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Introduction
A billiard is a dynamical system in which a
particle alternates between motion in a straight
line and specular reflections from a boundary.
The mushroom billiard forms a class of dynam-
ical systems with sharply divided phase in two
dimensions. Its mixed phase space is composed
of a single completely regular (integrable) com-
ponent and a single chaotic and ergodic com-
ponent. For typical values of the control pa-
rameter of the system, an infinite number of
marginally unstable periodic orbits (MUPOs)
exist making the system sticky in the sense that
unstable periodic orbits approach regular re-
gions in phase space and thus exhibit regular
behaviour for long periods of time. The prob-
lem of finding these MUPOs is expressed as
the well known problem of finding optimal ra-
tional approximations of a number, subject to
some system-specific constraints. We introduce
a measure zero set of control parameter val-
ues for which all MUPOs are destroyed and
therefore the system is non-sticky. The open
mushroom (billiard with a hole) is considered
and the asymptotic survival probability func-
tion P (t) is calculated for both cases.

Model

a) Regular b) Chaotic

Stem width: 2r, Hat radius: R, Control param-
eter: r

R .

What are MUPOs
• The mushroom has infinitely many peri-

odic orbits (POs) living in its hat.

• Each PO forms a star polygon in coordi-
nate space.

• Marginally Unstable Periodic Orbits
(MUPOs) are PO which cross the central
circle of radius r⇔ Sticky Mushroom.

A perturbed MUPO will begin to precess with
a constant precessing angular velocity propor-
tional to the magnitude of the perturbation un-
til the orbit eventually falls into the stem of the
mushroom. When this happens, nearby per-
turbed trajectories will de-correlate by the de-
focusing mechanism exponentially fast. Until
they fall into the stem however, they exhibit in-
termittent, quasi-regular behaviour causing the
system to display weaker statistical properties
such as a polynomial decay of correlations and
an algebraic asymptotic survival probability.

Finding the MUPOs
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where s and j are positive coprime integers
such that s is the period of the orbit and j is
its rotation number, and λ is 1 if s is even and 2
if odd. Rearranging and expanding for large s:
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Results

• Use continued fractions representation: ϑ
∗
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• Hence, the mushroom billiard is non-sticky if K < 1
C+2 , where C = max an, and n is even.

More Results
Since the set of numbers with bounded partial
quotients has measure zero⇔ Generic Mush-
rooms are Sticky. Also, the Hausdorff dimen-
sion of this set is one. We use the following
transformation to illustrate this graphically:
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Darker: Well approximable numbers ϑ∗

Brighter: Badly approximable numbers ϑ∗

with respect to eq (2) above.

Generalised Mushroom

Note: No λ dependence.
Goal: Want to find values of ϑ∗ for which there
are no solutions⇔ Non-Sticky Mushroom.

Survival Probability
Given a density of particles on the billiard
boundary, the probability P (t) that a particle
survives in a strongly chaotic billiard (i.e. does
not escape through a small hole of size h) up
to time t decays exponentially ∼ e−γt. How-
ever, in the case of the mushroom there is also
an integrable island of orbits in phase space
which never escapes, a set of orbits called near-
bouncing ball orbits which decay algebraically
and a set of orbits near the MUPOs (described
above) also decaying algebraically. This is sum-
marised bellow:
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We have obtained leading order expressions for
all the above mentioned constants, In particu-
lar:
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If the mushroom is non-sticky however, Sr = ∅
and hence CMUPOs = 0.

Conclusion
In conclusion, whether the mushroom billiard
is sticky or not affects the overall classical dy-
namics of the system. Therefore, one may ex-
pect a quantum mechanical manifestation of
this to be observed in mesoscopic and wave
physics. Also, it is interesting in general to con-
sider variable Diophantine conditions (i.e. K as
a function of ϑ∗)
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