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Abstract

These notes cover the material of two Applied post-graduate lectures in Bristol, 2004.

The theorem

Szemerédi-Trotter theorem ([1]) is a theorem about the maximum number of incidences between
curves and points in the plane. It can be understood in terms of geometric graph theory and is
not true on finite fields. The theorem has recently become a powerful tool for dealing with so-
called “hard Erdös” problem in combinatorics (some will be discussed in the next section). Many
of these problems have analogs in analysis and geometric measure theory. These notes give a brief
introduction to the subject. For the state of the art exposition see the book by Matoušek ([2]). In
preparation of these notes I have often consulted the expository article of Iosevich ([3]) who once
introduced me to the subject.

Consider a set P of cardinality |P | = n of points and a set L of cardinality |L| = m of straight
lines in the plane. Call the pair (L,P ) an arrangement. Let us characterise the complexity of the
arrangement by the number of incidences I:

I =
∑

(p,l)∈P×L

δpl =
∑

p∈P

m(p) =
∑

l∈L

n(l). (1)

Above δpl = 1 if the point p lies on the line l and zero otherwise. The notations m(p) and n(l)
clearly mean the number of lines passing through a given point and the number of points contained
in a given line, respectively. The question is to come up with a non-trivial, i.e. better than the
obvious I ≤ mn upper bound for the number of incidences I.

The first (easy) bound comes from the fact that there is no more than a single line passing
through the same pair of points and the Cauchy-Schwartz inequality. Consider an m× n matrix A
with alp = δlp. Then

I =
∑

l∈L

n(l) ≤ √
m

√∑

l∈L

n2(l) =
√

m

√√√√ ∑

p,p′∈P

(∑

l∈L

δplδp′l

)

≤ √
m

√
I + n2.
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Indeed, the first term in the estimate corresponds to the case p = p′ in the double sum; if p 6= p′,
then there may be no more than one line of L passing through this given pair of points, the number
of such pairs obviously not exceeding n2. Hence,

I . m + n
√

m and I . n + m
√

n. (2)

The second estimate will follow from the same argument, only using the fact that there is no more
than one point of P where a pair of distinct lines can intersect. Henceforth, the notations a . b
will be used if a ≤ Cb for some C > 0; also b & a if b > ca for some c and a ≈ b if a . b and a & b.

An interesting case is m ≈ n, when (2) yields

I . n3/2.

Can one do better than that? The answer is the following theorem.

Theorem 1 (Szemerédi-Trotter theorem ) Consider an arrangement (L,P ) of m curves and
n points in R2 such that

(i) each pair of curves intersects at no more than O(1) points;
(ii) there are no more than O(1) curves passing through each pair of points.

Then
I(L,P ) . m + n + (mn)2/3. (3)

The original proof of Theorem 1 in [1] dealt with the case of straight lines only; it was simplified and
generalised in [5]. Then Székely ([4]) gave a new short proof, presented further, which shows that
Szemerédi-Trotter theorem is in fact a theorem from geometric graph theory. Clearly, the constant
hidden in the . symbol above depends on the constants hidden in O(1) symbols in the formulation
of the theorem. Otherwise it is not difficult to take these quantities into account explicitly, [4].

Proof of Theorem 1. Suppose for simplicity that O(1) = 1 in (i) and (ii) in the formulation of
the theorem. Build a simple graph G = (V, E), whose set of vertices is V = P, v = n being the
number of vertices and an edge between a pair of vertices is drawn if they are neighbours on the
same line. Then one has I = e + m, where e is the number of edges in G. The arrangement (L,P )
yields a specific drawing of G in the plane.

For any graph G let Cr G be the number of edge crossings on this drawing. A crossing is counted
whenever two edges intersect on the drawing, and the point of their intersection is not a vertex.
Also define Cr∗G as the minimum number of crossings over all possible drawings of G.

If G is planar graph for instance, then Cr∗G = 0.

Lemma 2 For any G, one has
Cr∗G > e− 3v.

Proof: If G were planar, its Euler characteristic

f − e + v = 2,

where f is the number of faces of G, counting the exterior. Without loss of generality, one can
assume that each edge separates two faces. Then f ≤ 2

3e (the extreme case being G – a triangle) as
each face has at least three edges. This implies e < 3v for a planar graph. This yields the lemma,
for if Cr∗G ≤ e − 3v were true, one could remove Cr∗G edges from G, whereupon G would have
become planar. ¤.
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Lemma 3 Either e . v or Cr∗G & e3

v2 .

Proof. Let 0 < p < 1, take a biased coin with the probability p for heads. For each vertex of G
toss a coin, and if the coin falls tails, delete this vertex and all the edges incident to it. Let Gp be a
subgraph that remains. Given a drawing of G, the quantities vp, ep, Cr Gp are random variables on
the probability space (Zv

2, p). For each realisation Gp one has Lemma 2. Taking expectations, one
has

E[Cr Gp] > E[ep]− 3E[vp] ⇒ p4Cr G > p2e− 3pv.

Choosing p ∼ v
e (e.g. p = 4v

e , which makes sense only if e > 4v) such that the right hand side is
still positive, completes the proof of the lemma. ¤
To prove Theorem 1 now return to the incidence graph G (where e = I − m) and note that by

construction Cr G < m2. Now apply Lemma 3. That is either m2 < Cr G . (I −m)3

n2
or I−m . n.

The theorem follows. ¤
Exercise: Work out all the constants in the proof of Theorem 1. In the original proof of Szemerédi-
Trotter theorem ([1]) these constants were dozens of orders of magnitude greater.

Proposition 4 Bound (3) in Szemerédi-Trotter theorem is tight.

Proof. Let us prove that I(n, n) & n4/3 for some arrangement (L,P ) of points and straight lines to
be constructed. Let n = 4k3, for some integer k. For P take the grid {0, 1, . . . , k−1}×{0, 1, . . . , 4k2−
1}. For L take all lines y = ax + b, with (a, b) ∈ {0, 1, . . . , 2k − 1} × {0, 1, . . . , 2k2 − 1}. Then for
x ∈ [0, k) one has ax + b < ak + b < 2k2 + 2k2 = 4k2, so for each i = 0, . . . , k− 1 each line contains
a point of P with x = i ∈ {0, 1, . . . k}. Thus I ≈ k4 ≈ n4/3. ¤
Exercise: Work out the same example for parabolas rather than straight lines.

Finally, let us consider Szemerédi-Trotter theorem in the context of vector spaces over finite fields.
More precisely, let Zq = {0, 1, . . . , q − 1} (q is a prime) be the finite field of q elements, by addition
and multiplication modulo q. Let Z2

q be the two dimensional vector space over Zq. Given a, b ∈ Z2
q ,

with a 6= (0, 0), a line in Z2
q is the set of points {a + tb, t ∈ Zq}. So each line contains exactly q

points. It is easy to show that Szemerédi-Trotter theorem is not true in Z2
q .

Proposition 5 Upper bound (2) is sharp in Z2
q.

Proof. Note that the basic assumptions (i), (ii) of Theorem 1, which were also used to get (2)
are satisfied. So is (2) which was their combinatorial (rather than geometrical, as was the proof
of Theorem 1) consequence. Now take P = Z2

q and L as the set of all distinct lines in Zq
2, so

|L|, |P | ≈ q2 ≡ n. Consider the number of incidences. Each line contains exactly q points, so
I(n, n) ≈ n3/2, which meets the upper bound (2). ¤
Let us note finally that higher-dimensional generalisations of Szemerédi-Trotter theorem (e.g for
incidences between points and surfaces) are problematic. The proof presented above is essentially
two-dimensional. There is a technique though of Clarkson et al. ([5]) which does extend to higher
dimension, at least if one deals with hyperplanes or spheres. However, a serious obstacle which
arises is the necessity of some nondegeneracy conditions, imposed by the fact that even in R3 one
can have rich families of surfaces, which would all intersect along the same curve. E.g. it’s easy to
come up with a family of translates of a paraboloid z = x2 + y2 in R3, which would all intersect
along the parabola, say z = x2. Then if the points P all lie on this parabola, each paraboloid
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contains each point. Or, consider n points on the unit circle in the x1x2 plane in R4 along with
m three-spheres of radius

√
2, whose centers all lie on the unit circle in the x3x4 plane. Then the

number of incidences is trivially mn, as each sphere contains each point.

Some applications

Take a strictly convex curve γ, i.e. every point of γ is an extreme point of its convex interior Ωγ .
Let the origin O ∈ Ωγ , consider now the domain tΩ, the image of Ω through the homothety centered
at O. How many integer lattice points are there on the boundary tγ?

Proposition 6 There is a tight upper bound |Z2 ∩ tγ| . t2/3.

Proof. As L, take the curve tγ and all its translates from the origin, to each lattice point inside tΩ.
For P take the union of all the lattice points inside all the translates above. Then |P | ≈ |L| ≈ t2,
so the number of incidences I . t8/3, which means at most t2/3 incidences per curve, as everything
is translation-invariant.

Tightness of the estimate comes from the well established fact that a convex hull of all the
integer points inside a large circle of radius t has ≈ t2/3 vertices. For the proof of this fact (not
presented here) and its generalisations, in particular for the case of d dimensions, see [6]. ¤
Here is another simple application.

Proposition 7 For any finite point set A ⊂ R, either the sum set A + A or the product set A · A
has & |A|5/4 elements.

Proof. For P take the set (A+A)×(A ·A) ⊂ R2. For L, take all the lines in the form x = a+ t, y =
a′t, a, a′ ∈ A. There are |A|2 lines, and an incidence with P occurs if and only if t ∈ A. Hence,

I = |A|3 . (|A|2|P |)2/3, so |P | & |A|5/2.

Clearly then one of the projections of P exceeds |A|5/4 in size. ¤
Last but not least, for a point set A ⊂ R2 define its distance set

∆(A) = {‖a− a′‖, a, a′ ∈ A},

with respect to the Euclidean distance ‖ · ‖. For t ∈ ∆(A) define its multiplicity ν(t) as a number
of non-ordered pairs a, a′ ∈ A such that ‖a− a′‖ = t. It was conjectured by Erdös that for any A, t
and any ε > 0, ∃Cε such that ν(t) ≤ Cε|A|1+ε. Note that the conjecture must take advantage of the
fact that the Euclidean distance is determined in terms of circles, for otherwise it would contradict
Proposition 6. Curiously, there has been no improvement to the following simple corollary of
Theorem 1.

Proposition 8 For any finite point set A ⊂ R2, supt∈∆(A) ν(t) . |A|4/3.

Proof. For any t consider P = A and L the set of circles of radius t, centered at points of A. Then
the number of incidences I is the number of occurrences ν(t) of the distance t and I . n4/3, the
latter bound being independent of t. ¤

Proposition 8 implies that ∆(A) has & |A|2/3 (distinct) elements, which is the first step towards
a weaker, yet a more famous conjecture, also by Erdös, that |∆(A)| & Cε|A|1−ε. Here the best
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exponent known is slightly larger than 6/7, after a technique developed by Solymosi and Toth
([7]). The technique in essence consists in several divide-and-concur consecutive applications of
Szemerédi-Trotter theorem. The Erdös distance conjecture has the following continuous analog due
to Falconer. Take a compact Borel set A ⊂ Rd of Hausdorff dimension greater than d/2. Then the
distance set ∆(A) ⊂ R has positive Lebesgue measure.

Convexity and sumsets

This last section is dedicated to sumsets generated by convex functions. Namely, let f(t) be strictly
convex (i.e Jensen’s inequality is always strict for f), let B = {1, 2, . . . , N}, S = {f(i), i ∈ B} and

dS = {x = f(i1) + . . . + f(id), (i1, . . . , id) ∈ Bd}
be the dth sumset of f , with the multiplicity νd(x) be the number of realisations of x, i.e. non-ordered
d-tuples s1, . . . , sd ∈ S, such that x = s1+ . . .+sd. Clearly, the L1 norm ‖νd‖1 =

∑
x∈dS νd(x) = Nd,

and the issue is to estimate higher moments ‖νd‖p
p =

∑
x∈dS νp

d(x), for p > 1 in terms of N ,
independent of f as long as it is strictly convex. It seems likely that for p = ∞, by Proposition 6
in d = 2 or the results of [6] for d > 2 (which do not apply directly however) one cannot do better
than ‖νd‖∞ . Nd d−1

d+1 , which would yield the first non-trivial bound on all the pth moments.
For the future consider p = 2. Knowing the pth moment enables one to render judgement on

the support of ν(t). E.g. by Cauchy-Schwartz:

N2d = ‖νd‖2
1 ≤ |dS| · ‖νq‖2

2, so |dS| ≥ N2d

‖νq‖2
2

. (4)

Observe that the second moment ‖νd‖2
2 gives the number of non-ordered d-tuples, solutions of the

diophantine equation
s1 + . . . + sd = sd+1 + . . . + s2d.

Another useful interpretation of the problem is that νd(x) is the number of integer lattice points on
the hypersurface f(x1) + . . . + f(xd) = x in Rd.

The conjecture for the upper bound on ‖νd‖2
2 comes from an obvious test choice f(t) = t2. It is

well known that if d ≥ 5, a sphere of radius r containing one integer lattice point, actually contains
some rd−2 points. If d = 2 this estimate gets modified by a power of log r. So it is reasonable to
conjecture that

‖νd‖2
2 ≤ CεN

2d−2+ε, (5)

where Cε(d) is the same for all strictly convex functions. Note that in such a set-up it is unlikely
that one can benefit by a number-theoretical approach. Recent results of Iosevich et al. ([8]) show
that one can take ε as small as 2−d+1.

Conjecture (5) gets partially motivated by estimating L2d norms of trigonometric polynomials.
Without loss of generality ([8]) one can think that f is integer-valued. If so, let θ ∈ R/Z and

P (θ) =
N∑

j=1

γje
2πιsjθ, with |γj | = 1, ∀j.

Then it is easy to see that

‖νd‖2
2 =

∫ 1

0
|P (θ)|2ddθ,
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so (5) is the conjecture about exponential sums.

The following theorem was proved in [8].

Theorem 2 For d ≥ 2, let αd = 2(1− 2−d). Then

‖νd‖2
2 . N2d−α. (6)

Note that by (4) it follows that
|dS| & Nα. (7)

The latter bound is due to Elekes et al. ([9]).
Both bounds (6) and (7) required Szemerédi-Trotter theorem to prove them. However, the

former estimate is harder and needs the following weighted version of Theorem 1, [8].

Theorem 3 Suppose each point p in the arrangement (L,P ) has weight µ(p) ≥ 0 and each line l
has weight µ(l) ≥ 0, with the maximum possible weights being µ̂P and µ̂L respectively. Let (m,n)
be net weights of all lines and points, respectively. Count weighted incidences as

I =
∑

p∈P,l∈L

µ(p)µ(l)δpl.

Then

I . µ̂P µ̂L

[(
m

µL

n

µP

) 2
3

+
m

µL
+

n

µP

]
. (8)

In other words, the maximum number of weighted incidences is achieved when weights are dis-
tributed uniformly, the number of distinct lines (points) in the arrangement - note that it does not
enter estimate (8) - being the smallest possible.

Let us prove Theorem 2 in the case d = 2 and indicate how to extend it to d > 2. Let
2B = {1, . . . , 2N} and γ be a curve {(t, f(t)), t ∈ [1, N ]} ⊂ R2. Let (i, u) ∈ B × S, consider the
set L of translates γiu of γ by all vectors (i, u). Now, for (j, x) ∈ 2B × 2S consider the system of
equations {

t + i = j,
f(t) + u = x.

(9)

If P = {(j, x)}, (9) is the (non-weighted) incidence problem for the arrangement (L, P ), which
satisfies the assumptions of Theorem 1, by convexity of the curves involved. Let us order 2S =
{x1, x2, . . .} by non-increasing multiplicity ν(x). Suppose, Pτ is the subset of P of points p such
that the number of lines incident to it m(p) ≥ τ . Then one has

τ |Pτ | ≤ I(L, Pτ ) . (N2|Pτ |)2/3,

where N2 is the total number of lines. (The first inequality is the definition of Pτ , the second one
is (3) where non-interesting linear terms have been omitted.) As |Pτ | ≈ N |2S|τ , where 2Sτ is the
subset {x ∈ 2S, ν2(x) ≥ τ}, of 2S, one gets

|2Sτ | . N3

τ3
.
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By ordering in 2S this implies, taking the inverse function, that

ν2(xt) . Nt−1/3 = M2(t). (10)

Expression (10) is a majorant for the multiplicity distribution ν2(xt) in 2S and is to be used as
follows. As naturally the L1 norm ‖ν2‖1 = N2, define a quantity C2 implicitly via

∫ C2

1
M(t)dt = N2, (11)

so C2 ≈ N3/2. By (10) the quantity C2 gives the lower bound for cardinality of 2S. Now define the
upper bound for the mean multiplicity ν̄2 as

ν̄2 =
‖ν2‖1

C2
=
√

N (12)

and partition 2S to 2Sν̄2 , where ν2(x) ≥ ν̄2, and its complement 2Sc
ν̄2

. Now

∑
x∈2Sν̄2

ν2
2(x) .

∫ C2

1 M2(t)dt ≈ N5/2,

∑
x∈2Sc

ν̄2
ν2
2(x) . ν̄2

∑
x∈2S ν(x) = N5/2.

(13)

This proves Theorem 2 for d = 2.
In order to continue by induction, for say d = 3, one returns to (9), where u however will now

live in 2S and is endowed with a weight ν2(u). The weight distribution for the (ordered) set of u’s
is majorated by (10) and one can prove that Theorem 3 applies to estimate the number of weighted
incidences, with µ̂P = 1 and µ̂L = ν̄2, cf. (12). I.e. instead of the maximum L∞ bound for the
weights - which would be trivially N for d = 2 (or less trivially N2/3 by Proposition 6) - one can
use a smaller L1 bound

√
N . To prove it, one has to partition the set 2S onto some log log N pieces

and apply Theorem 3 for each piece. For more detail about this divide-and-concur approach see [8].
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