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1. Asymptotic results

System model: Wireless devices (nodes) Poisson distributed with density ρ
within domain V = LV1 ⊂ Rd having volume V = LdV1. Pairwise connections
independent and have probability H(rij). Beamforming and interference are
neglected for now.

There are several rigorous results on connectivity using large network limits for
example due to Penrose (1997) and Gupta & Kumar (1999) for the unit disk
connection function (surveyed in Walters 2011), Mao & Anderson (2011-14),
Penrose (2015) for more general connection functions.

Full connection probability: For example, Penrose has, for ρ → ∞ and
L→∞ so that the limit exists, and d ≥ 2,

Pfc → exp

(
−ρ
∫
V

exp

[
−ρ
∫
V
H(r12)dr2

]
dr1

)
with strong restrictions on H(r).

Example: Unit disk range r0, d = 2, flat torus of side length L. We find

Pfc → exp
(
−ρL2 exp

[
−ρπr2

0

])
and in particular, for convergence, L must grow exponentially with ρ.



Some remarks

Isolated nodes The formula for full connectivity results from two main ideas:

1. Connectivity is controlled by isolated nodes. Proved for a very restricted
class of connection functions (eg requiring compact support), but prob-
ably true more generally. Not true for d = 1.

2. When ρ → ∞ isolated nodes are rare, almost independent, and almost
Poisson distributed. Proved for many connection functions of interest.

Geometries Very few geometries are considered in the rigorous literature,
mostly the flat torus (no boundaries) and d-cube. Mao and Anderson (2012)
point out that for very long range H(r) ≈ (r log r)−2 the nodes can sense the
full domain; for exponentially decaying H(r) this can be ignored.

Other network features As well as connectivity, features such as k-connectivity,
percolation, coverage have been considered.



Alternative scalings

Alternative scaling limits are considered in the literature, which allow the
connection range to vary, ie

H(r) = g(r/r0)

with fixed function g : R+ ∪ {0} → [0,1]. Examples (Mao & Anderson, 2012):

Dense network model Fix L, and take ρ→∞ and r0 ≈ (log ρ/ρ)1/d → 0.

Extended network model Fix ρ, and take L→∞ and r0 ≈ (logL)1/d →∞.

If all quantities are scaled consistently, the results are equivalent. So, given
µ ∈ R+, a random geometric graph G(ρ, L, r0) is connected with the same
probability as G(µ−dρ, µL, µr0).



Infinite to finite

We derive and use the formula

Pfc ≈ exp

(
−ρ
∫
V

exp

[
−ρ
∫
V
H(r12)dr2

]
dr1

)
as an approximation, not a limit - good for large but finite ρ and L.

Binomial vs Poisson
Bin(N): N nodes uniform in V
Poi(ρ): Density ρ in V.
The latter is equivalent to
choosing N from a Poisson dis-
tribution with mean N̄ = ρV
and then the location of these
nodes uniformly. So, we have
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2. Boundary effects: When and how important are they?

Asymptotic results In the above limit (ρ → ∞, L → ∞ so that Pfc fixed),
the system size grows so fast that isolated nodes are normally in the bulk.
So, in theory, boundaries don’t matter much.

But what about increasing density and a fixed (or slowly growing) size?

Isolated nodes occur mostly near the corners!



Boundaries - intuition

Let’s look at the connectivity again

Pfc ≈ exp

(
−ρ
∫
V

exp

[
−ρ
∫
V
H(r12)dr2

]
dr1

)
If the system size is not growling exponentially fast, the dominant contribu-
tions to the outer integral are from minima of the connectivity mass

M(r1) =

∫
V
H(r12)dr2

If r1 is a point on a boundary B with (solid) angle ωB, this separates into
angular and radial components:

M(r1) ≈MB = ωBHd−1

where

Hs =

∫ ∞
0

rsH(r)dr

is a moment of the connection function.

Insight: Since the system is much larger than the connection range, we
can treat the various boundary components separately and construct many
different geometries.



Example: A square

At large ρ we expect the dominant contribution to come from the corners;
at smaller ρ a trade-off between the contribution and size of each boundary
component. A calculation (to be explained in detail) gives

1− Pfc ≈ L2ρ exp (−πρ) +
4L
√
π

exp
(
−
πρ

2

)
+

16

πρ
exp

(
−
πρ

4

)



3. Basic boundary components in 2D and 3D

Now we analyse the integrals defining Pfc - but it turns out we only need to
do this once, as the formulas are quite general. In the following, boundary
components are labelled by (d, i), the dimension of the whole space, and the
codimension of the boundary component.

Step 1: Integration on a non-centred line

F (x) =

∫ ∞
0

H(
√
x2 + t2)dt

Expanding in powers of x, taking care with any discontinuities, we find

F (x) = H0 +
x2

2

(
H ′−1 + ∆−1

)
+ . . .

where H0 is the zeroth moment, and

H ′−1 =

∫ ∞
0

H ′(r)

r
dr = H−2

using integration by parts, if the latter converges.

∆−1 =
∑
k

H(rk+)−H(rk−)

rk

where the sum is over discontinuities (as in the unit disk model). It is conve-
nient to combine these in the notation to write

H̃−2 = H ′−1 + ∆−1



Step 2: Connectivity mass of a wedge

Define Mω
2,2(r, θ) to be connectivity mass of a wedge of angle ω from a point

at polar coordinates (r, θ).

Mθ
2,2(ξ csc θ,0) = M2A +M2B +M2C

M2A =
∫ θ

0 dφ
∫∞

0 H(r)dr = θH1

M2B =
∫ ξ

0 dx
∫∞

0 dtH(
√
x2 + t2) =

∫ ξ
0 dxF (x)

M2C =
∫ ξ

0 dx
∫ x cot θ

0 dtH(
√
x2 + t2)

≈ 1
2
H(0)ξ2 cot θ
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Putting it together we have for this wedge

Mθ
2,2(ξ csc θ,0) = θH1 + ξH0 +

ξ2

2
H(0) cot θ +

ξ3

6
H̃−2 + . . .

From this we can find a general wedge, edge and bulk:

Mω
2,2(r, θ) = Mθ

2,2(r,0) +Mθ′

2,2(r,0) (θ′ = ω − θ)

= ωH1 + rH0(sin θ + sin θ′) +
r2

4
H(0)(sin 2θ + sin 2θ′)

+
r3

6
H̃−2(sin3 θ + sin3 θ′) + . . .

M2,1(r) = 2Mπ/2
2,2 (r,0) = πH1 + 2rH0 +

r3

3
H̃−2 + . . .

M2,0 = 2πH1



Step 3: Calculation of the outer integral

Here, we use Laplace’s method, treating ρ as the large parameter. For ex-
ample, a wedge of angle ω:

P ω
2,2 = ρ

∫
w

e−ρM
ω
2,2(r,θ)rdrdθ

= ρ

∫ ω

0
dθ

∫ ∞
0

rdre
−ρ
[
ωH1+rH0(sin θ+sin θ′)+H(0)r2

4
(sin 2θ+sin 2θ′)+

H̃−2r
3

6
(sin3 θ+sin3 θ′)+...

]
= ρe−ρωH1

∫ ω

0
dθ

∫ ∞
0

rdre−ρrH0(sin θ+sin θ′)[
1−

ρH(0)r2

4
(sin 2θ + sin 2θ′)−

ρH̃−2r3

6
(sin3 θ + sin3 θ′) + . . .

]
= e−ρωH1

∫ ω

0
dθ[
1

ρH2
0(sin θ + sin θ′)2

−
3H(0)(sin 2θ + sin 2θ′)

2ρ2H4
0(sin θ + sin θ′)4

−
4H̃−2(sin3 θ + sin3 θ′)

ρ3H5
0(sin θ + sin θ′)5

+ . . .

]
= e−ρωH1

[
1

ρH2
0 sinω

−
H(0)(2 cosω + 1)

ρ2H4
0 sin2 ω

−
2H̃−2

ρ3H5
0 sinω

+ . . .

]



4. Universality and general formulas

We can do similar calculations for 3D boundary components including corners
with a right angle, which all have a similar form:

Pfc ≈ exp

(
−

d∑
i=0

∑
b∈Bi

P (b)
d,i

)

≈ exp

(
−

d∑
i=0

∑
b∈Bi

ρ1−iG(b)
d,i Vb exp [−ρωbHd−1]

)
where Vb is the d− i dimensional volume of the boundary component, and the
geometrical factor G(b)

d,i is given by

Gω
d,i i = 0 i = 1 i = 2 i = 3

d = 2 1 1
2H0

1
H2

0 sinω

d = 3 1 1
2πH1

1
π2H2

1 sin(ω/2)
4

π2H3
1ω sinω

We now have all the ingredients to find Pfc for arbitrary convex polygons and
right polyhedra.



The square revisited

Recall,

1− Pfc ≈ L2ρ exp (−πρ) +
4L
√
π

exp
(
−
πρ

2

)
+

16

πρ
exp

(
−
πρ

4

)
We can test convergence as ρ→∞ and L→∞ by plotting 1−Pfc∑

B
...



Summary so far

Given

• A connection function H(r) corresponding to a specific fading model,

• A convex polygonal or polyhedral geometry

We need to calculate only a few moments

Hm =

∫ ∞
0

rmH(r)dr

and refer to our table of geometrical factors

Gω
d,i i = 0 i = 1 i = 2 i = 3

d = 2 1 1
2H0

1
H2

0 sinω

d = 3 1 1
2πH1

1
π2H2

1 sin(ω/2)
4

π2H3
1ω sinω

to find a good approximation for the full connection probability

Pfc ≈ exp

(
−

d∑
i=0

∑
b∈Bi

ρ1−iG(b)
d,i Vb exp [−ρωbHd−1]

)



5. Detailed example: “House” with MIMO connection

2× 2 MIMO MRC channel with path loss η = 2:

H(r) = e−βr
2
(
β2r4 + 2− e−βr2

)
We have for the moments Hm =

∫∞
0 rmH(r)dr:

H2 =
23−

√
2

16

√
π

β3

H1 =
7

4β

Thus the geometrical factors are

Bulk: G3,0 = 1

Surface: G3,1 = 1
2πH1

= 2β
7π

Edge angle θ: G2θ
3,2 = 1

π2H2
1 sin θ

= 16β2

49π2 sin θ

Corner angle θ: Gθ
3,3 = 4

π2H3
1θ sin θ

= 256β3

343π2θ sin θ



House geometry

The house is a prism as shown: Base
a square of side L, apex a right angle,
and the total height 3L/2. Boundary
components are:
• Bulk, Vb = 5

4
L3

• Surface, Vb = 11+2
√

2
2

L2

• Edges, θ = π/2, Vb = (9 + 2
√

2)L
• Edges, θ = 3π/4, Vb = 2L
• Corners, θ = π/2, Vb = 6
• Corners, θ = 3π/4, Vb = 4

Thus we find − lnPfc ≈

5L3ρ

4
exp

−ρ23−
√

2

4

√
π3

β3

+
(11 + 2

√
2)βL2

7π
exp

−ρ23−
√

2

8

√
π3

β3


+

16(9 + 2
√

2)β2L

49π2ρ
exp

−ρ23−
√

2

16

√
π3

β3

+
32
√

2β2L

49π2ρ
exp

−ρ69− 3
√

2

32

√
π3

β3


+

3072β3

343π3ρ2
exp

−ρ23−
√

2

32

√
π3

β3

+
4096

√
2β3

1029π3ρ2
exp

−ρ69− 3
√

2

64

√
π3

β3





House: Numerical results

Left: Contributions to the outage probability; direct simulation in black.

Right: Phase diagram of the dominant contribution.



6. Complex and fractal geometries

These ideas can be extended to non-convex domains...

Keyholes: OG, CPD and JC, ISWCS 2013

Obstacles and curved boundaries: A. P. Giles, OG and CPD, arxiv:1502.05440

Reflections: OG, M. Z. Bocus, M. R. Rahman, CPD, JC,
IEEE Commun Lett 2015

Fractals: CPD, OG and JC, ISWCS 2015


