the user. It acts as a guard against an
infinite loop if f is unbounded.

3° We are to the left of a minimum and update the left hand end of
the interval [a, b].
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4°  If aypax 18 sufficiently large, then the series of b-valuesis 1,2,4, ..
corresponding to an “expansion factor” of 2. Other factors could

be used.
5% Initialization for second part of the algorithm.
6° See Function 2.26.
7° The algorithm may have stopped abnormally, e.g. by exceeding

the permitted number k.5 of function evaluations. If the current

value of « does not decrease the objective function, then we return
a=0,cf. 1°.

The following Function 2.26 receives an interval [a, b] which we
know contains acceptable points. It produces an « using interpola-
tion. We want to be sure that the intervals have strictly decreasing
widths, so we only consider the new « if it is inside [a+d, b—d], where
d= 11—0(19 — a). The « splits [a, b] into two subintervals, and we return
the subinterval which must contain acceptable points.

Function 2.26. Refine

begin
D:=b—a; c:= (go(b) — ¢(a) —D*go'(a))/D2 {8°}
ifc>0
a:=a—¢'(a)/(2c)
else
a:=(a+b)/2
a:=max{a, a+0.1D}; «a:=min{a, b—0.1D} {9°}
if p(a) < Ma) {10°}
else
b:=a
end
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We have the following remarks

8% The second order polynomial
U(t) = ¢la) + ¢'(a) - (t—a) +c - (t—a)®
satisfies ¥(a) = ¢(a), ¥'(a) = ¢'(a) and ¢(b) = ¢(b). If ¢ >0, then
1 has a minimum, and we let o be the minimizer. Otherwise we
take a as the midpoint of [a, b].
9°  Ensure that « is in the middle 80% of the interval.

10° Tf ¢(«) is sufficiently small, then the right hand part of [a, b] con-
tain points that satisfy both of the constraints (2.24). Otherwise,

[«, b] is sure to contain acceptable points.

Finally, we give the following remarks about the implementation
of the algorithm.

The function and slope values are computed as
p(a) = f(x+ah),  ¢'(a) =h'f'(x+ah) .

The computation of f and f’ is the “expensive” part of the line search.
Therefore, the function and slope values should be stored in auxillary
variables for use in acceptance criteria and elsewhere, and the imple-
mentation should return the value of the objective function and its
gradient to the calling programme, a descent method. They will be
useful as starting function value and for the starting slope in the next
linesearch (the next iteration).

2.6. Exact Line Search

The older methods for line search produce a value of ag which 1s
sufficiently close to the true result, ag ~ ae with

ae = argmin,sg () .
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The algorithm can be similar to the soft line search in 2.25, except
that the refinement loop after remark 5° is changed to

while (J¢'(a)] > 7 [¢'(0)])
and (b—a > ¢) and (k < kmax) (2.27)

Here, ¢ and 7 indicate the level of errors tolerated; both should be
small positive numbers.

An advantage of an exact line search is that (in theory at least)
it can produce its results exactly, and this is needed in some theoret-

ical convergence results concerning conjugate gradient methods, see
Chapter 4.

The disadvantages are numerous. It normally takes far more time
per search direction than soft line searches do. Also, as indicated in
Example 2.5, it can lead to an increased number of search directions.

3. THE STEEPEST DESCENT METHOD

Until now we have not answered an important question connected with
algorithm 2.7: Which of the possible descent directions (see definition
(2.11)) do we choose as search direction?

Our first considerations will be based purely on local first order
information. Which descent direction gives us the greatest gain in
function value relative to the step length? Using the first order Taylor
series (1.3) we get the following approximation

f(x) = f(x+ ah) - _hTf’(x)
al[h]| h Il

= |f/(x)]|cosf . (3.1)

In the last relation we have used the definition (2.12). We see that
the relative gain is greatest when the angle § = 0, i.e.

hyy = —f'(x) . (3.2)

This search direction, the negative gradient direction, is called
the direction of steepest descent. It gives us a useful gain in function
value if the step is so short that the 3'¥ term in the Taylor series
(O(]|n]|?)) is insignificant. Thus we have to stop well before we reach
the minimizer along the direction hyq. At the minimizer the higher
order terms are big enough to have changed the slope from its negative
starting value up to 0.

A descent method based on steepest descent and with a soft or an
exact line search is convergent according to Theorem 2.1. If we make
a method using hyq and a line search ensuring sufficiently short steps,
then the global convergence will manifest itself as a very robust global
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performance. The disadvantage is that the method will have linear
final convergence and this will often be exceedingly slow. If we use
exact line searches together with steepest descent, we invite trouble.

Example 3.1. We test a steepest descent method with exact line searches
with the function from Example 1.2,

F(x) = (21422 —2)" +100(1 — v2)°

Figure 3.1 gives the contours of this function.

X
2 h.
b3 %o
b/,
Figure 3.1: The Steepest Descent
Method fails to find the %
menemizer of a quadratic % 1

The gradient is

, 2(x1 +x2 — 2) 4+ 200(x1 — 22
fi(x) = [ 2%1:1—1—132—23—2005331 —1323 :|

If the starting point is taken as xo = [3,598/202]", then the first search
direction is

3200/202
b= [0

This is parallel with the x;-axis. The exact line search will stop at a
point where the gradient is orthogonal to this. Thus the next search
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direction will be parallel with the x2-axis, etc. The iteration steps will
be exactly as in Example 1.2. The iteration will stop far away from
the solution because the steps become negligible compared with the
position, when represented in the computer with a given number of
digits.

The example above shows how the final linear convergence of the
steepest descent method can become so slow that it makes the method
completely useless when we are near the solution. We say that the
iteration is caught in Stiefel’s cage.

Still, the method is useful when we are far from the solution.
It performs a little better if we make sure that the steps taken are
small enough. In a version like this it is included in several modern
hybrid methods, where there is a switch between two methods, one
with robust global performance and one with superlinear (or even
quadratic) final convergence. Under these circumstances the method
of steepest descent does a very good job as the “global part” of the
hybrid.
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The methods described in this chapter are the first ones that we
encounter that can be called practical. They are simple and easy
to implement, though perhaps not so easy to understand. Gener-
ally they are superior to the steepest descent method, but Newton’s
method and its relatives, that will be described in the next chap-
ter, are usually even better. However, this is not always so, and
one class of problems where conjugate gradient methods often out-
perform Newton-type methods are ones with very large n (number of
unknowns). The reason is that the Newton-type of methods rely on
matrix operations, whereas conjugate gradient methods use only vec-
tors. Ignoring sparsity, Newton’s method needs O(n?®) operations per
iteration step, Quasi-Newton methods need O(n?), but the conjugate
gradient methods use only O(n) operations per iteration step. Simi-
larly for storage: Newton-type methods require an nxn matrix to be
stored, while conjugate gradient methods only need a few vectors.

The basis for the methods presented in this chapter is the following
definition of conjugate directions, and the relevance for our problems
is indicated in Example 4.1.

Definition
A set of directions corresponding to vectors {hy, hs, ...}
1s conjugate with respect to a symmetric positive definite (4.1)
matrix A
<~

hiAh; =0 forall i#j
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Example 4.1. In R? we want to find the minimizer of a quadratic :
q(x)=a+ b'x + %XTHX ,

where the matrix H is assumed to be positive definite. Figure 4.1 gives
the contours of such a polynomial.

Figure 4.1: In the 2-dimensional
case, the second conjugate gradient
step determines the minimeizer of
a quadratic

Remember that Examples 1.2 and 3.1 showed how the methods of al-
ternating directions and of steepest descent could be caught in Stiefel’s
cage and fail to find the solution x*.

Assume that our first step was in the direction h;, a descent direction.
Now we have reached position x after an exact line search. Thus the
direction h; is tangent to the contour at x. This means that h; is
orthogonal to the steepest descent direction hgy at x, i.e. h-{hsd =0:

hi ((—q'(x)) =hj(-b—Hx) =0.

Now, the minimizer satisfies Hx* +b = 0 and inserting b from this we
get h]H(x* —x) =0 .

This shows that if we are at x after an exact line search along a descent
direction, hi, then the direction x*—x to the minimizer is conjugate
to hy with respect to H. We can prove that the conjugate direction is a
linear combination of the search direction h; and the steepest descent
direction, hgg, with positive coeficients, i.e. it is in the angle between

h; and hgy.
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In the next sections we discuss conjugate gradient methods which
can find the minimizer of a second degree polynomial in n steps, where
n is the dimension of the space.

4.1. Quadratic models

An important tool for designing optimization methods is quadratic
modelling. The function f i1s approximated locally with a quadratic
function ¢ of the form

¢(x) =a+b'x+ Ix"Hx (4.2)

where H is a symmetric matrix which is usually required to be positive
definite.

When the modelling is direct, we simply use the minimizer of ¢
to approximate x* and then repeat the process with a new approx-
imation. This is the basis of the Newton-type methods described in
Chapter 5. For the conjugate gradient methods, the model function
(4.2) will be employed more indirectly.

A related concept is that of quadratic termination, which is said
to hold for methods that find the exact minimum of the quadratic
(4.2) in a finite number of steps. The steepest descent method is
not quadratically terminating, but all the methods discussed in this
chapter and the next are. Quadratic termination has proved to be an
important idea and worth striving for in the design of optimization
methods.

Because of the importance of quadratic models we now take a
closer look at the quadratic function (4.2). Tt is not difficult to see
that its gradient at x is given by

q(x)=Hx+b (4.3)
and for all x the Hessian is

q'(x)=H. (4.4)
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If H is positive definite, then ¢ has a single minimizer at x* =
—H 'b. If n=2, then the contours of ¢ are ellipses with centers
at x*. The shape and orientation of the ellipses are determined by
the eigenvalues and eigenvectors of H. For n=3 this generalizes to
ellipsoids, and in higher dimensions we get (n—1)-dimensional hyper-
ellipsoids. It is of course possible to define quadratic functions with
a non-positive definite Hessian, but then there is no longer a single
minimizer.

Finally, a useful fact 1s that multiplication by H maps differences
in x-values to differences in the corresponding gradients:

H(x —2) = q'(x) - q'(2) . (4.5)

4.2. Structure of a Conjugate Gradient Method

Let us have another look at Figure 3.1 where the slow convergence of
the steepest descent method i1s demonstrated. An idea for a possible
cure 18 to take a linear combination of the previous search direction
and the current steepest descent direction to get a direction toward
the solution. This gives a method of the following type.

Algorithm 4.6. Conjugate Gradient Method
begin
X :=Xo; k:=0; found:=false; v:=0; hcg:=0 {1°}
repeat
hprev = hcg§ hcg = —f/(X) + v % hprev
if £/(x) heg >0 {2°}
heg := —f'(x)
« := line_search(x, heg); x :=x 4 ahcg {3°}
yim e a7}
k:=k+1; found:=--- {4°}
until found or k > kmax
end

We have the following remarks:
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1°  Initialization.

2° In most cases the vector heg is downhill. This is not guaranteed,
e.g./ if we use a soft line search, so we use this modification to
ensure that each step is downhill.

3% New iterate.

4°  The formula for v is characteristic for the method. This is dis-
cussed in the next sections.

5%  We recommend to stop if one of the criteria
I/ (x)][eo < &1 (4.7a)
[lahegll < ea(e2 +[[x]]2) (4.7b)
is satisfied, cf. (2.8) and (2.9).

In the next theorem we show that a method employing conjugate
search directions and exact line searches 1s very good for minimizing
quadratics. In Theorem 4.2 (in Section 4.3) we show that, if f is
quadratic and the line searches are exact, then a proper choice of v
gives conjugate search directions.

Theorem 4.1
Use Algorithm 4.6 with exact line searches on a quadratic like
(4.2) with x € R". The iterates are xi, X2, ... with the iteration
steps h; = x; —x;_1 corresponding to conjugate directions. Then

1° The search directions hcg are downhill.
2° The local gradient £/(x5) is orthogonal to hy, ha, ... hg.

3% The algorithm terminates after at most n steps.

Proof: We examine the inner product in (2.11) and insert the expres-
sion for heg
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f/(x)" he, = —f/(x)T ' (x) +~F/(x)" hprev

— e <0 48)

The second term in the first line is zero for any choice of v since
exact line searches terminate when the local gradient is orthogo-
nal to the search direction. Thus, heg is downhill (unless x is a
stationary point i.e. unless f’(x) = 0), and we have proven 1°.

Next, the exact line searches guarantee that
hif'(x;) =0, i=1,...k (4.9)
and by means of (4.5) we see that for j < &,
hif! (x) = hy (f(x;) +£'(xx) — £'(x;))
=0+ h}—H(Xk — Xj)
= h}—H(hk + ...+ hj+1) =0

Here, we have exploited that the directions {h;} are conjugate
with respect to H, and we have proven 2°.

Finally, H is non-singular, and it is easy to show that this implies
that a set of conjugate vectors is linearly independent. Therefore
{hi,...,h,} span the entire R", and f’(x,) must be zero. O

We remark that if £/(x;)=0 for some k <n, then the solution
has been found and Algorithm 4.6 stops.

What remains is to find a clever way to determine . The ap-
proach used is to determine v in such a way that the resulting method
will work well for minimizing quadratic functions. The success of the
method for quadratics is then used as a justification for applying it
on more general functions. This makes sense because Taylor’s for-
mula shows that smooth functions are locally well approximated by
quadratics.
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4.3. The Fletcher—-Reeves Method
The following formula for v was the first one to be suggested:
__ X))
T (e E ()
where Xprey is the previous iterate.

Algorithm 4.6 with this choice for v is called the Fletcher—Reeves
method after the people who invented it in 1964.

(4.10)

Theorem 4.2
Apply the Fletcher-Reeves method with exact line searches to
the quadratic function (4.2). If £/(xz)#0 for k=1,...,n, then

the search directions hy, ... h, are conjugate with respect to H.

Proof: See Appendix B. 0

According to Theorem 4.1 this implies that the Fletcher—Reeves
method with exact line searches used on quadratics will terminate in
at most n steps.

Point 1° in Theorem 4.1 shows that a conjugate gradient method
with exact linesearches produces descent directions. Al-Baali (1985)
proves that this is also the case for the Fletcher—Reeves method with
soft line searches satisfying certain mild conditions. We return to this
result in Theorem 4.3 below.

4.4. The Polak—Ribiére Method

An alternative formula for v is

(£(x) — £/ (xprev)) " £/(x)
£/ (xprev) T/ (Xprev)

v = , (4.11)
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Algorithm 4.6 with this choice of + is called the Polak—Ribiére
Method. Tt dates from 1971 (and again it is named after the inven-
tors). For quadratics, (4.11) is equivalent to (4.10) (because then

f’(xprev)Tf’(x) =0, see (B.6) in Appendix B).

For general functions, however, the two methods differ; and
through the years experience has shown (4.11) to be superior to (4.10).
Of course the search directions are still downhill for exact line searches
combined with the Polak—Ribiére Method. For soft line search there
1s however no result parallel to that of Al-Baali for the Fleetcher—
Reeves Method. In fact M.J.D. Powell has constructed an example
where the method fails to converge even with exact line search (see
Nocedal (1992) p. 213). The succes of the Polak—Ribiére formula is
therefore not so easily explained by theory.

Example 4.2. (Resetting). A possibility that has been proposed, is to
reset the search direction h to the steepest descent direction hggq every
n iterations. The rationale behind this is the n-step quadratic termina-
tion property. If we enter a neighbourhood of the solution where f be-
haves like a quadratic, resetting will ensure quick convergence. Another
apparent advantage of resetting is that it will guarantee global conver-
gence (by Theorem 2.1). However, practical experience has shown that
the profit of resetting is doubtful.

In connection with this we remark that the Polak—Ribiere method has
a kind of inbuilt resetting. Should we encounter a step away from the
solution with very little progress, so that |[x—Xprev|| is small compared
with |[f'(xprev)||, then ||f'(x) —f'(xprev)|| will also be small and there-
fore v is small, and hcg >~ hgg in this situation. Also, the modification
before the line search in Algorithm 4.6 may result in an occasional re-
setting.
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4.5. Convergence Properties

In Theorem 4.1 we saw that the search directions hg of a conjugate
gradient method are descent directions and thus the é of (2.12) satis-
fies @ < 7/2. There is no guarantee, however, that the y of (2.13) will
stay constant, and Theorem 2.1 is therefore not directly applicable.

For many years it was thought that to guarantee convergence of
a conjugate gradient method it would be necessary to use a compli-
cated ad hoc line search, and perhaps make some other changes to the
method. But in 1985 Al-Baali managed to prove global convergence
using a traditional soft line search:

Theorem 4.3

Let the line search used in Algorithm 4.6 satisfy (2.15) and (2.16)
with parameter values ¢ < § < 0.5. Then there 1s a ¢ > 0 such
that for all %

£/(x) heg < —cl[f'(x)[3

and

limy oo [[£7(x)]l2 = 0

Proof: See Al-Baali (1985). O

In Example 4.2 we saw that resetting will ensure global conver-
gence for any conjugate gradient method. The importance of this
result i1s however of more theoretical than practical value.

Let us finally remark on the rate of convergence. Crowder and
Wolfe (1972) show that, for exact line searches, conjugate gradient
methods have a linear convergence rate, as defined in (2.4). This
should be contrasted with the superlinear convergence rate that holds
for Quasi-Newton methods and the quadratic convergence rate that
Newton’s method possesses.
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4.6. Other Methods and further reading

Over the years there have been proposed numerous other conjugate
gradient formulae and amendments to the Fletcher—Reeves and Polak—
Ribiére method. We only give a short summary here, and refer the
interested reader to the book by Fletcher (1987) and the paper by
Nocedal (1992) for details and further information.

A possible amendment to the Polak—Ribiére method is to choose
v = max(y'® 0) where yF! is the v of (4.11). With this choice of v it
is possible to guarantee global convergence with inexact line searches.
See p. 213 in Nocedal (1992) for further discussion and references.

The conjugate gradient methods belong to a class of methods
sometimes referred to as conjugate direction methods. Other exam-
ples of these may be found in Fletcher (1987).

Finally we want to mention two classes of methods that have
received much attention in recent years. The first class is called limited
memory Quasi-Newton methods, and the second class is truncated
Newton methods or inexact Newton methods. These are not conjugate
direction methods, but they are also aimed at solving large problems.
See pages 233-234 in Nocedal (1992) for some discussion and further
references.

4.7. The CG Method for Linear Systems

We cannot part with conjugate gradient methods without mentioning
that they can of course be used to minimize the quadratic function
(4.2) itself. But by (4.3) this is equivalent to solving the positive
definite linear system

Hx=-b.

When used in this way the exact steplength « may be calculated
directly and no line search is needed. It is not difficult to see that
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_ —hIgH(x +b)
hT, Hh.q

The Fletcher—Reeves and the Polak—Ribiére formulae are equiva-
lent in this setting, and the resulting method is called the conjugate
gradient method for linear systems. Its study is a whole subject in
itself, within the field of numerical linear algebra.

One situation where this method may be preferrable is when the
system to be solved is large and sparse. Since the conjugate gradient
method only needs matrix-vector multiplications it can then be much
cheaper than a direct method, e.g. Gaussian elimination.

4.8. Implementation

To implement a conjugate gradient algorithm in a computer program,
some decisions must be made. Of course we need to choose a formula
for 7. Here the Polak—Ribiére formula is recommended.

We also need to specify the exactness of the line search. For
Newton-type methods it is usually recommended that the line search
be quite soft, so for the line search in Algorithm 2.25 it is common
to choose the parameter values ¢=0.01 and 5=0.9. For conjugate
gradient methods experience dictates that a line search with stricter
tolerances be used, say ¢=0.01 and #=0.1. In addition we have to
specify the stopping criterion. Here (2.9) is recommended. We do not
have acces to £”(xy) and therefore cannot use (2.10). For methods
with a fast convergence rate, (2.8) may be quite satisfactory, but its
use for conjugate gradient methods must be discouraged because their
final convergence rate is only linear.

Finally some remarks on the storage of vectors. The Fletcher—
Reeves method may be implemented using three n-vectors of storage,
x, g and h. If these contain x, f'(x) and hprev at the beginning of
the current iteration step, we may overwrite h with heg and during
the line search we overwrite x with x+aheg and g with £/(x+ahcg).
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Before overwriting the gradient, we find f’(x)Tf’(x) for use in the
denominator in (4.10) on the next iteration. For the Polak—Ribiére
method we need acces to f/(x) and f/(Xprev) simultaneously, and thus
four vectors are required, say x, g, gnew and h.

Example 4.3. Rosenbrock’s function,
F(x) = 100(z2 — 22)° + (1—21)%,

is widely used for testing optimization algorithms. Figure 4.2 shows
level curves for this function (and illustrates, why it is sometimes called
the “banana function”).

The function has one minimizer x* = [1, 1]" with f(x*)=0, and there
is a “valley” with sloping bottom following the parabola z2 = 2%. Most
optimization algorithms will try to follow this valley. Thus, we will
need a considerable amount of iteration steps if we take xo in the 2nd
quadrant.

g

AN ,
b3 \_65 / S x,

Figure 4.2: Contours of Rosenbrock’s function

Below we give the number of iteration steps and evaluations of f(x)
and f'(x) when applying Algorithm 4.6 on this function. In all cases
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we use the starting point xo = [—1.2, I]T, and stopping criteria given
by €1 = 10_87 e = 1072 in (4.7). In case of exact line search we use
7 =107% ¢ = 107% in (2.27), while we take 8 = 107!, o = 1072 in
Algorithm 2.25 for soft line search.

Method Line search | # it. steps | # fct. evals
Fletcher—Reeves exact 118 1429
Fletcher—Reeves soft 249 628

Polak—Ribiére exact 24 266
Polak—Ribiére soft 45 130

Thus, in this case the Polak—Ribiére method with soft line search per-
forms best. Below we give the iterates (cf. Figure 4.2) and the values

of f(xx) and ||f'(xx)||e; note the logarithmic ordinate axis.

X

S

-1.2 /1 X,
1 709568880825383v vvv‘v Voo i
©00000Y vy
te-5- Co00,, VVVVVVVVVV i ]
= v
000, v
o
reto| T oy 209900000055, ]
°
1e-15 : y y ;
0 10 20 30 40 50

Figure 4.3: Polak—Ribiére method with soft line search
applied to Rosenbrock’s function.

Top: iterates Xy

Bottom: f(xx) and ||f'(xx)||c -

5. NEWTON-TYPE METHODS

In this chapter we consider a class of methods for unconstrained op-
timization which are based on Newton’s method. This class 1s called
Quasi-Newton methods. In order to explain these methods we first
describe Newton’s method for unconstrained optimization in detail.
Newton’s method leads to another kind of methods known as Damped
Newton Methods, which will also be presented.

Finally we get to the Quasi-Newton methods. This class includes
some of the best methods on the market for solving the unconstrained
optimization problem.

5.1. Newton’s Method

Newton’s method forms the basis of all Quasi-Newton methods. It
i1s widely used for solving systems of non-linear equations, and until
recently it was also widely used for solving unconstrained optimization
problems. As it will appear, the two problems are closely related.

Example 5.1. In Example 1.2 we saw the method of alternating directions
fail to find the minimizer of a simple quadratic in two dimensions and
in Example 3.1 we saw the steepest descent method fail on the same
quadratic. In Chapter 4 we saw that the conjugate gradient methods
finds the minimizer of a quadratic in n steps (n being the dimension of
the space), in two steps in Example 4.1.

Newton’s method can find the minimizer of a quadratic in n-
dimensional space in one step. This follows from equation (5.2) below.

Figure 5.1 gives the contours of our 2-dimensional quadratic together
with (an arbitrary) xg. x; and the minimizer x*, marked by *.
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Figure 5.1: Newton’s method finds
the minimizer of a quadratic in
the very first step

In order to derive Newton’s method in the version used in opti-
mization, we shall once again consider the truncated Taylor expansion
of the cost function at the current iterate x :

Fx+ 1) ~ g(b) (5.12)
where ¢q(h) is the quadratic model of f in the vicinity of x,
g(h) = f(x) +h'f'(x) + Lh"f”(x)h . (5.1b)

The idea now is to minimize the model ¢ at the current iterate. If
t"(x) is positive definite, then ¢ has a unique minimizer at a point
where the gradient of ¢ equals zero, i.e. where

£/(x) +1"(x)h = 0. (5.2)

Hence, in Newton’s method the new iteration step is obtained as the
solution to the system (5.2) as shown in the following algorithm.

Algorithm 5.3. Newton’s Method

begin
X := Xo; {Initialisation}
repeat
Solve f"(x)hy = —f'(x) {find step}
x:=x+hy {... and next iterate}

until stopping criteria satisfied

end
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Newton’s method is well defined as long as f(x) remains non-
singular. Also, (5.2) shows that the step is downhill if the Hessian is
positive definite:

hif”(x)hy >0 = h{f'(x) <0 (5.4)

proving that hy is downhill, see Definition (2.11). Further, if £"(x)
stays positive definite in all the steps and if the starting point is suffi-
ciently close to a minimizer, then the method usually converges rapidly
towards such a solution. More precisely the following theorem holds:

Theorem 5.1
If one of the iterates, x, is sufficiently close to a local minimizer
x* and £"(x*) is positive definite, then Newton’s method is well
defined for all the following steps, and 1t converges quadratically

towards x*.

Proof: See e.g. Fletcher (1987). 0

Example 5.2. We shall use Newton’s method to find the minimizer of the
following function

f(x) =0.5xa] x (21/6 +1)
2 (5.5)
+z2 * Arctan(zz) — 0.5 xIn (23 + 1) .

We need the derivatives of first and second order for this function:

’ 1‘?/3‘1‘1'1 1" 1‘?4‘1 0
f'(x) = [ Arctan(zz) :| ’ (%) = [ 0 1/(1—1—1:%)

We can see in Figure 5.2 that in a region around the minimizer the
function looks very well-behaved and extremely simple to minimize.

Table 5.1 gives results of the iterations with the starting point x| =
[1, 0.7]. According to Theorem 5.1 we expect quadratic convergence.
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=

Figure 5.2: Contours of the
funetion (5.5). The level

curves are symmelric A

across both azes N

If the factor c2 in (2.5) is of the order of magnitude 1, then the column
of x}. would show the number of correct digits doubled in each iteration
step, and the f-values and step lengths would be squared in each itera-
tion step. The convergence is faster than this; actually for any starting
point x§ = [u, v] with |v| < 1 we will get cubic convergence; see the
next example.

k X f 171l ||l
0 [1.00000000000000, 0.70000000000000] 8.11e-01 1.47¢100

1 [0.33333333333333, -0.20998168693992] 7.85e-02 4.03e-01 1.13e+00
2 [0.02222222222222, 0.00611895804438] 2.66e-04 2.31e-02 3.79e-01
3 [0.00000731234690, =-0.00000015273477] 2.67e-11 7.31e-06 2.30e-02
4 [0.00000000000000, 0.00000000000000] 3.40e-32 2.61e-16 7.31e-06
5 [0.00000000000000, 0.00000000000000] 0.00e+00 0.00e+00 2.61e-16

Table 5.1: Newton’s method on (5.5). x5 =[1, 0.7]

Until now, everything which has been said about Newton’s
method seems very promising: It is very simple and if the conditions
of Theorem 5.1 are satisfied, then the rate of convergence is excellent.
Nevertheless, due to a series of drawbacks the basic version of the
method is not suitable for a general purpose optimization algorithm.

The first and by far the most severe drawback is the methods lack
of global convergence.
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Example 5.3. With the starting point x5 = [1, 2] the Newton method
behaves very badly:

Xk f £l [l

[1.00000000000000, .000000000000001] 1.99¢+00 .73e+00
[0.33333333333333, -3.53574358897045] 3.33e+00 .34e+00 5.58e+00
.02222222222222, 13.95095908692750] 1.83e101 .50e+00 1.75e101
[0.00000731234690, =-2.7934406653e+02] 4.32e+02 .57e+00 2.93e+02
1

3

N

[0.00000000000000, .2201699892e+05] .92e+05 .57e+00 1.22¢405
[0.00000000000000, =-2.3386004198e+10] .67e+10 .57e+00 2.34e+10

oW R o I
—
o

-

N

Table 5.2: Newton’s method on (5.5). x§ =[1, 2]

Clearly, the sequence of iterates moves rapidly away from the solution
(the first component converges, whereas the second increases in size
with alternating sign) even though f'(x) is positive definite for any
x €R?.

The reader is encouraged to investigate what happens in detail. Hint:
The Taylor expansion for Arctan(0+h) is

h—1n® 4+ 1p° = Ln7 4 ... for |h| <1

T 1 1 1

Arctan(0+h) = (h ; N
Slgl’l() 5_5—1—%_%—1— 0r||>1

The next point to discuss is that £/(x) may not be positive definite
when x is far from the solution. In this case the sequence may be
heading towards a saddle point or a maximizer since the iteration is
identical to the one used for solving the non-linear system of equations
t/(x) = 0. Any stationary point of f is a solution to this system. Also,
t"(x) may be ill-conditioned or singular so that the linear system
(5.2) cannot be solved without considerable errors in hy. Such ill-
conditioning may be detected by a well designed matrix factorization
(e.g. a Cholesky factorization as described in Appendix A), but it still
leaves the question of what to do in case ill-conditioning occurs.

The final major drawback is of a more practical nature but ba-
sically just as severe as the ones already discussed. Algorithm 5.3
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requires the analytic second order derivatives. These may be difficult
to determine even though they are known to exist. Further, in case
they can be obtained, users tend to make erroneous implementations
of the derivatives (and later blame a consequential malfunction on the
optimization algorithm). Also, in large scale problems the calculation
of the Hessian may be costly since in(n+1) function evaluations are

2
needed.

Below, we summarize the advantages and disadvantages of New-
ton’s method discussed above. They are the key to the development of
more useful algorithms, since they point out properties to be retained
and areas where improvements and modifications are required.

Advantages and disadvantages of Newton’s method for

unconstrained optimization problems

Advantages

1° Quadratically convergent from a good starting point if £ (x*)
1s positive definite.

2° Simple and easy to implement.

Disadvantages

1° Not globally convergent for many problems.

2° May converge towards a maximum or saddle point of f.

3% The system of linear equations to be solved in each iteration
may be ill-conditioned or singular.

4° Requires analytic second order derivatives of f.

Table 5.3: Pros and Cons of Newton’s Method

5.2. Damped Newton Method

Despite the fact that disadvantage no. 4 in Table 5.3 often makes it
impossible to use any of the modified versions of Newton’s method,
we shall still discuss these, because some important ideas have been
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introduced when they were developed. Further, in case second order
derivatives are obtainable, modified Newton methods may be used
succesfully. Hence, for the methods discussed in this subsection it 1s
still assumed, that second order analytic derivatives of f are available.

The more efficient modified Newton methods are constructed as
either explicit or implicit hybrids between the original Newton method
and the method of steepest descent. The idea is that the Algorithm in
some way should take advantage of the safe, global convergence prop-
erties of the steepest descent method whenever Newton’s method gets
into trouble. On the other hand the quadratic convergence of New-
ton’s method should be obtained when the iterates get close enough
to x*, provided that the Hessian is positive definite.

The first modification which comes to mind is a Newton method
with line search in which the Newton step is used as a search direction
ie. hy = —[f”(x)]"'f/(x). Such a method is obtained if the step
x := x+hy in 5.3 is substituted by

« := line_search(x, hy); x:=x+ ohy (5.6)

This will work fine as long as £(x) is positive definite since in this
case hy is a descent direction, cf. (5.4).

The main difficulty thus arises when f/(x) is not positive definite.
The Newton step can still be computed if £”(x) is non-singular, and
one may search along +hy where the sign is chosen in each iteration
to ensure a descent direction. However, this rather primitive approach
is questionable since the quadratic model ¢(h) will not even possess a
unique minimum.

A much more appealing modification is a hybrid method where
we keep the line search and use a steepest descent direction in case the
Hessian is not positive definite. (This is the so-called Goldstein and
Price (1960) modification). In order to ensure global convergence to-
wards a stationary point, one must also demand that possible Newton
directions shall satisfy the angle test (2.13) in order for the method to
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be an absolute descent method. Unfortunately, according to Fletcher
(1987), such a method frequently behaves like the steepest descent
method itself due to the fact that the second order information is
ignored in many of the steps.

The last class of modifications of the original Newton method to be
considered here is often refered to as the Damped Newton methods.
These are also considered to be the most successful in general. In
order to derive the framework of these methods, Newton’s method
and a reformulated version of the steepest descent method are shown
together here. (I is the identity matrix).

Steepest Descent Newton’s method
Solve Thyy = —1'(x) Solve £”(x)hny = —f'/(x)
o := line_search(x, hgq)
x = x4+ ahy x :=x+ hy

Table 5.4: Steepest Descent and Newton’s method

The approach in a Damped Newton method is to combine the two
methods by adding a multiple of the identity matrix to £"/(x). Hence,
the framework for this type of method is

Damped Newton step
Solve (£7(x) + pD) by = —£'(x) (1> 0) -
Adjust p .

If x + hgy 1s acceptable, then x := x + hgyn

As it 1s easily seen, this type of method is a compromise between
the two underlying methods. If i1 is large then hqn will be very close to
the steepest descent direction, whereas a small p yields an hgy which
is close to the Newton direction hy. Since second order information
is not neglected, methods of the this type are normally more effective
than the one by Goldstein and Price.
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In (5.7) there is no line search but a new type of parameter has
appeared. We must decide how p should be chosen. Furthermore,
we must consider if it 1s wise to leave out the line search. Damped
Newton type methods with line search have been used (see e.g. Lu-
enberger (1974)). However, as we shall see below, present techniques
for choosing y makes the line search obsolete (this is also presented

in Luenberger (1974)).

There are several schemes for dynamical updating of u. In
Levenberg-Marquardt type methods p is updated in each iteration
step. Given the present value of the parameter, the Cholesky fac-
torization of £ (x)+pI is employed to check for positive definiteness,
and g is increased if the matrix is not significantly positive definite.
Otherwise, the solution hgy is easily obtained via the factorization.
Note, that increasing g in the case where £"(x)4ulI is not positive
definite corresponds to changing the quadratic model so that it has a
unique minimizer.

With the procedure above the direction found is sure to be down-
hill, but this is not enough to ensure global convergence. We must also
include measures that ensure that the length of the step is appropriate,
so that the method is descending. (Consider what would happen if
this was the only modification and such a method were used to min-
imize the tricky function (5.5)). Also, the procedure only provides
mechanisms to increase y. There is no way to reduce it and thereby
take advantage of the rapid convergence of the Newton method.

Asin a trust region method we can investigate the value of the cost
function at the trial point, i.e. f(x+hqy). If it is sufficiently below
f(x), then the point x+hgy is chosen as the next iterate. Otherwise,
x is still the current iterate, and p is increased. It is not sufficient to
check whether f(x 4+ hgn) < f(x). In order to prove convergence for
the whole procedure one needs to test whether the actual decrease in
f-value is larger than some small portion of the decrease predicted by
the quadratic model (5.1), i.e. if
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_ f(x) — f(x+h)
TE e w0 58

where § is a small positive number (typically § ~ 1073).

We recognize r as the gain factor, (2.22). Tt is also used to monitor
p: If 7 1s close to one, then one may expect the model to be a good
approximation of f in the neighbourhood of x. Thus the influence of
Newton’s method should be increased by decreasing p. If, on the other
hand, the actual decrease of f is much smaller than expected, then p
must be increased in order to adjust the method more towards steepest
descent. It is important to note that in this case the length of hgy 1s
reduced, since for p large hgy ~ %f’(x). Thus g acts as a kind of
step size regulator, besides its control over the step direction, and we
have a further analogy to trust region methods. The reader is referred
to Fletcher (1987) or Moré and Sorenson (1982) for a treatment of this
subject.

We could use an updating strategy similar to the one employed in

Algorithm 2.23,

if r>0.75
o= /3
if r < 0.25 (5.9)
W= px2
However, the discontinuous changes in g when 7 is close to 0.25 or

0.75 can cause a “flutter” that slows down convergence. Therefore,
we recommend to use the equally simple strategy given by

if >0
po=pxmax{l 1 —(2r—1)3

clse {5 ( )} (5.10)
W= px2

The two strategies are illustrated below and are further discussed in

Nielsen (1999) and Section 3.2 of Madsen et al. (1999).
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0 0.25 0.75 1 p

Figure 5.3: Updating of yt by (5.9) (dasheded line)
and by (5.10) (full line).

The method 1s summarized in

Algorithm 5.11. Damped Newton Method

begin {Levenberg-Marquardt type damped Newton}
X = Xo; p:= po; found:=false; k:=0; {Initialisation }
repeat
while f"(x)+uI not pos. def. {using ...}
M= 24
Solve (f"(x)+uIl)hgny = —f'(x) {... Cholesky}
Compute gain factor r by (5.8)
ifr>46 {f decreases}
x :=x + hygy {new iterate}
po=p+max{s, 1 —(2r — 1)} {...and u}
else
o= ok 2 {increase p but keep x}
k := k+1; Update found {see (5.12)}
until found or k > kmax
end {of LM type damped Newton}

Similar to (4.7) we can use the stopping criteria

1" ()]l < €1 or [[hanll2 < e2(e2 + [Ix][2) - (5.12)
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The simplicity of the original Newton method has disappeared in
the attempt to obtain global convergence, but this type of method
does perform well in general.

Example 5.4. Table 5.5 illustrates the performance of Algorithm 5.11
when applied to the tricky function (5.5). We use p1o = 1 and e; = 1078,
€2 =107 in (5.12).
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Figure 5.4b: f(xx), ||f'(xx)||e and .
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0 [ 1.0000000000, 2.0000000000] 1.99¢400 1.33e100 0.999 1.00e+00
1 [ 0.5555555556, 1.0773760685] 6.63e-01 8.23e-01 0.872 3.33e-01
2 [ 0.1824004456, 0.0441028668] 1.77¢-02 1.84e-01 1.010 1.96e-01
3 [ 0.0323940533, 0.0071966616] 5.51e-04 3.24e-02 1.000 6.54e-02
4 [ 0.0020074933, 0.0004414865] 2.11e-06 2.01e-03 1.000 2.18e-02
5 [ 0.0000428275, 0.0000094174] 9.61e-10 4.28e-05 1.000 7.27e-03
6 [ 0.0000003089, 0.0000000679] 5.00e-14 3.09e-07 1.000 2.42¢-03
7 [ 0.0000000007, 0.0000000002] 3.05e-19 7.46e-10

Table 5.5: Algorithm 5.11 applied to (5.5). x =[1, 2], po=1

The solution is found without problems, and the columns with f and
|If’|| show superlinear convergence, as defined in (2.6).

Example 5.5. We have used Algorithm 5.11 on Rosenbrock’s function
from Example 4.3. We use the same starting point, xo = [—1.2, 1]',
and with puo = 1, e; = 10_107 €3 = 107'? we found the solution after
29 iteration steps. The performance is illustrated below

X

S

-12 /1 X,

Figure 5.4a: Damped Newton Method on Rosenbrock’s function. Iterates

The three circles in Figure 5.4a indicates points, where the iterations
stalls, i.e. the current x is not changed, but u is updated. After passing
the bottom of the parabola, the damping parameter p is decreased
in each step. As in the previous example we achieve superlinear final
convergence.

5.3. Quasi—-Newton Methods

The modifications discussed in the previous section make it possible
to overcome the first three of the main disadvantages of Newton’s
method shown in Table 5.3: The damped Newton method is globally
convergent, ill-conditioning may be avoided, and minima are rapidly
located. However, no means of overcoming the fourth disadvantage
has been considered: The user must still supply formulae and imple-
mentations of the second derivatives of the cost function.

In Quasi-Newton methods (from latin, quasi: nearly) the idea is
to use matrices which approximate the Hessian matrix or its inverse,
instead of the Hessian matrix or its inverse in Newton’s equation (5.2).
The matrices are normally named

B~f"(x) and D~f"(x)7!. (5.13)
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The matrices can be produced in many different ways ranging from
very simple techniques to highly advanced schemes, where the approx-
imation is built up and adjusted dynamically on the basis of informa-
tion about the first derivatives, obtained during the iteration. These
advanced Quasi—Newton methods, developed in the period from 1959
and up to the present days, are some of the most powerful methods
for solving unconstrained optimization problems.

Possibly the simplest and most straight-forward Quasi-Newton
method is obtained if the elements of the Hessian matrix are
approximated by finite differences: In each coordinate direction,
e; (i=1,...,n), a small increment §; is added to the correspond-
ing element of x and the gradient in this point is calculated. The
i column of a matrix B is calculated as the difference approxi-
mation (f’(x—l—éiei) — f’(x))/éi. After this, the symmetric matrix
B := (B +B") is formed.

If the {4;} are chosen appropriately, this is a good approximation
to £''(x) and may be used in a damped Newton method. However, the
alert reader will notice that this procedure requires n extra evaluations
of the gradient in each iteration — an affair that may be very costly.
Further, there is no guaranty that B is positive (semi-)definite.

In the advanced Quasi-Newton methods these extra gradient
evaluations are avoided. Instead we use updating formulae where
the B or D matrices (see 5.13) are determined from information
about the iterates, xy,x2,... and the gradients of the cost function,
t/(x1),f'(x2),...gathered during the iteration steps. Thus, in each it-
eration step the B (or D) matrix is changed so that it finally converges
towards f£"/(x*) (or respectively £”(x*)~1), x* being the minimizer.

5.4. Quasi—Newton with Updating Formulae

We begin this subsection with a short discussion on why approxima-
tions to the inverse Hessian are preferred rather than approximations
to the Hessian itself: First, the computational labor in the updating
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is the same no matter which of the matrices we update. Second, if we
have an approximate inverse, then the search direction 1s found sim-
ply by multiplying the approximation with the negative gradient of
J. This is an O(n?) process whereas the solution of the linear system
with B as coefficient matrix is an O(n®) process.

A third possibility is to use approximations to the Cholesky factor
of the Hessian matrix, determined at the start of the iteration and
updated in the iteration. Using these, we can find the solution of
the system (5.2) in O(n?) operations. This technique is beyond the
scope of the present notes, but the details can be found in Dennis and
Schnabel (1984). Further, we remark that early experiments with
updating formulae indicated that the updating of an approximation
to the inverse Hessian might become unstable. According to Fletcher
(1987), recent research indicates that this needs not be the case.

A classical Quasi—-Newton method with updating always includes
a line search. Alternatively, updating formulae have been used in trust
region methods. Basically, these two different approaches (line search
or trust region) define two classes of methods. In this section we shall
confine ourselves to the line search approach.

With these comments the framework may be presented:

Framework 5.14 for iteration step

Quasi—Newton with Updating and Line Search

B (or D) is the current approximation to £ (x) (or £"(x)™")
Solve Bhyn = —f'(x) (or compute hyy = -Df'(x))

Line search along th giving th = othN; Xnew = X —+ th

Update B to obtain Bnew (or D to Dnew)

In what follows the requirements to the updating and the tech-
niques needed shall be presented.
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5.5. The Quasi—-Newton Condition

The first and most important requirement which an updating formula
must satisfy, 1s the socalled Quasi—-Newton condition, which may be
derived in several ways. The condition is also referred to as the Se-
quant condition, because it is closely related to the secant method for
non-linear equations with one unknown.

Let x and D be the current iterate and approximation to £ (x)~1.
Given these; the first parts of the iteration step in the framework 5.14
can be performed yielding hgn and hence xpew. The objective is to
calculate Dpew by a correction of D. The correction must contain
some information about the second derivatives. Clearly, this informa-
tion is only approximate. It is based on the gradients of f at the two
points. Now, consider the Taylor expansion of £’ around x+hgN :

£/(x) = £'(x+hgn) — 7 (x+hqn)hgy + -+ (5.15)

If f were a quadratic function, then the higher order terms would
vanish, and the equation would be exact. Since f is well approximated
by a quadratic near Xpew = X+hgn, and since the higher order terms
are difficult to handle, they are neglected. With these comments and
the notation

y = £/ (Xnew) — £'(x) , (5.16)
equation (5.15) leads to the relation, similar to (4.5),

y =" (Xnew)hgN -
Therefore, we require that Dyew should satisfy

Dpewy = hgy - (5.17a)

This is the Quasi-Newton condition. The same arguments lead to the
alternative formulation of the Quasi—Newton condition,

Bhewhqn =y - (5.17b)
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The Quasi—Newton condition only supplies n conditions on the
matrix Dpew (0r Bpew) but it has n? elements. Therefore additional
conditions are needed to get a well defined method.

In the Quasi-Newton methods that we describe, the D (or B)
matrix is updated in each iteration step. We produce Dpew (0r Bpew)
by adding a correction term to the present D (or B). An important
requirement to the updating is that it must be simple and fast to
perform and yet effective. This can be obtained with a recursive
relation between successive approximations,

DneW:D+Wa

where W is a correction matrix. In nearly all methods used in prac-
tice, W is a rank-one matriz

Dpew = D + ab'
or a rank-two matrix
Dpew = D + ab' +uv' ,

where a,b,u,v € IR". Hence W is an outer product of two vectors
or a sum of two such products. Often a equals b, and u=v; thisis a
simple way of ensuring that W 1s symmetric.

5.6. Broyden’s Rank-One Formula

Tradition calls for a presentation of the simplest of all updating for-
mulas which was initially described by Broyden (1965). It was not
the first updating formula but we present it here to illustrate some of
the ideas and techniques used to establish updating formulae.

First, consider rank-one updating of the matrix B :
Bhew =B +ab' .

The vectors a,b € IR" are chosen so that they satisfy the Quasi—
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Newton condition (5.17b),
(B+ab )hn=y (5.18a)

and — in an attempt to keep information already in B — Broyden
demands that for all v orthogonal to hqn we get Bpewv = Bv, i.e.

(B+ab')v=DBv forallv|vihyn=0. (5.18b)

These conditions are satisfied if we take b = hn and the vector a
determined by

(h{nhqy)a =y — Bhgy .

This results in Broyden’s rank-one formula for updating the approxi-
mation to the Hessian:

1
Bhew =B+ 7(3’ — Bh N)hTN : (519)
thth B N

A formula for updating an approximation to the inverse Hessian may
be derived in the same way and we obtain

1
Dyew = D + ﬂ(th —Dy)y' . (5.20)

The observant reader will notice the symmetry between (5.19) and
(5.20). This is further discussed in Section 5.10.

Now, given some initial approximation Dy (or By) (the choice of
which shall be discussed later), we can use (5.19) or (5.20) to gener-
ate the sequence needed in the framework. However, two important
features of the Hessian (or its inverse) would then be disregarded: We
wish both matrices B and D to be symmetric and positive definite.
This is not the case for (5.19) and (5.20), and thus the use of Broy-
den’s formula may lead to steps which are not even downhill, and
convergence towards saddle points or maxima will often occur. Hence
these formulae are never used for unconstrained optimization.
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Broyden’s rank-one formula was developed for solving systems of
non-linear equations. Further, the formulae have several other appli-
cations, e.g. in methods for least squares and minimax optimization.

5.7. Symmetric Updating

Since £(x)~! is symmetric, it is natural to require D to be so. If at
the same time rank-one updating is required, the basic recursion must
have the form

Dpew = D 4 uu' . (5.21a)

The Quasi-Newton condition (5.17a) determines u uniquely: Substi-
tuting (5.21) into (5.17a) and letting h denote hqy yields

h=Dy+4uu'y <= h-Dy=(uy)u, (5.21b)
implying that
(h—Dy)(h— Dy)" = (u"y)*uu’ . (5.21c)

The factor (u'y)? is found simply by taking the inner product with
y on both sides of (5.21b):

y' (h—Dy) = (u'y)u'y = (u"y)*. (5.21d)

By combining (5.21a—d) we get the SR{ formula (symmetric rank-one
updating formula)

1
Dpew =D+ ——uu'  with u=h-Dy . (5.22)
yu

It may be shown that if h = Dy, then Dpew = D is the only
solution to the problem of finding a symmetric rank-one update which
satisfies (5.17a). If, however, y" u=0 while at the same time h # Dy,
then there is no solution, and the updating breaks down. Thus, in
case the denominator becomes small we simply set Dpew = D and
avoid division by zero.
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The SR1 formula has some interesting properties. The most im-
portant is that a Quasi—-Newton method without line search based on
SR1 will minimize a quadratic function with positive definite Hessian
in at most n+1 iteration steps, provided the search directions are lin-
early independent and y'u remains positive. Further, in this case
Dyew equals £/(x*)~1 after n+1 steps. This important property is
called quadratic termination, cf. Section 4.1.

The SR1 formula has only been used very little in practice. This
is due to the fact that y' u may vanish, whereby numerical instability
is introduced or the updating breaks down.

A similar derivation gives the SR1 formula for approximations to
f(x) :

1
Bhew = B+ — vv' with v =y — Bh
h'v

and similar comments can be made.

5.8. Preserving Positive Definiteness

Consider Newton’s equation (5.2) or a Quasi-Newton equation based
on 5.13). The step is determined by

Gh=—f'(x) (5.23)

where G = f"(x) (Newton) or — in the case of Quasi-Newton, G =B
or G = D!, Now, remember definition (2.11): h is downhill if
h'f’(x) < 0. Taking the inner product with (~h) on both sides of
(5.23) we see that

h'f'(x) = —h"Gh,

and this is negative if G is positive definite.
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Conclusion 5.24
Newton’s equation (5.2) or the Quasi-Newton equation made
from (5.13) produces a downhill direction if the coefficient ma-

trix is positive definite.

If we use D = I (the identity matrix) in all the steps in the Quasi-
Newton framework 5.14, then the method of steepest decent appears.
As discussed in Chapter 3 this method has good global convergence
properties, but the final convergence 1s often very slow. If; on the
other hand, the iterates are near the solution x*, a Newton method
(and also a Quasi-Newton method with good Hessian approximations)
will give good performance, close to quadratic convergence. Thus a
good strategy for the updating would be to use D close to I in the
initial iteration step and then successively let D approximate £/ (x) =1
better and better towards the final phase. This will make the iteration
start like the steepest descent and end up somewhat like Newton’s
method. If in addition, the updating preserves positive definiteness
for all coefficient matrices, all steps will be downhill and a reasonable
rate of convergence can be expected, since f”(x)~! is positive (semi-
)definite at a minimizer.

5.9. The DFP Formula

One of the first updating formulae was proposed by Davidon in 1959.
This formula actually has the capability of preserving positive defi-
niteness. The formula was later developed by Fletcher and Powell in
1963, and it is called the DFP formula. A proper derivation of this
formula is very lengthy, so we confine ourselves to the less rigorous
presentation given by Fletcher (1987).

The first observation is that a greater flexibility i1s allowed for
with a rank-two updating formulae, simply because more terms may
be adjusted. A symmetric rank-two formula can be written as

Dpew =D +uu' +vv' ,
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which inserted in the Quasi-Newton condition (5.17a) gives
h=Dy+uu'y+vv'y.

Since the second updating term has been included, there is no unique
determination of u and v. Fletcher points out that an obvious choice
1s to try

u = ch v = Dy .

Then the Quasi-Newton condition will be satisfied if u'y=1 and
v'y =—1, and this yields the formula

DFP Updating

T

1+ 1 .

where

h =xpew —x, ¥y =1'(Xnew) —f'(x), v=Dy.

This was the dominating formula for more than a decade and it
was found to work well in practice. In general it is more efficient than
the conjugate gradient method (see Chapter 4). Traditionally it has
been used in Quasi—Newton methods with exact line search, but it
may also be used with soft line search as we shall see in a moment. A
method like this has the following important properties:

On quadratic objective functions with positive definite Hessian:
a) it terminates in at most n iterations with Dpew = £/ (x*) 71,
b) it generates conjugate directions,
c) it generates conjugate gradients if Dy =1 |

provided that the method uses exact line searches.

On general functions:
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d) it preserves positive definite D-matrices if thTy >0 in all
steps,

e) it gives superlinear final convergence,

f) it gives global convergence for strictly convex objective func-

tions provided that the line searches are exact.

Here we have a method with superlinear final convergence (defined
in (2.6)). Methods with this property are very useful because they
finish the iteration with fast convergence. Also, in this case

||x* — Xpew|| < ||x* — x|| for k — o0,

implying that ||Xpew — X|| can be used to estimate the distance from
x to x*.

Example 5.6. The proof of property d) in the above list is instructive,
and therefore we give it here:

Assume that D is positive definite. Then its Cholesky factor exists:
D = CCT, and for any non-zero z € IR™ we use (5.25) to find

(z"h)? B (z' Dy)? .

7' Dpewz = X' Dz + Ty v Dy

We introduced a=C"z, b=C"y and § = Z(a,b), cf. (2.12), and get

T2 T2

ab z h

A Do = = Gk +
T2

2 2 (z h)
= 1 —_— 0 .
Jall? (1 = cos? ) + &

If h"y >0, then both terms on the right-hand side are non-negative.

The first term vanishes only if § =0, i.e. when a and b are proportional,

which implies that z and y are proportional, z = Sy with 3#0. In

this case the second term becomes (Sy' h)?/h"y which is positive due

to the basic assumption. Hence, 7' Dpewz > 0 for any non-zero z and

Dipew is positive definite.
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The essential condition hTy >0 is called the curvature condition
because it can be expressed as
h'f!

new

>h'f . (5.26)

Notice, that if the line search slope condition (2.16) is satisfied then
(5.26) is also satisfied since h'f’=¢’(0) and h'f/ = ¢'(ay), where
¢(a) is the line search function defined in section 2.1.

The DFP formula with exact line search works well in practice and
has been used widely. When the soft line search methods were intro-
duced, however, the DFP formula appeared less favorable because it
does not always work well with a soft line search. There is another
rank-two updating formula which works better, and the DFP formula
only has theoretical importance today. The corresponding formula for
updating approximations to the Hessian itself is rather long, and we
omit it here.

At this point we shall elaborate on the importance of using soft
line search in Quasi Newton methods. The number of iteration steps
will usually be larger with the soft line search when compared to an
exact line search, but the total number of function evaluations needed
to minimize f will be considerably smaller. Clearly, the purpose of
using soft line search is to be able to take the steps which are proposed
by the Quasi Newton method directly. In this way we can avoid a
noticeable number of function evaluations in each iteration step for the
determination of the exact minimum of f along the line. Further, in
the final iterations, the approximations to the second order derivatives
are usually remarkably good and the Quasi—-Newton method obtains
a fine rate of convergence (see below).

5.10. The BFGS Formulae

The final updating formulae to be discussed in these notes are known
as the BFGS formulae, and they are the most popular of all the up-
dating formulae, described in the literature. As it is the case with the
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DFP formula, the BFGS formulae are difficult to derive directly from
the requirements. However, they arrive in a funny way through the
concept of duality which will be discussed briefly here: Remember the
Quasi—Newton conditions (5.17):

Dhewy =h and Bhewh =y .

The second equation has the same form as the first, except that y and
h are interchanged and Dyew is replaced by Bpew. This implies that
any updating formula for D which satisfies (5.17a) can be transformed
into an updating formula for B. Further, any formula for D has a
dual formula for B which is found by the substitution D < B and
h < y . Performing this operation on the DFP formula (5.25) yields
the following updating formula, which was discovered independently

by Broyden, Fletcher, Goldfarb and Shanno in 1970:

BFGS Updating

1 4 1 -
Bnow =B A pro 99— gy ™ (5.27)

where

h =xpew —x, ¥y =1'(Xnew) —f'(x), u=Bh.

This updating formula is very useful (Dennis and Schnabel (1984)
say “It is the best”), and it outperforms the DFP formula. The reader
is referred to Nocedal (1992) for an excellent explanation why this is
the case. If we perform the dual operation on the BFGS update
we return to the DFP updating, as we expected. The BFGS formula
produces B which converges to f”(x*) and the DFP formula produces
D which converges to £”(x*)71.

Alternatively, we can find another set of matrices {D} which has
the same convergence, although it 1s different from the D-matricess
produced by DFP. The BFGS formulais a rank two update, and there
are formulae which give the corresponding update for B :
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BFGS Updating for D

Dpew =D + ahhT —b (hVT + VhT) ,

where (5.28)
h =xpew — x, y:f/(xnew)_f/(x)a v = Dy,
1 T
b:ﬂ, a:b(l—l—b(y V))

The BFGS formulae are always used together with a soft line
search and as discussed above the procedure should be initiated with
the full Quasi—-Newton step in each iteration step, i.e. the initial a in
2.25 should be one. Experiments show that it should be implemented
with a very loose line search; typical values for the parameters in

(2.24) are ¢ = 10~% and 3 =0.9.

The properties a) — f) of the DFP formula also hold for the
BFGS formulae. Moreover, Powell has proved a better convergence
result for the latter formulae namely that they will also converge with
a soft line search on convex problems. Unfortunately, convergence
towards a stationary point has not been proved for neither the DFP
nor the BFGS formulae on general non-linear functions — no matter
which type of line search. Still, BEFGS with soft line search is known
as the method which never fails to come out with a stationary point.

5.11. Quadratic Termination

We indicated above that there is a close relationship between the DFP-
update and the BFGS-updates. Still, their performances are different
with the DFP update performing poorly with soft line searches. Broy-
den suggested to combine the two sets of formulae:

Broyden’s One Parameter family

Dhew = D+ cWppp + (1_U)WBFGS ) (529)

where 0 < ¢ <1 and Wppp and Wgpgg are the
updating terms in (5.25) and (5.28), respectively.
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The parameter o can be adjusted during the iteration, see Fletcher
(1987) for details. He remarks that o =0, “clean” BFGS updating is
quite often the best.

We want to state a result for the entire Broyden family, a result
which consequently is true for both DFP and BFGS. The result is
concerned with quadratic termination:

The Broyden Omne Parameter Updating formula gives
quadratic termination for all values of ¢ (0 <o <1), pro-
vided that Dy is positive definite.

This implies that a Quasi-Newton method with exact line | (5.30)
searches determines the minimizer of a positive definite
quadratic after no more than n iteration steps (n being

the dimension of the space).

The basis of all the updating in this chapter is the Quasi—-Newton
conditions (5.17a-b). This corresponds to a linear interpolation in
the gradient of the cost function. If the cost function is quadratic,
then 1ts gradient is linear in x, and so is its approximation. When
the Quasi—-Newton condition has been enforced in n steps, the two
linear functions agree in n+1 positions in IR", and consequently the
two functions are identical. Iterate no. n+1, Xpew, makes the gradient
of the approximation equal to zero, and so it also makes the gradient
of the cost function equal to zero; it solves the problem. The proviso
that the quadratic and Dy must be positive definite, ensures that Xpew
1s not only a stationary point, but also a minimizer.

5.12. Implementation of a Quasi—-Newton Method

In this section we shall discuss some details of the implementation
and finally show the Quasi—Newton algorithm with the different parts
assembeled.

Based on the above discussion we have chosen a BFGS updating
formula, and for the reasons given p. 62, an update of the inverse Hes-
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sian has been chosen. For student exercises and preliminary research
this update is adequate, but even though D in theory stays positive
definite, the rounding errors may cause ill conditioning and even in-
definiteness. For professional codes updating of a factorization of the
Hessian is recommended such that the effect of round off errors can
be treated properly. In the present context a less advanced remedy
is described which is to omit the updating if the curvature condition
(5.26) does not hold, since in this case the new D would not be posi-
tive definite. Actually, Dennis and Schnabel (1984) recommend that
the updating is skipped if

W'y < ey’ |l |lyllz (5.31)

where e\ 18 the machine precision. As a final remark on the updat-
ing formula we shall warn against implementing (5.28) with O(n?)
operations — a frequent error.

We shall assume the availability of a soft line search such as Algo-
rithm 2.25. It 1s important to notice that all the function evaluations
take place during the line search. Hence, the values of f and f’ at
the new point are recieved from the line search subprogram. In the
next iteration step these values are returned to the subprogram such
that f and f’ for « =0 are ready for the next search. Sometimes the
gradient needs not be calculated as often as f. In a production code
the line search should only calculate f respectively f’ whenever they
are needed.

The choice of the initial approximation to the inverse Hessian,
Dy, must also be discussed. Traditionally it 1s recommended to use
Dy = I, the identity matrix. This Dg is of course positive definite
and the first step will be in the steepest descent direction.

Finally, we outline an algorithm for a Quasi—-Newton method. Ac-
tually, the curvature condition (5.26) needs not be tested because it
is incorporated in the soft line search as stopping criterion (2.24b).
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Algorithm 5.32
Quasi—Newton Method with BFGS—Updating
begin

X:=Xo; D:=Dg; k:=0; {Initialisation }
while ||f/(x)]| > ¢ and k < Kkmax

hoy := D (—f'(x))

a := soft_line_search(x, hgN)

Xnew (= X + ath; k:=k+1

{Quasi-Newton equation}

{Algorithm 2.25}

if hi f/(xnew) > hint'(x) {Condition (5.26)}
Update D {using (5.28)}
X = Xnew

end

Example 5.7. We consider Rosenbrock’s function from Examples 4.3 and
5.5. As in the former, we have tried different updating formulae and
different line search methods. The line search parameters were chosen
as in Example 4.3.

With the starting point xo = [—1.2, 1]7, the following numbers of
iteration steps and evaluations of f(x) and f'(x) are needed to satisfy
the stopping criterion |[f'(x)|| < 1071°,

Update by | Line search | # it. steps | # fct. evals
DPF exact 23 295
DPF soft 31 93
BFGS exact 23 276
BFGS soft 29 68

The results are as expected: BFGS combined with soft line search needs
the smallest number of function evaluations to find the solution.

Below we give the iterates (cf. Figures 4.2, 4.3 and 5.4) and the values
of f(xx) and ||f'(xx)||cc. As with the Damped Newton Method we have

superlinear final convergence.
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Figure 5.5: BFGS with soft line search
applied to Rosenbrock’s function.
Top: iterates xi.  Bottom: f(xx) and ||f’(xx)||oo-

The number of iteration steps is about the same as in Example 5.5,
while the number of function evaluations is almost four times as big.
Note, however, that with Algorithm 5.32 each evaluation involves f(x)
and f'(x), while each evalution in the Damped Newton Method also
involves the Hessian f'(x). For many problems this is not available.
If it is, it may be costly: we need to compute %n(n—l—l elements in the
symmetric matrix " (x), while f'(x) has n elements only.

5.12

. Implementation of a Quasi—Newton Method

78



APPENDIX

A. Symmetric, Positive Definite Matrices

A matrix A€R™ "™ is symmetric if A=AT", i.e. if a;; =ay; for all 4, 5.

Definition
The symmetric matrix A € R"*" is

positive definite <= for all x€R", x#£0: x'Ax >0

positive semidefinite <= for all x € R™, x#£0: x' Ax >0

Such matrices play an important role in optimization, and some useful
properties are listed in

Theorem A

Let A €IR™*" be symmetric and let A = LU, where L is a unit lower
triangular matrix and U is an upper triangular matrix. Then
1° (Al ug; >0, i=1,...,n) < (A is positive definite) .

If A is positive definite, then

2° The LU-factorization is numerically stable.

3° U =DL" with D = diag(u:).

4° A = CC", the Cholesky factorization. C € R"*" is a lower trian-

gular matrix.

Proof: See e.g. Golub and Van Loan (1989) or Nielsen (1996).
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A unit lower triangular matriz L is characterized by £;; = 1 and £;; =0
for 7>1. Note, that the LU-factorization A = LU is made without piv-
oting (which, by the way, could destroy the symmetry). Also note that
points 3°-4° give the following relation between the LU- and the Cholesky-
factorization

A=LU=LDL" =CC’" (A.2a)
with
Cc=LD'?, D'? = diag(vui) . (A.2b)

The Cholesky factorization with test for positive definiteness can be
implemented as follows. (This algorithm does not rely on (A.2), but is de-
rived directly from 4° in Theorem A).

Algorithm (A.3). Cholesky factorization

begin
k:=0; posdef := true {Initialisation}
while posdef and k < n
k:=k+1
d:=ape — Y07} (eny)?
ifd>0 {test for pos. def.}
crr = Vd {diagonal element}
fori:=k+1,...,n {subdiagonal elements}
cik 1= (aik - Zf;ll cwcm) /chk
else

posdef := false
end

The “cost” of this algorithm is O(n®) operations.

This algorithm can e.g. be used in Algorithm 5.11. Actually it is the
cheapest way to check positive-definiteness.

The solution to the system

Ax=DL
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can be computed via the Cholesky factorization: Inserting A = CC' we
see that the system splits into

Cz=b and C'x=1z.

The two triangular systems are solved by forward- and back-substitution,
respectively.

Algorithm (A.4). Cholesky solve
begin
fork:=1,...,n—1,n {forward}
2= (bk -0 %ZJ) [k
fork:=n,n-1,...,1 {back}
Tk = (Zk - Zj=k+1 cjkx]) /ckk
end

The “cost” of this algorithm is O(n?) operations.

B. Proof of Theorem 4.2

We shall use induction to show that for y=1,...,n:
h/Hh; =0 foralli<j. (B.1)

We use the notation g; = f'(x,') and define the search directions by h; =
Xi — Xi—1. Then (4.5) leads to

Hh, =g, —g,_1, (B.2)

and 4.6 and (4.10) combine to

hyy1 = arygs (—gr + 'yrozr_lhr) with v, = _8Br8r (B.3)

and a4 found by exact line search. Finally, we remind the reader of (4.9)
and (4.8)

hig, =0 and  a;} b8 =-g/g . (B.4)
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Now, we are ready for the induction:
For j=1, (B.1) is trivially satisfied, there is no h; vector with i<1.

Next, assume that (B.1) holds for all j=1,...,k. Then it follows from the
proof of Theorem 4.1 that

gih; =0 for i=1,... k. (B.5)
If we insert (B.3), we see that this implies
0=gi (—gic1 +vic1a; thisy) = —ghgios
Thus, the gradients at the iterates are orthogonal,
grgi=0 for i=1,... k—1. (B.6)
Now, we will show that (B.1) also holds for j = k+1 :
aip hiHhyyy = hH (—gk + yxaj 'hy)
= —glHh; + vxa;'h] Hhy
= —gJ. (8 — 8i-1) + 1a; 'hHhy

For 1 < k each term is zero according to (B.1) for j <k and (B.5).
For i =k also the term g} gr_1 =0, and we get

ajp hiHhi = —gige + veay 'hy (8x — 8r-1)
—gi gk + 7 (0 +8l_i8r1) = 0 .

In the first reformulation we use both relations in (B.4), and next we use
the definition of v in (B.3).

Thus, we have shown that (B.1) also holds for j=k+1 and thereby
finished the proof. O
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