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General area: Geometric/arithmetic combinatorics, geometric incidence theory, geometric measure
theory.

Description of possible PhD projects

This document may appear somewhat vague. It mostly contains my general research interests an
ambition for the near future, in view of some exciting developments that this research are has seen lately.
A person who shares these interests and wishes to do a PhD with me is free to choose any aspect of these
or try to synthesize something of their own.

The term combinatorics rarely appears in modern mathematical literature without an additional
appellation. Geometric combinatorics usually refers to a growing body of mathematics concerned with
counting properties of arrangements of a large number of geometric objects in space. Arithmetic combi-
natorics, a closely related and active area of research, deals with combinatorial estimates associated with
the arithmetic operations (addition, multiplication and their inverses) in groups, rings and fields. The
wealth of tools used in both geometric and arithmetic combinatorics, ranging from elementary counting
arguments and graph theory to harmonic analysis, probability, ergodic theory, algebraic geometry, etc.,
accounts for their remarkable wealth of perspective.

Arithmetic and geometric combinatorics interact with one another by way of formulating the former’s
questions as incidence problems: one has a set of geometric objects X of some type and a set of points
P in some space, and asks for the bound on the cardinality of the set of incidences I = {(p, x) : p ∈ x},
in terms of the cardinalities |L|, |P |. Incidence theory constitutes one of my core research interests. In a
notable case the space is a projective plane and the sets are straight lines. If the plane is Euclidean then
a sharp incidence bound is given by the famous Szemerédi-Trotter theorem (1981).

Szemerédi-Trotter theorem. For any point set P and any line set L in R2, the total number of incidences

|I(L,P )| ¿
(
|L|+ |P |+ (|L||P |) 2

3

)
. (1)

All the known proofs of the Szemerédi-Trotter theorem rely heavily on the order property of the reals.
If the plane is defined over a finite field, then basically all that is known about non-trivial geometric
incidence theory therein is that it exists. This fact follows from a rather awkward backward conversion of
the arithmetic sum-product estimates discussed below into geometric incidence statements. Mechanisms
for such conversion have been developed by Bourgain, Katz, and Tao in 2003, and more recently myself
and Helfgott (2011) and Jones (2011), my PhD student. However, creating a genuine geometric incidence
theory over a finite plane is a recognised and challenging open problem, of great appeal to me.

The two other catchwords to highlight my current and anticipated research are two classical problems:
the Erdős distance problem (1946) and the Erdős-Szemerédi, or sum-product problem (known as such
since ≈ 1983), as two key examples of the general growth, or expander phenomenon in combinatorics1.

The Erdős distance conjecture in R2, claiming that N points in the plane determine at least |N |1−o(1)

distinct distances was triumphantly resolved in the end of 2010 by Guth and Katz. What remains is the
case of higher dimensions d ≥ 3 (proving that there are at least |N | 2d−o(1) distinct distances; the case
d = 3 being not unrelated to crystallography) as well as stronger versions of the statement, such as the
pinned one: does there exist a point wherefrom |N | 2d−o(1) distances are realised? Curiously enough, the
whole range of incremental results towards proving the conjecture, which would step-by-step vindicate
exponents closer and closer to one (although without much hope of finally getting there), eventually
some .86, largely apply to pinned distances. But the Guth-Katz theorem as it is fails to tell anything
about pinned distances. On the other hand, the recent developments have created ground for cautious
optimism that these questions maybe much closer to their nearly full resolution than it appeared just
a few years ago. My recent work with Iosevich and Roche-Newton (my PhD student) took up on the
ideas of Guth and Katz and solved another “hard Erdős problem”: any set of N vectors in the Euclidean
plane determines À |N |1−o(1) distinct dot products. Therefore, I would really like to see pinned versions
of the two results to be proven, but have no idea how this can be done.

1A particular example of growth in the Euclidean plane is the Beck theorem (1983). Given N points in the plane, either
their positive proportion is supported on same straight line, or distinct pairs of points generate À N2 distinct straight
lines. Beck’s theorem follows from the Szemerédi-Trotter theorem.
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Sum-product estimates, alias Erdős-Szemerédi conjecture, constitute a major open question in arith-
metic combinatorics. The original conjecture is that for any finite set A of integers, the cardinality of
the set of all sums or products (denoted respectively by A + A and A ·A) generated by pairs of elements
of A is almost as great as the cardinality of A, squared. That is:

max(|A + A|, |A ·A|) À |A|2−o(1). (2)

Today, the question is primarily asked in the context of reals A ⊂ R (as well as the complex field C) or
the prime residue field A ⊂ Fp, with p large and |A| sufficiently small relative to p (usually |A| <

√
p).

Today’s standing “world record” for A ⊂ R is due to Solymosi (2008), who proved (2) with the exponent
4
3 instead of 2. The best known exponent for A ⊂ C is 1 + 19

69 , proved in my recent work. In Fp, due to
the lack of the notion of order, the best known exponent is substantially worse: 12

11 , proved in my other
2011 paper. Previously known estimates had developed from 1+ ε in 2003 by Bourgain, Katz, Konyagin,
and Tao to 13

12 by Bourgain and Garaev in 2008. There is an easy counterexample of Bourgain that in
the Fp case, with |A| ∼ √

p showing that the exponent in (2) can not exceed 3
2 . This counterexample,

however, does not rule out a weaker form of (2):

|A + A| · |A ·A| À |A|3−o(1).

I do not know how the current state-of-the art can be improved. The breakthrough by Guth-Katz has also
raised expectations, and anything short of resolving the conjecture completely may be scoffed at by some
people. However, making any further progress in this direction, as far as I am concerned, is interesting.

The two classical problems above are examples of the general expander concept, introduced in their
context by Bourgain around 2005. In both cases, given a set of reals A, there is a function of four variables
in A, which would return at least |A|2−o(1) distinct values. Much less is known about expanders with
fewer variables. Garaev and Shen proved, for instance, that f(a, b) = ab + a will return at least À |A| 54
values for a real A and À |A| 106105 values for a small enough A ⊂ Fp. (Tim Jones seem to know how to
improve these exponents a little bit.) However, finding and estimating some new expanders would be a
nice thing, especially if one can come up with a really good estimate. One interesting function may be
f(a, b) = a + 1

b .
Expander problems require an underlying algebraic field structure, which sets them apart from purely

additive combinatorics. The latter subject has experienced an explosive development after Ruzsa gave
his new proof of the celebrated Freiman theorem in 1994, and Gowers his new proof of the Szemerédi
theorem in 1998, and whose holy grail today is the Polynomial Freiman-Ruzsa conjecture. The striking
theorem of Green and Tao about arithmetic progressions in primes is partially based on Gowers’ work.
Altogether, these powerful ideas have generated an impressive body of work, which has not thinned out
as of today, one fundamental innovation being, e.g. a well-known 2010 paper by Croot and Sisask. Much
of this work has not unexpectedly come from Cambridge (Gowers, Green, Sanders). I have read the
original work and gave some lectures about these problems, but here my expertise ends. However, I would
be very much interested to get involved, in case there is an ambitious and independent PhD student who
will be willing to enter this field more deeply and take me on board.

The situation in field combinatorics today may be somewhat reminiscent of what was happening
in additive combinatorics in the late 1990s. In the end of the first decade of this century two events
shook the area. In 2008 Dvir resolved the Kakeya conjecture over finite fields. And in 2010 Guth and
Katz, relying heavily on the polynomial method used by Dvir, settled the Erdős distance problem in the
Euclidean plane. One principal geometric component used by Guth and Katz came from a half-a-year
earlier work of Elekes and Sharir where they gave a “Kleinian geometry” reformulation of the distance
problem in R2 as a point-line incidence problem in R3 and conjectured an incidence theorem in R3.
Guth and Katz succeeded in proving that theorem by using a cell decomposition method furnished by
the Polynomial Ham Sandwich Theorem by Stone and Tukey (1942), a corollary of the famous Borsuk-
Ulam theorem in algebraic topology.2 It quickly became clear that these ideas have further applications,
and in 2011 Solymosi and Tao and then Zahl established several earlier unaccessible higher-dimensional

2 The Borsuk-Ulam theorem was no stranger to geometric combinatorics before the work of Guth and Katz: a whole
monograph of Matoušek (Springer, 2003) is dedicated to it. But it was not until 2008 that Guth demonstrated the power
of its corollary, the polynomial Ham Sandwich theorem. Combined with the polynomial method used by Dvir to prove the
finite field Kakeya conjecture, it enabled Guth (2008) to settle the hard endpoint case of the multi-linear Kakeya problem.
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Szemerédi-Trotter-type incidence theorems, and myself and collaborators proved what can be regarded
as the first sharp-to-endpoint sum-product inequality of Erdős-Szemerédi type over R:

|A ·A + A ·A| À |A|2−o(1). (3)

Most recently, Jones (my PhD student) has produced a similar in spirit result for cross-ratios of quadru-
ples of points on the projective line. His result may appear, in fact, stronger: the cross-ratios are pinned
at zero, namely he gets what is a three-variable expander as follows:

∣∣∣∣
{

a(b− c)
c(a− b)

: a, b, c ∈ A

}∣∣∣∣ À |A|2−o(1).

His result, however, does not use the Guth-Katz theorem and there is no evidence that the power
2 cannot be, in fact, replaced by 3. Roche-Newton (also my PhD student) succeeded in essentially
swapping addition and multiplication in the inequality (3), having thus made another important step
towards the Erdős-Szemerédi conjecture. Both estimates are sharp up to the endpoint.

The polynomial method, whose essence is to judge about the size of a discrete set by studying poly-
nomials which have zeroes on this set is not new: it goes back at least as far as Hilbert’s nullstellensatz.
In the 1970s it made way into number theory as Stepanov’s method, having enabled transparent proofs
of some classical exponential sum bounds, which had earlier been accessible by means of advanced al-
gebraic geometry only. It was brought into additive combinatorics by Alon and collaborators in the
1990s, where it allowed for extremely elegant proofs of, e.g., the classical Cauchy-Davenport theorem
and Erdős-Heilbronn conjecture by Alon, Nathanson, and Ruzsa in 1995. In 2000 Heath-Brown and
Konyagin used the Stepanov method to prove spectacular (and I believe yet to be generalised) results
about additive properties of multiplicative subgroups in Fp. Altogether on many occasions arithmetic
combinatorics has proved to be very successful, dealing with classical number theory problems.

Elekes and Sharir (2010) essentially pioneered a Kleinian geometry approach to geometric combina-
torics. Its main paradigm is to interpret a geometric combinatorics question in terms of the action of an
underlying classical symmetry group on the space where the original question has been posed. I regard
this geometric paradigm, together with the powerful analytic tool, the polynomial method, as a genuine
breakthrough, which together have furnished a new language, fit for describing the whole class of “hard
Erdős problems” which owe the epithet primarily to the fact that there is very little structure in the
original formulation of the problem that one can start building up on. In short, this research area has
been brought to a qualitatively new level (and one cannot help feeling lucky working in it).

Pushing this language and the state-of-the-art further, extending its powers to higher dimensions in
the Euclidean space, where the symmetry group geometry is much more involved is a key theme of my
future research, especially the case d = 3. Doing this as a PhD thesis would be excellent, but the problem
may be quite hard and possibly require more than trivial algebraic geometry. (For Guth and Katz, the
Bezout theorem was more or less all they needed.) It appears that a more natural space to look at is the
sphere S3 rather than R3, and one needs to prove an incidence theorem in the group SO(4,R), based
on its action on the unit quaternion sphere. The “lines” involved are now three-dimensional, they are
cosets of SO(3)-type subgroups of SO(4,R), stabilising the points of the original point set on S3.

The other key planned research direction is adaptation of the polynomial method to the Fp-geometry.
Neither the proof of the Szemerédi-Trotter, nor of the Guth-Katz theorem work in F2

p, due to the lack
of the notion of order, compatible with the algebra of field operations. Nor can their statements be
transferred verbatim. However, the polynomial method has worked beautifully in Dvir’s proof of the
finite field Kakeya conjecture, and part of the Guth-Katz proof is amenable to the Fp case.

If one wants to build an incidence theory over finite fields, I do not see an alternative to the polynomial
method. The first question may be to identify at least easier incidence type problems in F2

p, which can
be satisfactorily resolved thereby. For instance: is this true that a non-collinear set of N ¿ p points in
F2

p determines at least N1−o(1) distinct directions of lines drawn through pairs of distinct points? In the
Euclidean case the answer is N/2 and has been known since the 1970s, it takes a much easier argument
than the Szemerédi-Trotter theorem.3 In the F2

p case it is nearly trivial to prove that any set of N À p
points determines À p distinct directions. Yet the case of small N appears to be much more difficult.

3This is a good indication of the subtlety of the matter. If the point set is A×A, the fact of it generating at least N/2

directions yields the sum-product type inequality
∣∣∣ A−A

A−A

∣∣∣ ≥ |A|2
2

. But it was not until 2012 that Roche-Newton succeeded

in what can be viewed as merely replacing division by multiplication and proving that |(A−A) · (A−A)| À |A|2−o(1).
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The relevant aspects of finite field combinatorics per se have also experienced an influx of new
techniques. One was set out in the above-mentioned 2000 paper of Heath-Brown and Konyagin. The
paper applied the polynomial method to a variant of the following problem. If H is a multiplicative
subgroup from Fp, what is the minimum number of cosets of H that a single additive shift of H, is going
to intersect? They succeeded in giving an apparently sharp estimate, which looks temptingly like the
Szemerédi-Trotter one (1). In 2003 it was used by Konyagin to give estimates on sum-products in Fp.
However, further improvements of the prime field sum-product inequality have given up this method in
favour of a subterfuge, known as additive pivot, introduced in a 2005 work of Bourgain, Glibichuk and
Konyagin. It was not until 2011 when Shkredov and Collaborators pushed it (literally) one step further
to obtain a state-of-the-art estimate on the size of the sumset of a multiplicative subgroup. Together with
the aforementioned work by Konyagin, which brings multiplicative subgroups into the general context,
this may be gateway towards improvement of sum-product type results over Fp, as well as building a
genuine geometric incidence theory in F2

p.

4


